Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Org Lett ; 26(39): 8272-8277, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39311767

RESUMO

Keratan sulfate (KS) is a highly complex proteoglycan that has a poly-LacNAc chain that can be modified by diverse patterns of sulfate esters at C-6 positions of galactoside (Gal) and N-acetylglucosamine (GlcNAc) residues. Here, a chemo-enzymatic methodology is described that can control the pattern of sulfation at Gal using UDP-Gal-aldehyde as a donor for poly-LacNAc assembly to temporarily block specific sites from sulfation by galactose 6-sulfotransferase (CHST1).


Assuntos
Sulfato de Queratano , Oligossacarídeos , Oligossacarídeos/química , Oligossacarídeos/síntese química , Sulfato de Queratano/química , Sulfato de Queratano/metabolismo , Galactosídeos/química , Galactosídeos/síntese química , Galactosídeos/metabolismo , Estrutura Molecular , Sulfotransferases/metabolismo
2.
Glycobiology ; 34(10)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39173029

RESUMO

Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.


Assuntos
Esôfago , Sulfato de Queratano , Lectinas , Mucina-5B , Humanos , Ligantes , Mucina-5B/metabolismo , Mucina-5B/genética , Lectinas/metabolismo , Lectinas/química , Sulfato de Queratano/metabolismo , Sulfato de Queratano/química , Esôfago/metabolismo , Antígenos CD/metabolismo , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B
3.
J Histochem Cytochem ; 72(7): 453-465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39051568

RESUMO

SummaryWe previously demonstrated that among various histological types of human testicular germinal cell tumors (GCTs), embryonal carcinoma (EC) preferentially expresses low-sulfated keratan sulfate (KS) consisting of repeating N-acetyllactosamine (LacNAc) disaccharide units composed of galactose and 6-O-sulfated N-acetylglucosamine (GlcNAc), which is recognized by the R-10G antibody. Recently, we generated another anti-low-sulfated KS monoclonal antibody, 294-1B1. Immunohistochemical analysis of testicular GCTs (n=83) revealed that the low-sulfated KS recognized by 294-1B1 is also preferentially expressed in EC but minimally in other GCT histological types. Moreover, immunolabeling with R-10G and 294-1B1 antibodies was resistant to peptide-N-glycosidase F digestion, and EC was not stained with the MECA-79 antibody, indicating that low-sulfated KS expressed in EC contains mucin-type core 2 O-glycans carrying GlcNAc-6-O-sulfated oligo-LacNAc. Double immunofluorescence staining showed that R-10G and 294-1B1 antibody signals colocalized with those for podocalyxin (PODXL). Furthermore, western blot analysis of recombinant human PODXL•IgG fusion proteins secreted from low-sulfated KS-expressing human embryonic kidney 293T cells revealed that PODXL functions as a core protein for low-sulfated KS. Taken together, these findings strongly suggest that the PODXL glycoform decorated with low-sulfated KS is preferentially expressed in human testicular EC and may therefore serve as a diagnostic marker for this malignancy.


Assuntos
Carcinoma Embrionário , Sulfato de Queratano , Sialoglicoproteínas , Neoplasias Testiculares , Humanos , Masculino , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia , Neoplasias Testiculares/diagnóstico , Sialoglicoproteínas/análise , Sialoglicoproteínas/metabolismo , Carcinoma Embrionário/patologia , Carcinoma Embrionário/metabolismo , Sulfato de Queratano/metabolismo , Sulfato de Queratano/análise , Imuno-Histoquímica , Linhagem Celular Tumoral , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Embrionárias de Células Germinativas/diagnóstico
4.
Glycobiology ; 34(5)2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38438145

RESUMO

This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.


Assuntos
Glicosaminoglicanos , Ácido Hialurônico , Camundongos , Animais , Glicosaminoglicanos/metabolismo , Proteoglicanas/metabolismo , Sulfato de Queratano/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Odontogênese , Dermatan Sulfato
5.
FEBS J ; 291(15): 3331-3366, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38500384

RESUMO

Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.


Assuntos
Glicosaminoglicanos , Humanos , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Animais , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química , Proteoglicanas/metabolismo , Dermatan Sulfato/metabolismo , Dermatan Sulfato/química , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ácido Hialurônico/metabolismo , Ácido Hialurônico/química , Sulfato de Queratano/metabolismo , Sulfato de Queratano/química , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/química
6.
Molecules ; 29(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38398516

RESUMO

We recently showed that 6-sulfo sialyl N-acetyllactosamine (LacNAc) in O-linked glycans recognized by the CL40 antibody is abundant in the pleural mesothelium under physiological conditions and that these glycans undergo complementary synthesis by GlcNAc6ST2 (encoded by Chst4) and GlcNAc6ST3 (encoded by Chst5) in mice. GlcNAc6ST3 is essential for the synthesis of R-10G-positive keratan sulfate (KS) in the brain. The predicted minimum epitope of the R-10G antibody is a dimeric asialo 6-sulfo LacNAc. Whether R-10G-reactive KS/sulfated LacNAc oligosaccharides are also present in the pleural mesothelium was unknown. The question of which GlcNAc6STs are responsible for R-10G-reactive glycans was an additional issue to be clarified. Here, we show that R-10G-reactive glycans are as abundant in the pulmonary pleura as CL40-reactive glycans and that GlcNAc6ST3 is only partially involved in the synthesis of these pleural R-10G glycans, unlike in the adult brain. Unexpectedly, GlcNAc6ST2 is essential for the synthesis of R-10G-positive KS/sulfated LacNAc oligosaccharides in the lung pleura. The type of GlcNAc6ST and the magnitude of its contribution to KS glycan synthesis varied among tissues in vivo. We show that GlcNAc6ST2 is required and sufficient for R-10G-reactive KS synthesis in the lung pleura. Interestingly, R-10G immunoreactivity in KSGal6ST (encoded by Chst1) and C6ST1 (encoded by Chst3) double-deficient mouse lungs was markedly increased. MUC16, a mucin molecule, was shown to be a candidate carrier protein for pleural R-10G-reactive glycans. These results suggest that R-10G-reactive KS/sulfated LacNAc oligosaccharides may play a role in mesothelial cell proliferation and differentiation. Further elucidation of the functions of sulfated glycans synthesized by GlcNAc6ST2 and GlcNAc6ST3, such as R-10G and CL40 glycans, in pathological conditions may lead to a better understanding of the underlying mechanisms of the physiopathology of the lung mesothelium.


Assuntos
Amino Açúcares , Sulfato de Queratano , Pleura , Animais , Camundongos , Sulfato de Queratano/metabolismo , Pleura/metabolismo , Oligossacarídeos , Polissacarídeos/metabolismo , Epitélio/metabolismo
7.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003337

RESUMO

Mucopolysaccharidosis IVA (MPS IVA) is a rare disorder caused by mutations in the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) encoding gene. GALNS leads to the lysosomal degradation of the glycosaminoglyccreasans keratan sulfate and chondroitin 6-sulfate. Impaired GALNS enzymes result in skeletal and non-skeletal complications in patients. For years, the MPS IVA pathogenesis and the assessment of promising drugs have been evaluated using in vitro (primarily fibroblasts) and in vivo (mainly mouse) models. Even though value information has been raised from those studies, these models have several limitations. For instance, chondrocytes have been well recognized as primary cells affected in MPS IVA and responsible for displaying bone development impairment in MPS IVA patients; nonetheless, only a few investigations have used those cells to evaluate basic and applied concepts. Likewise, current animal models are extensively represented by mice lacking GALNS expression; however, it is well known that MPS IVA mice do not recapitulate the skeletal dysplasia observed in humans, making some comparisons difficult. This manuscript reviews the current in vitro and in vivo MPS IVA models and their drawbacks.


Assuntos
Condroitina Sulfatases , Mucopolissacaridose IV , Humanos , Camundongos , Animais , Sulfato de Queratano/metabolismo , Sulfatos de Condroitina , Condrócitos/metabolismo , Modelos Animais de Doenças , Condroitina Sulfatases/genética
8.
Matrix Biol ; 123: 48-58, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793508

RESUMO

In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Proteoglicanos Pequenos Ricos em Leucina , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Decorina/genética , Decorina/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Sinais (Psicologia) , Sulfato de Queratano/metabolismo , Biglicano/genética , Biglicano/metabolismo , Matriz Extracelular/metabolismo
9.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762422

RESUMO

Morquio disease, also called mucopolysaccharidosis IV (MPS IV), belongs to the group of lysosomal storage diseases (LSD). Due to deficiencies in the activities of galactose-6-sulfate sulfatase (in type A) or ß-galactosidase (in type B), arising from mutations in GALNS or GLB1, respectively, keratan sulfate (one of glycosaminoglycans, GAGs) cannot be degraded efficiently and accumulates in lysosomes. This primary defect leads to many cellular dysfunctions which then cause specific disease symptoms. Recent works have indicated that different secondary effects of GAG accumulation might significantly contribute to the pathomechanisms of MPS. Apoptosis is among the cellular processes that were discovered to be affected in MPS cells on the basis of transcriptomic studies and some cell biology experiments. However, Morquio disease is the MPS type which is the least studied in light of apoptosis dysregulation, while RNA-seq analyses suggested considerable changes in the expression of genes involved in apoptosis in MPS IVA and IVB fibroblasts. Here we demonstrate that cytochrome c release from mitochondria is more efficient in MPS IVA and IVB fibroblasts relative to control cells, both under the standard cultivation conditions and after treatment with staurosporine, an apoptosis inducer. This indication of apoptosis stimulation was corroborated by measurements of the levels of caspases 9, 3, 6, and 7, as well as PARP, cleaved at specific sites, in Morquio disease and control fibroblasts. The more detailed analyses of the transcriptomic data revealed which genes related to apoptosis are down- and up-regulated in MPS IVA and IVB fibroblasts. We conclude that apoptosis is stimulated in Morquio disease under both standard cell culture conditions and after induction with staurosporine which may contribute to the pathomechanism of this disorder. Dysregulation of apoptosis in other MPS types is discussed.


Assuntos
Condroitina Sulfatases , Mucopolissacaridose IV , Humanos , Mucopolissacaridose IV/terapia , Estaurosporina/farmacologia , Sulfato de Queratano/metabolismo , Fibroblastos/metabolismo , Apoptose/genética , Condroitina Sulfatases/genética
10.
Exp Eye Res ; 234: 109570, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454921

RESUMO

The corneal stroma is primarily composed of collagen fibrils, proteoglycans, and glycosaminoglycans (GAGs). It is known that corneal crosslinking (CXL) treatment improves mechanical properties of the cornea. However, the influence of stromal composition on the strengthening effect of CXL procedure has not been thoroughly investigated. The primary objective of the present research was to characterize the effect of keratan sulfate (KS) GAGs on the efficacy of CXL therapy. To this end, the CXL method was used to crosslink porcine corneal samples from which KS GAGs were enzymatically removed by keratanase II enzyme. Alcian blue staining was done to confirm the successful digestion of GAGs and uniaxial tensile experiments were performed for characterizing corneal mechanical properties. The influence of GAG removal and CXL treatment on resistance of corneal samples against enzymatic pepsin degradation was also quantified. It was found that removal of KS GAGs significantly softened corneal tensile properties (P < 0.05). Moreover, the CXL therapy significantly increased the tensile stiffness of GAG-depleted strips (P < 0.05). GAG-depleted corneal buttons were dissolved in the pepsin digestion solution significantly faster than control samples (P < 0.05). The CXL treatment significantly increased the time needed for complete pepsin digestion of GAG-depleted disks (P < 0.05). Based on these observations, we concluded that KS GAGs play a significant role in defining tensile properties and structural integrity of porcine cornea. Furthermore, the stiffening influence of the CXL treatment does not significantly depend on the density of corneal KS GAGs. The findings of the present study provided new information on the relation between corneal composition and CXL procedure mechanical effects.


Assuntos
Glicosaminoglicanos , Ceratocone , Suínos , Animais , Glicosaminoglicanos/metabolismo , Sulfato de Queratano/metabolismo , Pepsina A/farmacologia , Pepsina A/metabolismo , Colágeno/metabolismo , Córnea/metabolismo , Substância Própria/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/farmacologia , Raios Ultravioleta , Ceratocone/metabolismo
11.
Ocul Surf ; 29: 521-536, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37355022

RESUMO

Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Proteínas da Matriz Extracelular , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Proteoglicanos Pequenos Ricos em Leucina , Decorina , Sulfato de Queratano/metabolismo , Colágeno , Biologia
12.
Gene Ther ; 30(1-2): 107-114, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35581402

RESUMO

Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder (LSD) caused by mutations in gene encoding for GALNS enzyme. Lack of GALNS activity leads to the accumulation of glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate. Although enzyme replacement therapy has been approved since 2014 for MPS IVA, still there is an unmet medical need to have improved therapies for this disorder. CRISPR/Cas9-based gene therapy has been tested for several LSDs with encouraging findings, but to date it has not been assayed on MPS IVA. In this work, we validated for the first time the use of CRISPR/Cas9, using a Cas9 nickase, for the knock-in of an expression cassette containing GALNS cDNA in an in vitro model of MPS IVA. The results showed the successful homologous recombination of the expression cassette into the AAVS1 locus, as well as a long-term increase in GALNS activity reaching up to 40% of wild-type levels. We also observed normalization of lysosomal mass, total GAGs, and oxidative stress, which are some of the major findings regarding the pathophysiological events in MPS IVA. These results represent a proof-of-concept of the use of CRISPR/Cas9 nickase strategy for the development of a novel therapeutic alternative for MPS IVA.


Assuntos
Condroitina Sulfatases , Mucopolissacaridose IV , Humanos , Mucopolissacaridose IV/genética , Mucopolissacaridose IV/terapia , Sistemas CRISPR-Cas , Edição de Genes , Condroitina Sulfatases/genética , Condroitina Sulfatases/metabolismo , Condroitina Sulfatases/uso terapêutico , Sulfato de Queratano/metabolismo , Sulfato de Queratano/uso terapêutico , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo
13.
J Dermatol ; 49(10): 1027-1036, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35811379

RESUMO

Mammals express a wide variety of glycans that include N-glycans, O-glycans, proteoglycans, glycolipids, etc. Glycan expression can modulate the cellular functions, and hence is strongly involved in the onset and progression of numerous diseases. Here, we report the relevance of the ectopic expression of keratan sulfate (KS) glycan chains in human malignant melanomas. Using a human melanoma cell line, we found that the KS enhanced the invasiveness of the cells but caused no change in the growth rate of the cells. The phosphorylation of paxillin, a focal adhesion-associated adaptor protein, was strong at the region where KS was expressed in the melanoma tissues, indicating that KS stimulated the phosphorylation of paxillin. We also observed that KS enhanced the adhesion of melanoma cells and this was accompanied by a greatly increased level of phosphorylation of paxillin. These data suggest that the expression of KS contributes to the development of malignant phenotypes such as strong cell adhesion and the invasiveness of melanoma cells.


Assuntos
Sulfato de Queratano , Melanoma , Linhagem Celular Tumoral , Glicolipídeos , Humanos , Sulfato de Queratano/genética , Sulfato de Queratano/metabolismo , Melanoma/patologia , Paxilina/genética , Paxilina/metabolismo , Proteoglicanas , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
14.
J Biol Chem ; 298(6): 101960, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452678

RESUMO

Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.


Assuntos
Doença de Alzheimer , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Sulfato de Queratano/metabolismo , Ligantes , Camundongos , Microglia/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
15.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071909

RESUMO

Corneal transparency relies on the precise arrangement and orientation of collagen fibrils, made of mostly Type I and V collagen fibrils and proteoglycans (PGs). PGs are essential for correct collagen fibrillogenesis and maintaining corneal homeostasis. We investigated the spatial and temporal distribution of glycosaminoglycans (GAGs) and PGs after a chemical injury. The chemical composition of chondroitin sulfate (CS)/dermatan sulfate (DS) and heparan sulfate (HS) were characterized in mouse corneas 5 and 14 days after alkali burn (AB), and compared to uninjured corneas. The expression profile and corneal distribution of CS/DSPGs and keratan sulfate (KS) PGs were also analyzed. We found a significant overall increase in CS after AB, with an increase in sulfated forms of CS and a decrease in lesser sulfated forms of CS. Expression of the CSPGs biglycan and versican was increased after AB, while decorin expression was decreased. We also found an increase in KS expression 14 days after AB, with an increase in lumican and mimecan expression, and a decrease in keratocan expression. No significant changes in HS composition were noted after AB. Taken together, our study reveals significant changes in the composition of the extracellular matrix following a corneal chemical injury.


Assuntos
Queimaduras Químicas/metabolismo , Doenças da Córnea/induzido quimicamente , Doenças da Córnea/metabolismo , Matriz Extracelular/metabolismo , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/metabolismo , Álcalis/efeitos adversos , Animais , Biomarcadores , Queimaduras Químicas/diagnóstico , Doenças da Córnea/diagnóstico , Dermatan Sulfato/metabolismo , Modelos Animais de Doenças , Queimaduras Oculares/diagnóstico , Imunofluorescência , Expressão Gênica , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Sulfato de Queratano/metabolismo , Camundongos , Proteoglicanas/metabolismo
16.
J Anat ; 238(6): 1296-1311, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398875

RESUMO

The ability to determine the sex of extinct dinosaurs by examining the bones they leave behind would revolutionize our understanding of their paleobiology; however, to date, definitive sex-specific skeletal traits remain elusive or controversial. Although living dinosaurs (i.e., extant birds) exhibit a sex-specific tissue called medullary bone that is unique to females, the confident identification of this tissue in non-avian archosaurs has proven a challenge. Tracing the evolution of medullary bone is complicated by existing variation of medullary bone tissues in living species; hypotheses that medullary bone structure or chemistry varied during its evolution; and a lack of studies aimed at distinguishing medullary bone from other types of endosteal tissues with which it shares microstructural and developmental characteristics, such as pathological tissues. A recent study attempted to capitalize on the molecular signature of medullary bone, which, in living birds, contains specific markers such as the sulfated glycosaminoglycan keratan sulfate, to support the proposed identification of medullary bone of a non-avian dinosaur specimen (Tyrannosaurus rex MOR 1125). Purported medullary bone samples of MOR 1125 reacted positively to histochemical analyses and the single pathological control tested (avian osteopetrosis) did not, suggesting the presence of keratan sulfate might serve to definitively discriminate these tissues for future studies. To further test these results, we sampled 20 avian bone pathologies of various etiologies (18 species), and several MB samples. Our new data universally support keratan sulfate as a reliable marker of medullary bone in birds. However, we also find that reactivity varies among pathological bone tissues, with reactivity in some pathologies indistinguishable from MB. In the current sample, some pathologies comprised of chondroid bone (often a major constituent of skeletal pathologies and developing fracture calluses in vertebrates) contain keratan sulfate. We note that beyond chemistry, chondroid bone shares many characteristics with medullary bone (fibrous matrix, numerous and large cell lacunae, potential endosteal origin, trabecular architecture) and medullary bone has even been considered by some to be a type of chondroid bone. Our results suggest that the presence of keratan sulfate is not exclusive evidence for MB, but rather must be used as one in a suite of criteria available for identifying medullary bone (and thus gravid females) in non-avian dinosaur specimens. Future studies should investigate whether there are definite chemical or microstructural differences between medullary bone and reactive chondroid bone that can discriminate these tissues.


Assuntos
Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Sulfato de Queratano/metabolismo , Animais , Evolução Biológica , Osso e Ossos/metabolismo , Dinossauros/metabolismo
17.
Glycobiology ; 31(4): 436-443, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33083824

RESUMO

Understanding the basic elements of the airway mucosal surfaces and how they form a functional barrier is essential in understanding disease initiation, progression, pathogenesis and ultimately treating chronic lung diseases. Using primary airway epithelial cell cultures, atomic force microscopy (AFM), multiangle light scattering and quartz crystal micro balance with dissipation monitoring techniques, here we report that the membrane bound mucins (MBMs) found in the periciliary layer (PCL) of the airway surface are densely decorated with keratan sulfate (KS). AFM and immunoblotting show that the KS sidechains can be removed enzymatically with keratanase II (KII) treatment, and the antibody accessibility for B2729 (MUC1), MUCH4 (MUC4) and OC125 (MUC16) was substantially enhanced. Light scattering analysis confirmed that KII treatment removed ~40% of the mass from the mucin fractions. Surface binding experiments indicated that MBMs were able to pack into a tighter conformation following KS removal, suggesting that negatively charged KS sidechains play a role in mucin-mucin repulsion and contribute to "space filling" in the PCL. We also observed that soluble filtrate from the common airway pathogen Pseudomonas aeruginosa is capable of stripping KS from MBMs. Altogether, our findings indicate that KS glycosylation of MBMs may play an important role in the integrity of the airway mucosal barrier and its compromise in disease.


Assuntos
Sulfato de Queratano , Mucinas , Glicosilação , Sulfato de Queratano/metabolismo , Pulmão/metabolismo , Mucinas/metabolismo
18.
Sci Rep ; 10(1): 15708, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973213

RESUMO

Glycosaminoglycan chains of keratan sulfate proteoglycans appear to be physiologically significant by pairing with tissue lectins. Here, we used NMR spectroscopy and molecular dynamics (MD) simulations to characterize interactions of corneal keratan sulfate (KS), its desulfated form, as well as di-, tetra- (N-acetyllactosamine and lacto-N-tetraose) and octasaccharides with adhesion/growth-regulatory galectins, in particular galectin-3 (Gal-3). The KS contact region involves the lectin canonical binding site, with estimated KD values in the low µM range and stoichiometry of ~ 8 to ~ 20 galectin molecules binding per polysaccharide chain. Compared to Gal-3, the affinity to Gal-7 is relatively low, signaling preferences among galectins. The importance of the sulfate groups was delineated by using desulfated analogs that exhibit relatively reduced affinity. Binding studies with two related di- and tetrasaccharides revealed a similar decrease that underscores affinity enhancement by repetitive arrangement of disaccharide units. MD-based binding energies of KS oligosaccharide-loaded galectins support experimental data on Gal-3 and -7, and extend the scope of KS binding to Gal-1 and -9N. Overall, our results provide strong incentive to further probe the relevance of molecular recognition of KS by galectins in terms of physiological processes in situ, e.g. maintaining integrity of mucosal barriers, intermolecular (lattice-like) gluing within the extracellular meshwork or synaptogenesis.


Assuntos
Galectinas/metabolismo , Sulfato de Queratano/metabolismo , Sítios de Ligação , Glicosaminoglicanos/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Proteoglicanas/metabolismo
19.
PLoS One ; 15(5): e0233639, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453760

RESUMO

Diabetes is the leading cause of end-stage renal disease worldwide. Our understanding of the early kidney response to chronic hyperglycemia remains incomplete. To address this, we first investigated the urinary proteomes of otherwise healthy youths with and without type 1 diabetes and subsequently examined the enriched pathways that might be dysregulated in early disease using systems biology approaches. This cross-sectional study included two separate cohorts for the discovery (N = 30) and internal validation (N = 30) of differentially excreted proteins. Discovery proteomics was performed on a Q Exactive Plus hybrid quadrupole-orbitrap mass spectrometer. We then searched the pathDIP, KEGG, and Reactome databases to identify enriched pathways in early diabetes; the Integrated Interactions Database to retrieve protein-protein interaction data; and the PubMed database to compare fold changes of our signature proteins with those published in similarly designed studies. Proteins were selected for internal validation based on pathway enrichment and availability of commercial enzyme-linked immunosorbent assay kits. Of the 2451 proteins identified, 576 were quantified in all samples from the discovery cohort; 34 comprised the urinary signature for early diabetes after Benjamini-Hochberg adjustment (Q < 0.05). The top pathways associated with this signature included lysosome, glycosaminoglycan degradation, and innate immune system (Q < 0.01). Notably, all enzymes involved in keratan sulfate degradation were significantly elevated in urines from youths with diabetes (|fold change| > 1.6). Increased urinary excretion of monocyte differentiation antigen CD14, hexosaminidase A, and lumican was also observed in the validation cohort (P < 0.05). Twenty-one proteins from our signature have been reported elsewhere as potential mediators of early diabetes. In this study, we identified a urinary proteomic signature for early type 1 diabetes, of which lysosomal enzymes were major constituents. Our findings highlight novel pathways such as keratan sulfate degradation in the early kidney response to hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 1/urina , Sulfato de Queratano/metabolismo , Proteinúria/genética , Proteômica , Adolescente , Adulto , Criança , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Proteínas da Matriz Extracelular/urina , Feminino , Humanos , Sulfato de Queratano/genética , Rim/metabolismo , Rim/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Espectrometria de Massas , Proteinúria/metabolismo , Proteinúria/urina , Proteoma/genética , Proteoma/metabolismo , Adulto Jovem
20.
Cells ; 9(4)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235499

RESUMO

This study has identified keratan sulfate in fetal and adult rat spinal cord and vertebral connective tissues using the antibody BKS-1(+) which recognizes a reducing terminal N-acetyl glucosamine-6-sulfate neo-epitope exposed by keratanase-I digestion. Labeling patterns were correlated with those of lumican and keratocan using core protein antibodies to these small leucine rich proteoglycan species. BKS-1(+) was not immunolocalized in fetal spinal cord but was apparent in adult cord and was also prominently immunolocalized to the nucleus pulposus and inner annulus fibrosus of the intervertebral disc. Interestingly, BKS-1(+) was also strongly associated with vertebral body ossification centers of the fetal spine. Immunolocalization of lumican and keratocan was faint within the vertebral body rudiments of the fetus and did not correlate with the BKS-1(+) localization indicating that this reactivity was due to another KS-proteoglycan, possibly osteoadherin (osteomodulin) which has known roles in endochondral ossification. Western blotting of adult rat spinal cord and intervertebral discs to identify proteoglycan core protein species decorated with the BKS-1(+) motif confirmed the identity of 37 and 51 kDa BKS-1(+) positive core protein species. Lumican and keratocan contain low sulfation KS-I glycoforms which have neuroregulatory and matrix organizational properties through their growth factor and morphogen interactive profiles and ability to influence neural cell migration. Furthermore, KS has interactive capability with a diverse range of neuroregulatory proteins that promote neural proliferation and direct neural pathway development, illustrating key roles for keratocan and lumican in spinal cord development.


Assuntos
Anticorpos/metabolismo , Epitopos/metabolismo , Glicosídeo Hidrolases/metabolismo , Sulfato de Queratano/metabolismo , Lumicana/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Medula Espinal/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Humanos , Sulfato de Queratano/química , Masculino , Ratos Wistar , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA