Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(29): e2202464119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858322

RESUMO

RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.


Assuntos
Aminoacil-tRNA Sintetases , Proteínas de Escherichia coli , Subunidades Ribossômicas Maiores de Bactérias , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Conformação Proteica , Splicing de RNA , RNA de Transferência/química , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
2.
Bioorg Med Chem ; 38: 116138, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857737

RESUMO

A series of novel pleuromutilin derivatives were designed and synthesized with 1,2,4-triazole as the linker connected to benzoyl chloride analogues under mild conditions. The in vitro antibacterial activities of the synthesized derivatives against four strains of Staphylococcus aureus (MRSA ATCC 43300, ATCC 29213, AD3 and 144) were tested by the broth dilution method. Most of the synthesized derivatives displayed potent activities, and 22-(3-amino-2-(4-methyl-benzoyl)-1,2,4-triazole-5-yl)-thioacetyl)-22-deoxypleuromutilin (compound 12) was found to be the most active antibacterial derivative against MRSA (MIC = 0.125 µg/mL). Furthermore, the time-kill curves showed compound 12 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 12 was further evaluated using MRSA infected murine thigh model. Compound 12 exhibited superior antibacterial efficacy than tiamulin. It was also found that compound 12 had no significant inhibitory effect on the proliferation of RAW264.7 cells. Compound 12 was further evaluated in CYP450 inhibition assay and showed moderate inhibitory effect on CYP3A4 (IC50 = 3.95 µM). Moreover, seven candidate compounds showed different affinities with the 50S ribosome by SPR measurement. Subsequently, binding of compound 12 and 20 to the 50S ribosome was further investigated by molecular modeling. Three strong hydrogen bonds were formed through the interaction of compound 12 and 20 with 50S ribosome. The binding free energy of compound 12 and 20 with the ribosome was calculated to be -10.7 kcal/mol and -11.66 kcal/mol, respectively.


Assuntos
Antibacterianos/farmacologia , Diterpenos/farmacologia , Desenho de Fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Compostos Policíclicos/farmacologia , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/síntese química , Diterpenos/química , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Compostos Policíclicos/síntese química , Compostos Policíclicos/química , Células RAW 264.7 , Relação Estrutura-Atividade , Pleuromutilinas
3.
Sci Rep ; 9(1): 11460, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391518

RESUMO

The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/ultraestrutura , Farmacorresistência Bacteriana/genética , Eritromicina/farmacologia , Proteínas Ribossômicas/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Eritromicina/uso terapêutico , Humanos , Mutação , Ligação Proteica/genética , RNA Ribossômico 23S/metabolismo , RNA Ribossômico 23S/ultraestrutura , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Imagem Individual de Molécula , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestrutura
4.
Future Microbiol ; 14: 927-939, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31333062

RESUMO

Despite the increasing availability of antibiotics with activity against pathogens that cause community-acquired pneumonia (CAP), CAP remains a major cause of morbidity, hospital admissions and re-admissions, and mortality. Lefamulin is a novel pleuromutilin antibiotic with potent in vitro activity against both typical and atypical CAP pathogens. In this review of the medical literature, we summarize the available information, including mounting clinical evidence, about lefamulin and its potential value in CAP.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Pneumonia/tratamento farmacológico , Compostos Policíclicos/farmacologia , Compostos Policíclicos/uso terapêutico , Tioglicolatos/farmacologia , Tioglicolatos/uso terapêutico , Antibacterianos/efeitos adversos , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/isolamento & purificação , Infecções Comunitárias Adquiridas/tratamento farmacológico , Infecções Comunitárias Adquiridas/microbiologia , Diterpenos/efeitos adversos , Diterpenos/química , Humanos , Estrutura Molecular , Pneumonia/microbiologia , Compostos Policíclicos/efeitos adversos , Compostos Policíclicos/química , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Tioglicolatos/efeitos adversos , Tioglicolatos/química , Resultado do Tratamento , Pleuromutilinas
5.
Methods ; 156: 110-120, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391513

RESUMO

Among different RNA modifications, the helix 69 (H69) region of the bacterial ribosomal RNA (rRNA) contains three pseudouridines (Ψs). H69 is functionally important due to its location in the heart of the ribosome. Several structural and functional studies have shown the importance of Ψ modifications in influencing the H69 conformation as well as maintaining key interactions in the ribosome during protein synthesis. Therefore, a need exists to understand the influence of modified nucleosides on conformational dynamics of the ribosome under solution conditions that mimic the cellular environment. In this review on chemical probing, we provide detailed protocols for the use of dimethyl sulfate (DMS) to examine H69 conformational states and the influence of Ψ modifications under varying solution conditions in the context of both ribosomal subunits and full ribosomes. The use of DMS footprinting to study the binding of aminoglycosides to the H69 region of bacterial rRNA as a potential antibiotic target will also be discussed. As highlighted in this work, DMS probing and footprinting are versatile techniques that can be used to gain important insight into RNA local structure and RNA-ligand interactions, respectively.


Assuntos
Escherichia coli/genética , Impressão Molecular/métodos , Pseudouridina/química , RNA Ribossômico 16S/química , RNA Ribossômico 23S/química , Compostos de Anilina/química , Antibacterianos/farmacologia , Fracionamento Celular/métodos , DNA Complementar/biossíntese , DNA Complementar/química , DNA Complementar/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Gentamicinas/farmacologia , Hidroliases/genética , Hidroliases/metabolismo , Ligantes , Cloreto de Magnésio/farmacologia , Neomicina/farmacologia , Conformação de Ácido Nucleico , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Pseudouridina/genética , Pseudouridina/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Transcrição Reversa , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/química , Ribossomos/efeitos dos fármacos , Ribossomos/genética , Ribossomos/metabolismo , Ésteres do Ácido Sulfúrico/química
6.
J Mol Biol ; 430(6): 842-852, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29410130

RESUMO

Antibiotic chloramphenicol (CHL) binds with a moderate affinity at the peptidyl transferase center of the bacterial ribosome and inhibits peptide bond formation. As an approach for modifying and potentially improving properties of this inhibitor, we explored ribosome binding and inhibitory activity of a number of amino acid analogs of CHL. The L-histidyl analog binds to the ribosome with the affinity exceeding that of CHL by 10 fold. Several of the newly synthesized analogs were able to inhibit protein synthesis and exhibited the mode of action that was distinct from the action of CHL. However, the inhibitory properties of the semi-synthetic CHL analogs did not correlate with their affinity and in general, the amino acid analogs of CHL were less active inhibitors of translation in comparison with the original antibiotic. The X-ray crystal structures of the Thermus thermophilus 70S ribosome in complex with three semi-synthetic analogs showed that CHL derivatives bind at the peptidyl transferase center, where the aminoacyl moiety of the tested compounds established idiosyncratic interactions with rRNA. Although still fairly inefficient inhibitors of translation, the synthesized compounds represent promising chemical scaffolds that target the peptidyl transferase center of the ribosome and potentially are suitable for further exploration.


Assuntos
Aminoácidos/farmacologia , Antibacterianos/farmacologia , Cloranfenicol/farmacologia , Ligação Proteica/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Sítios de Ligação , Cloranfenicol/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Modelos Moleculares , Peptidil Transferases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Thermus thermophilus/metabolismo
7.
Nucleic Acids Res ; 45(17): 10284-10292, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973455

RESUMO

Antimicrobial resistance within a wide range of pathogenic bacteria is an increasingly serious threat to global public health. Among these pathogenic bacteria are the highly resistant, versatile and possibly aggressive bacteria, Staphylococcus aureus. Lincosamide antibiotics were proved to be effective against this pathogen. This small, albeit important group of antibiotics is mostly active against Gram-positive bacteria, but also used against selected Gram-negative anaerobes and protozoa. S. aureus resistance to lincosamides can be acquired by modifications and/or mutations in the rRNA and rProteins. Here, we present the crystal structures of the large ribosomal subunit of S. aureus in complex with the lincosamides lincomycin and RB02, a novel semisynthetic derivative and discuss the biochemical aspects of the in vitro potency of various lincosamides. These results allow better understanding of the drugs selectivity as well as the importance of the various chemical moieties of the drug for binding and inhibition.


Assuntos
Lincosamidas/farmacologia , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Benzamidas/química , Benzamidas/farmacologia , Sítios de Ligação , Clindamicina/química , Clindamicina/farmacologia , Cristalização , Cristalografia por Raios X , Resistência Microbiana a Medicamentos , Galactosídeos/química , Galactosídeos/farmacologia , Ligação de Hidrogênio , Lincomicina/química , Lincomicina/farmacologia , Lincosamidas/química , Estrutura Molecular , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Staphylococcus aureus/ultraestrutura , Eletricidade Estática , Relação Estrutura-Atividade
8.
J Pept Sci ; 22(9): 592-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27406684

RESUMO

Recent surveillance data on antimicrobial resistance predict the beginning of the post-antibiotic era with pan-resistant bacteria even overcoming polymyxin as the last available treatment option. Thus, new substances using novel modes of antimicrobial action are urgently needed to reduce this health threat. Antimicrobial peptides are part of the innate immune system of most vertebrates and invertebrates and accepted as valid substances for antibiotic drug development efforts. Especially, short proline-rich antimicrobial peptides (PrAMP) of insect origin have been optimized for activity against Gram-negative strains. They inhibit protein expression in bacteria by blocking the 70S ribosome exit tunnel (oncocin-type) or the assembly of the 50S subunit (apidaecin-type binding). Thus, apidaecin analog Api137 and oncocin analog Onc112 supposedly bind to different nearby or possibly partially overlapping binding sites. Here, we synthesized Api137/Onc112-conjugates bridged by ethylene glycol spacers of different length to probe synergistic activities and binding modes. Indeed, the antimicrobial activities against Escherichia coli and Pseudomonas aeruginosa improved for some constructs, although the conjugates did not bind better to the 70S ribosome of E. coli than Api137 and Onc112 using 5(6)-carboxyfluorescein-labelled Api137 and Onc112 in a competitive fluorescence polarization assay. In conclusion, Api137/Onc112-conjugates showed increased antimicrobial activities against P. aeruginosa and PrAMP-susceptible and -resistant E. coli most likely because of improved membrane interactions, whereas the interaction to the 70S ribosome was most likely not improved relying still on the independent apidaecin- and oncocin-type binding modes. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Assuntos
Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Etilenoglicol/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sítios de Ligação , Ligação Competitiva , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fluoresceínas , Corantes Fluorescentes , Cinética , Testes de Sensibilidade Microbiana , Ligação Proteica , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos , Espectrometria de Fluorescência
9.
Proc Natl Acad Sci U S A ; 113(27): 7527-32, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27330110

RESUMO

The ribosome is one of the major targets for therapeutic antibiotics; however, the rise in multidrug resistance is a growing threat to the utility of our current arsenal. The orthosomycin antibiotics evernimicin (EVN) and avilamycin (AVI) target the ribosome and do not display cross-resistance with any other classes of antibiotics, suggesting that they bind to a unique site on the ribosome and may therefore represent an avenue for development of new antimicrobial agents. Here we present cryo-EM structures of EVN and AVI in complex with the Escherichia coli ribosome at 3.6- to 3.9-Å resolution. The structures reveal that EVN and AVI bind to a single site on the large subunit that is distinct from other known antibiotic binding sites on the ribosome. Both antibiotics adopt an extended conformation spanning the minor grooves of helices 89 and 91 of the 23S rRNA and interacting with arginine residues of ribosomal protein L16. This binding site overlaps with the elbow region of A-site bound tRNA. Consistent with this finding, single-molecule FRET (smFRET) experiments show that both antibiotics interfere with late steps in the accommodation process, wherein aminoacyl-tRNA enters the peptidyltransferase center of the large ribosomal subunit. These data provide a structural and mechanistic rationale for how these antibiotics inhibit the elongation phase of protein synthesis.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Oligossacarídeos/farmacologia , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli , Dados de Sequência Molecular , Estrutura Molecular , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Imagem Individual de Molécula
10.
Nucleic Acids Res ; 43(20): 10015-25, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26464437

RESUMO

Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.


Assuntos
Cinamatos/química , Cinamatos/farmacologia , Higromicina B/análogos & derivados , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Sítios de Ligação , Cinamatos/metabolismo , Cristalografia por Raios X , Higromicina B/química , Higromicina B/metabolismo , Higromicina B/farmacologia , Modelos Moleculares , Peptidil Transferases/química , Peptidil Transferases/efeitos dos fármacos , Inibidores da Síntese de Proteínas/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/enzimologia , Subunidades Ribossômicas Maiores de Bactérias/metabolismo
11.
Nat Commun ; 6: 7896, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26224058

RESUMO

Dynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin-paromomycin, ribostamycin and neamine-each bind to sites within h44 and H69 to perturb bridge B2 and affect subunit rotation. Neomycin and paromomycin, which only differ by their ring-I 6'-polar group, drive subunit rotation in opposite directions. This suggests that their distinct actions hinge on the 6'-substituent and the drug's net positive charge. By solving the crystal structure of the paromomycin-ribosome complex, we observe specific contacts between the apical tip of H69 and the 6'-hydroxyl on paromomycin from within the drug's canonical h44-binding site. These results indicate that aminoglycoside actions must be framed in the context of bridge B2 and their regulation of subunit rotation.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , RNA Bacteriano/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos , Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Sítios de Ligação , Escherichia coli , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Framicetina/metabolismo , Framicetina/farmacologia , Neomicina/metabolismo , Neomicina/farmacologia , Paromomicina/metabolismo , Paromomicina/farmacologia , RNA Bacteriano/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ribostamicina/metabolismo , Ribostamicina/farmacologia , Rotação
12.
Int J Antimicrob Agents ; 44(1): 38-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24837410

RESUMO

Acinetobacter baumannii has been associated with several severe hospital-acquired infections such as ventilator-associated pneumonia and meningitis. Sulbactam, a ß-lactamase inhibitor, is usually combined with ß-lactam antibiotics to treat infections. It has been found that sulbactam alone may be used to treat infections caused by A. baumannii, although the mechanism of the bactericidal effect remains unknown. In this study, proteomics was used to analyse protein intensity changes and to identify the proteins of A. baumannii following sulbactam treatment. In total, 54 proteins were found to exhibit significant changes in intensity. Proteins with reduced intensity included ATP-binding cassette (ABC) transporters as well as 30S and 50S ribosomal subunit proteins. These proteins are essential for nutrient import and protein synthesis and are vital for bacterial survival. The amplified proteins included glutamine synthetase, malic enzyme, RNA polymerase subunit α, and the molecular chaperones DnaK and GroEL, which function in metabolism, DNA and protein synthesis, and repair machinery. These amplified proteins were increased to rescue bacteria, however they could not overcome the effects of the reduced proteins and the bacteria were killed. This is the first report that the reduction of ABC transporters and 30S and 50S ribosomal subunit proteins plays an important role in the bactericidal effect of sulbactam against A. baumannii.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteoma/genética , Sulbactam/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Proteoma/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Eletroforese em Gel Diferencial Bidimensional
13.
Biol Chem ; 394(11): 1529-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006327

RESUMO

Oxazolidinone antibiotics bind to the highly conserved peptidyl transferase center in the ribosome. For developing selective antibiotics, a profound understanding of the selectivity determinants is required. We have performed for the first time technically challenging molecular dynamics simulations in combination with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculations of the oxazolidinones linezolid and radezolid bound to the large ribosomal subunits of the eubacterium Deinococcus radiodurans and the archaeon Haloarcula marismortui. A remarkably good agreement of the computed relative binding free energy with selectivity data available from experiment for linezolid is found. On an atomic level, the analyses reveal an intricate interplay of structural, energetic, and dynamic determinants of the species selectivity of oxazolidinone antibiotics: A structural decomposition of free energy components identifies influences that originate from first and second shell nucleotides of the binding sites and lead to (opposing) contributions from interaction energies, solvation, and entropic factors. These findings add another layer of complexity to the current knowledge on structure-activity relationships of oxazolidinones binding to the ribosome and suggest that selectivity analyses solely based on structural information and qualitative arguments on interactions may not reach far enough. The computational analyses presented here should be of sufficient accuracy to fill this gap.


Assuntos
Anti-Infecciosos/farmacologia , Deinococcus/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Oxazolidinonas/farmacologia , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Acetamidas/química , Acetamidas/farmacologia , Anti-Infecciosos/química , Sítios de Ligação , Haloarcula marismortui/efeitos dos fármacos , Linezolida , Simulação de Dinâmica Molecular , Oxazolidinonas/química , Especificidade da Espécie
14.
RNA ; 19(2): 158-66, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23249745

RESUMO

In the absence of elongation factor EF-G, ribosomes undergo spontaneous, thermally driven fluctuation between the pre-translocation (classical) and intermediate (hybrid) states of translocation. These fluctuations do not result in productive mRNA translocation. Extending previous findings that the antibiotic sparsomycin induces translocation, we identify additional peptidyl transferase inhibitors that trigger productive mRNA translocation. We find that antibiotics that bind the peptidyl transferase A site induce mRNA translocation, whereas those that do not occupy the A site fail to induce translocation. Using single-molecule FRET, we show that translocation-inducing antibiotics do not accelerate intersubunit rotation, but act solely by converting the intrinsic, thermally driven dynamics of the ribosome into translocation. Our results support the idea that the ribosome is a Brownian ratchet machine, whose intrinsic dynamics can be rectified into unidirectional translocation by ligand binding.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Transporte de RNA/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Antibacterianos/metabolismo , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Clindamicina/metabolismo , Clindamicina/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Lincomicina/metabolismo , Lincomicina/farmacologia , Fator G para Elongação de Peptídeos/efeitos dos fármacos , Fator G para Elongação de Peptídeos/metabolismo , Peptidil Transferases/efeitos dos fármacos , Peptidil Transferases/metabolismo , RNA Bacteriano/efeitos dos fármacos , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/efeitos dos fármacos , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Esparsomicina/metabolismo , Esparsomicina/farmacologia
15.
Rev Sci Tech ; 31(1): 57-64, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849268

RESUMO

The ribosome is a major bacterial target for antibiotics. Drugs inhibit ribosome function either by interfering in messenger RNA translation or by blocking the formation of peptide bonds at the peptidyl transferase centre. These effects are the consequence of the binding of drugs to the ribosomal subunits. Various mechanisms, including enzymatic detoxification, target alteration (ribosomal [r]RNAs and ribosomal proteins) and reduced accumulation (impermeability and efflux) are involved in bacterial resistance to protein synthesis inhibitors. The fact that some positions in rRNA participate in the binding of antibiotics belonging to distinct families explains why bacteria have developed mechanisms that can lead to cross-resistance.


Assuntos
Antibacterianos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , Animais , Cloranfenicol/análogos & derivados , Cloranfenicol/farmacologia , Diterpenos/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/fisiologia , Ácido Fusídico/farmacologia , Humanos , Macrolídeos/química , Macrolídeos/farmacologia , Metiltransferases/química , Metiltransferases/metabolismo , Oxazolidinonas/farmacologia , Compostos Policíclicos , RNA Ribossômico 16S/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Tetraciclinas/química , Tetraciclinas/farmacologia , Pleuromutilinas
16.
Nat Struct Mol Biol ; 19(9): 957-63, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22902368

RESUMO

Protein synthesis is targeted by numerous, chemically distinct antibiotics that bind and inhibit key functional centers of the ribosome. Using single-molecule imaging and X-ray crystallography, we show that the aminoglycoside neomycin blocks aminoacyl-transfer RNA (aa-tRNA) selection and translocation as well as ribosome recycling by binding to helix 69 (H69) of 23S ribosomal RNA within the large subunit of the Escherichia coli ribosome. There, neomycin prevents the remodeling of intersubunit bridges that normally accompanies the process of subunit rotation to stabilize a partially rotated ribosome configuration in which peptidyl (P)-site tRNA is constrained in a previously unidentified hybrid position. Direct measurements show that this neomycin-stabilized intermediate is incompatible with the translation factor binding that is required for distinct protein synthesis reactions. These findings reveal the functional importance of reversible intersubunit rotation to the translation mechanism and shed new light on the allosteric control of ribosome functions by small-molecule antibiotics.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Neomicina/farmacologia , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Antibacterianos/química , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Neomicina/química , Biossíntese de Proteínas/efeitos dos fármacos , RNA Bacteriano/química , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/metabolismo
17.
Ann N Y Acad Sci ; 1241: 1-16, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22191523

RESUMO

The peptidyltransferase center of the large ribosomal subunit is responsible for catalyzing peptide bonds. This active site is the target of a variety of diverse antibiotics, many of which are used clinically. The past decade has seen a plethora of structures of antibiotics in complex with the large ribosomal subunit, providing unprecedented insight into the mechanism of action of these inhibitors. Ten distinct antibiotics (chloramphenicol, clindamycin, linezolid, tiamulin, sparsomycin, and five macrolides) have been crystallized in complex with four distinct ribosomal species, three bacterial, and one archaeal. This review aims to compare these structures in order to provide insight into the conserved and species-specific modes of interaction for particular members of each class of antibiotics. Coupled with the wealth of biochemical data, a picture is emerging defining the specific functional states of the ribosome that antibiotics preferentially target. Such mechanistic insight into antibiotic inhibition will be important for the development of the next generation of antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Subunidades Ribossômicas Maiores de Arqueas/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/classificação , Sítios de Ligação , Cristalografia por Raios X , Deinococcus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Haloarcula marismortui/efeitos dos fármacos , Modelos Moleculares , Subunidades Ribossômicas Maiores de Arqueas/química , Subunidades Ribossômicas Maiores de Bactérias/química , Especificidade da Espécie , Thermus thermophilus/efeitos dos fármacos
18.
Ann N Y Acad Sci ; 1241: 33-47, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22191525

RESUMO

Macrolide antibiotics bind in the nascent peptide exit tunnel of the ribosome and inhibit protein synthesis. The majority of information on the principles of binding and action of these antibiotics comes from studies that employed model organisms. However, there is a growing understanding that the binding of macrolides to their target, as well as the mode of inhibition of translation, can be strongly influenced by variations in ribosome structure between bacterial species. Awareness of the existence of species-specific differences in drug action and appreciation of the extent of these differences can stimulate future work on developing better macrolide drugs. In this review, representative cases illustrating the organism-specific binding and action of macrolide antibiotics, as well as species-specific mechanisms of resistance are analyzed.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Macrolídeos/metabolismo , Macrolídeos/farmacologia , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Sítios de Ligação , Deinococcus/efeitos dos fármacos , Deinococcus/metabolismo , Farmacorresistência Bacteriana/genética , Humanos , Macrolídeos/química , Modelos Moleculares , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Ribossomos/química , Especificidade da Espécie
19.
Nat Struct Mol Biol ; 17(7): 793-800, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20562856

RESUMO

We report the direct observation of conformational rearrangements of the ribosome during multiple rounds of elongation. Using single-molecule fluorescence resonance energy transfer, we monitored the intersubunit conformation of the ribosome in real time as it proceeds from codon to codon. During each elongation cycle, the ribosome unlocks upon peptide bond formation, then reverts to the locked state upon translocation onto the next codon. Our data reveal both the specific and cumulative effects of antibiotics on individual steps of translation and uncover the processivity of the ribosome as it elongates. Our approach interrogates the precise molecular events occurring at each codon of the mRNA within the full context of ongoing translation.


Assuntos
Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Antibacterianos/farmacologia , Sequência de Bases , Códon/química , Códon/metabolismo , Eritromicina/farmacologia , Escherichia coli/química , Dados de Sequência Molecular , Biossíntese de Proteínas , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos
20.
J Am Chem Soc ; 132(20): 6973-81, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20441189

RESUMO

Ribosomally produced thiopeptide antibiotics are highly promising lead compounds targeting the GTPase-associated region (GAR) of the bacterial ribosome. A representative panel of GAR mutants suspected to confer resistance against thiopeptide antibiotics was reconstituted in vitro and quantitatively studied with fluorescent probes. It was found that single-site mutations of the ribosomal 23S rRNA binding site region directly affect thiopeptide affinity. Quantitative equilibrium binding data clearly identified A1067 as the base contributing most strongly to the binding environment. The P25 residue on the ribosomal protein L11 was essential for binding of the monocyclic thiopeptides micrococcin and promothiocin B, confirming that the mutation of this residue in the producer organism confers self-resistance. For the bicyclic thiopeptides thiostrepton and nosiheptide, all studied single-site resistance mutations on the L11 protein were still fully capable of ligand binding in the upper pM range, both in the RNA-protein complex and in isolated 70S ribosomes. These single-site mutants were then specifically reconstituted in Bacillus subtilis, confirming their efficacy as resistance-conferring. It is thus reasoned that, in contrast to modifications of the 23S rRNA in the GAR, mutations of the L11 protein do not counteract binding of bicyclic thiopeptides, but allow the ribosome to bypass the protein biosynthesis blockade enforced by these antibiotics in the wild type.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Peptídeos/farmacologia , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/citologia , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Modelos Moleculares , Mutação , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , RNA Bacteriano/antagonistas & inibidores , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico/antagonistas & inibidores , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA