Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 44(22): 3622-31, 2001 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-11606127

RESUMO

Twenty-three new derivatives of sulfaphenazole (SPA) were synthesized to further explore the topology of the active sites of human liver cytochromes P450 of the 2C subfamily and to find new selective inhibitors of these cytochromes. These compounds are derived from SPA by replacement of the NH(2) and H (of the SO(2)NH function) substituents of SPA with various R(1) and R(2) groups, respectively. Their inhibitory effects were studied on recombinant CYP 2C8, 2C9, 2C18, and 2C19 expressed in yeast. High affinities for CYP 2C9 (IC(50) < 1 microM) were only observed for SPA derivatives having the SO(2)NH function and a relatively small R(1) substituent (R(1) = NH(2), CH(3)). Any increase in the size of R(1) led to a moderate decrease of the affinity, and the N-alkylation of the SO(2)NH function of SPA to a greater decrease of this affinity. The same structural changes led to opposite effects on molecular recognition by CYP 2C8 and 2C18, which generally exhibited similar behaviors. Thus, contrary to CYP 2C9, CYP 2C8 and 2C18 generally prefer neutral compounds with relatively large R(1) and R(2) substituents. CYP 2C19 showed an even lower affinity for anionic compounds than CYP 2C8 and 2C18. However, as CYP 2C8 and 2C18, CYP 2C19 showed a much better affinity for neutral compounds derived from N-alkylation of SPA and for anionic compounds bearing a larger R(1) substituent. One of the new compounds (R(1) = methyl, R(2) = propyl) inhibited all human CYP 2Cs with IC(50) values between 10 and 20 microM, while another one (R(1) = allyl, R(2) = methyl) inhibited all CYP 2Cs except CYP 2C9, and a third one (R(1) = R(2) = methyl) inhibited all CYP 2Cs except CYP 2C8. Only 2 compounds of the 25 tested derivatives were highly selective toward one human CYP 2C; these are SPA and compound 1 (R(1) = CH(3), R(2) = H), which acted as selective CYP 2C9 inhibitors. However, some SPA derivatives selectively inhibited CYP 2C8 and 2C18. Since CYP 2C18 is hardly detectable in human liver, these derivatives could be interesting molecules to selectively inhibit CYP 2C8 in human liver microsomes. Thus, compound 11 (R(1) = NH(2), R(2) = (CH(2))(2)CH(CH(3))(2)) appears to be particularly interesting for that purpose as its IC(50) value for CYP 2C8 is low (3 microM) and 20-fold smaller than those found for CYP 2C9 and 2C19.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Inibidores das Enzimas do Citocromo P-450 , Inibidores Enzimáticos/síntese química , Fígado/enzimologia , Esteroide 16-alfa-Hidroxilase , Sulfafenazol/análogos & derivados , Sulfafenazol/síntese química , Sulfonamidas/síntese química , Sítios de Ligação , Citocromo P-450 CYP2C19 , Sistema Enzimático do Citocromo P-450 , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Microssomos/enzimologia , Oxigenases de Função Mista/antagonistas & inibidores , Proteínas Recombinantes/antagonistas & inibidores , Esteroide Hidroxilases/antagonistas & inibidores , Relação Estrutura-Atividade , Sulfafenazol/química , Sulfafenazol/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Leveduras/enzimologia
2.
Biochemistry ; 35(50): 16205-12, 1996 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-8973193

RESUMO

The effects of sulfaphenazole, 1, on typical activities catalyzed by human cytochromes P450 of the 1A, 3A, and 2C subfamilies expressed in yeast were studied. 1 acts as a strong, competitive inhibitor of CYP 2C9 (K(i) = 0.3 +/- 0.1 microM); it is much less potent toward CYP 2C8 and 2C18 (K(i) = 63 and 29 microM, respectively) and fails to inhibit CYP 1A1, 1A2, 3A4, and 2C19. From difference visible spectroscopy experiments using microsomes of yeast expressing various human P450s, 1 selectively interacts only with CYP 2C9 with the appearance of a peak at 429 nm as expected for the formation of a P450 Fe(III)-nitrogenous ligand complex (Ks = 0.4 +/- 0.1 microM). Comparative studies of the spectral interaction and inhibitory effects of twelve compounds related to 1 with CYP 2C9 showed that the aniline function of 1 is responsible for the formation of the iron-nitrogen bond of the 429 nm-absorbing complex and is necessary for the inhibitory effects of 1. The study of two new compounds synthesized during this work, in which the N-phenyl group of 1 was replaced with either an ethyl group or a 3,4-dichlorophenyl group, showed that the presence of an hydrophobic substituent at position 1 of the pyrazole function of 1 is required for a strong interaction with CYP 2C9. A model for the binding of 1 in the CYP 2C9 active site is proposed; that takes into account three major interactions that should be at the origin of the high-affinity and specific inhibitory effects of 1 toward CYP 2C9: (i) the binding of its nitrogen atom to CYP 2C9 iron, (ii) an ionic interaction of its SO2N- anionic site with a cationic residue of CYP 2C9, and (iii) an interaction of its N-phenyl group with an hydrophobic part of the protein active site.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/enzimologia , Esteroide 16-alfa-Hidroxilase , Esteroide Hidroxilases/química , Esteroide Hidroxilases/metabolismo , Sulfafenazol/análogos & derivados , Sulfafenazol/farmacologia , Sítios de Ligação , Clonagem Molecular , Inibidores das Enzimas do Citocromo P-450 , Humanos , Cinética , Microssomos/enzimologia , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Espectrofotometria , Esteroide Hidroxilases/antagonistas & inibidores , Relação Estrutura-Atividade , Especificidade por Substrato , Sulfafenazol/síntese química , Sulfafenazol/metabolismo
3.
Farmaco ; 45(4): 473-8, 1990 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2205221

RESUMO

Synthesis and structural characterization of 3 sulfanilamido-1-phenylpyrazoles bearing on 1-phenyl group nitro substituent o-, m-, p-positioned are reported. All derivatives are analysed through 1H and 13C NMR spectroscopy. The MIC values obtained against Escherichia coli are briefly discussed in terms of structure-activity relationship.


Assuntos
Antibacterianos/síntese química , Nitrocompostos/síntese química , Sulfafenazol/análogos & derivados , Escherichia coli/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Nitrocompostos/farmacologia , Relação Estrutura-Atividade , Sulfafenazol/síntese química , Sulfafenazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA