Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105132, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544648

RESUMO

Voltage-gated sodium (NaV) channels drive the upstroke of the action potential and are comprised of a pore-forming α-subunit and regulatory ß-subunits. The ß-subunits modulate the gating, trafficking, and pharmacology of the α-subunit. These functions are routinely assessed by ectopic expression in heterologous cells. However, currently available expression systems may not capture the full range of these effects since they contain endogenous ß-subunits. To better reveal ß-subunit functions, we engineered a human cell line devoid of endogenous NaV ß-subunits and their immediate phylogenetic relatives. This new cell line, ß-subunit-eliminated eHAP expression (BeHAPe) cells, were derived from haploid eHAP cells by engineering inactivating mutations in the ß-subunits SCN1B, SCN2B, SCN3B, and SCN4B, and other subfamily members MPZ (myelin protein zero(P0)), MPZL1, MPZL2, MPZL3, and JAML. In diploid BeHAPe cells, the cardiac NaV α-subunit, NaV1.5, was highly sensitive to ß-subunit modulation and revealed that each ß-subunit and even MPZ imparted unique gating properties. Furthermore, combining ß1 and ß2 with NaV1.5 generated a sodium channel with hybrid properties, distinct from the effects of the individual subunits. Thus, this approach revealed an expanded ability of ß-subunits to regulate NaV1.5 activity and can be used to improve the characterization of other α/ß NaV complexes.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5 , Subunidades Proteicas , Subunidades beta do Canal de Sódio Disparado por Voltagem , Humanos , Potenciais de Ação , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Fosfoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades beta do Canal de Sódio Disparado por Voltagem/química , Subunidades beta do Canal de Sódio Disparado por Voltagem/deficiência , Subunidades beta do Canal de Sódio Disparado por Voltagem/genética , Subunidades beta do Canal de Sódio Disparado por Voltagem/metabolismo , Mutação
2.
Biomolecules ; 10(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630316

RESUMO

Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression of neuronal Nav channels. Four distinct regulatory ß-subunits (ß1-4) bind to the Nav channel α-subunits. Previous work has emphasised the ß-subunits as direct Nav channel gating modulators. However, there is now increasing appreciation of additional roles played by these subunits. In this review, we focus on ß-subunits as homophilic and heterophilic cell-adhesion molecules and the implications for cardiomyocyte function. Based on recent cryogenic electron microscopy (cryo-EM) data, we suggest that the ß-subunits interact with Nav1.5 in a different way from their binding to other Nav channel isoforms. We believe this feature may facilitate trans-cell-adhesion between ß1-associated Nav1.5 subunits on the intercalated disc and promote ephaptic conduction between cardiomyocytes.


Assuntos
Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Subunidades beta do Canal de Sódio Disparado por Voltagem/metabolismo , Potenciais de Ação , Animais , Adesão Celular , Humanos , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.5/química , Subunidades Proteicas/metabolismo , Subunidades beta do Canal de Sódio Disparado por Voltagem/química
3.
Mol Pain ; 15: 1744806919849802, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041876

RESUMO

Diabetes mellitus is a global challenge with many diverse health sequelae, of which diabetic peripheral neuropathy is one of the most common. A substantial number of patients with diabetic peripheral neuropathy develop chronic pain, but the genetic and epigenetic factors that predispose diabetic peripheral neuropathy patients to develop neuropathic pain are poorly understood. Recent targeted genetic studies have identified mutations in α-subunits of voltage-gated sodium channels (Navs) in patients with painful diabetic peripheral neuropathy. Mutations in proteins that regulate trafficking or functional properties of Navs could expand the spectrum of patients with Nav-related peripheral neuropathies. The auxiliary sodium channel ß-subunits (ß1-4) have been reported to increase current density, alter inactivation kinetics, and modulate subcellular localization of Nav. Mutations in ß-subunits have been associated with several diseases, including epilepsy, cancer, and diseases of the cardiac conducting system. However, mutations in ß-subunits have never been shown previously to contribute to neuropathic pain. We report here a patient with painful diabetic peripheral neuropathy and negative genetic screening for mutations in SCN9A, SCN10A, and SCN11A-genes encoding sodium channel α-subunit that have been previously linked to the development of neuropathic pain. Genetic analysis revealed an aspartic acid to asparagine mutation, D109N, in the ß2-subunit. Functional analysis using current-clamp revealed that the ß2-D109N rendered dorsal root ganglion neurons hyperexcitable, especially in response to repetitive stimulation. Underlying the hyperexcitability induced by the ß2-subunit mutation, as evidenced by voltage-clamp analysis, we found a depolarizing shift in the voltage dependence of Nav1.7 fast inactivation and reduced use-dependent inhibition of the Nav1.7 channel.


Assuntos
Neuropatias Diabéticas/genética , Mutação com Ganho de Função/genética , Neuralgia/genética , Subunidades beta do Canal de Sódio Disparado por Voltagem/genética , Potenciais de Ação , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/fisiopatologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Células HEK293 , Humanos , Ativação do Canal Iônico , Neuralgia/complicações , Neuralgia/fisiopatologia , Fases de Leitura Aberta/genética , Domínios Proteicos , Tetrodotoxina/farmacologia , Subunidades beta do Canal de Sódio Disparado por Voltagem/química , Subunidades beta do Canal de Sódio Disparado por Voltagem/metabolismo
4.
Handb Exp Pharmacol ; 246: 33-49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29464397

RESUMO

Voltage-gated sodium channel (VGSC) beta (ß) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC ß-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC ß1-ß4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC ß-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern ß-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and ß eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for ß-subunit interactions with voltage-sensor containing ion channels and membrane proteins.


Assuntos
Evolução Molecular , Subunidades beta do Canal de Sódio Disparado por Voltagem/fisiologia , Animais , Sequência Conservada , Humanos , Subunidades Proteicas/fisiologia , Subunidades beta do Canal de Sódio Disparado por Voltagem/química
5.
Open Biol ; 5(1): 140192, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25567098

RESUMO

Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated ß subunits. The ß subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human ß3 and ß4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that ß3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some ß subunits.


Assuntos
Subunidades beta do Canal de Sódio Disparado por Voltagem/química , Potenciais de Ação , Sequência de Aminoácidos , Animais , Evolução Molecular , Humanos , Ativação do Canal Iônico , Dados de Sequência Molecular , Subunidades beta do Canal de Sódio Disparado por Voltagem/genética , Subunidades beta do Canal de Sódio Disparado por Voltagem/metabolismo
6.
Handb Exp Pharmacol ; 221: 51-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24737232

RESUMO

Voltage-gated sodium channel ß1 and ß2 subunits were discovered as auxiliary proteins that co-purify with pore-forming α subunits in brain. The other family members, ß1B, ß3, and ß4, were identified by homology and shown to modulate sodium current in heterologous systems. Work over the past 2 decades, however, has provided strong evidence that these proteins are not simply ancillary ion channel subunits, but are multifunctional signaling proteins in their own right, playing both conducting (channel modulatory) and nonconducting roles in cell signaling. Here, we discuss evidence that sodium channel ß subunits not only regulate sodium channel function and localization but also modulate voltage-gated potassium channels. In their nonconducting roles, VGSC ß subunits function as immunoglobulin superfamily cell adhesion molecules that modulate brain development by influencing cell proliferation and migration, axon outgrowth, axonal fasciculation, and neuronal pathfinding. Mutations in genes encoding ß subunits are linked to paroxysmal diseases including epilepsy, cardiac arrhythmia, and sudden infant death syndrome. Finally, ß subunits may be targets for the future development of novel therapeutics.


Assuntos
Ativação do Canal Iônico , Sódio/metabolismo , Subunidades beta do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Humanos , Potenciais da Membrana , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Subunidades beta do Canal de Sódio Disparado por Voltagem/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA