Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
J Am Chem Soc ; 146(13): 9230-9240, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38494637

RESUMO

Keratan sulfate (KS) is a proteoglycan that is widely expressed in the extracellular matrix of various tissue types, where it performs multiple biological functions. KS is the least understood proteoglycan, which in part is due to a lack of panels of well-defined KS oligosaccharides that are needed for structure-binding studies, as analytical standards, to examine substrate specificities of keratinases, and for drug development. Here, we report a biomimetic approach that makes it possible to install, in a regioselective manner, sulfates and fucosides on oligo-N-acetyllactosamine (LacNAc) chains to provide any structural element of KS by using specific enzyme modules. It is based on the observation that α1,3-fucosides, α2,6-sialosides and C-6 sulfation of galactose (Gal6S) are mutually exclusive and cannot occur on the same LacNAc moiety. As a result, the pattern of sulfation on galactosides can be controlled by installing α1,3-fucosides or α2,6-sialosides to temporarily block certain LacNAc moieties from sulfation by keratan sulfate galactose 6-sulfotransferase (CHST1). The patterns of α1,3-fucosylation and α2,6-sialylation can be controlled by exploiting the mutual exclusivity of these modifications, which in turn controls the sites of sulfation by CHST1. Late-stage treatment with a fucosidase or sialidase to remove blocking fucosides or sialosides provides selectively sulfated KS oligosaccharides. These treatments also unmasked specific galactosides for further modification by CHST1. To showcase the potential of the enzymatic strategy, we have prepared a range of poly-LacNAc derivatives having different patterns of fucosylation and sulfation and several N-glycans decorated by specific arrangements of sulfates.


Assuntos
Galactose , Sulfato de Queratano , Sulfato de Queratano/química , Biomimética , Oligossacarídeos , Carboidrato Sulfotransferases , Proteoglicanas , Galactosídeos , Sulfatos
2.
Glycobiology ; 34(3)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376199

RESUMO

The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.


Assuntos
Glicosaminoglicanos , Sulfato de Queratano , Animais , Sulfato de Queratano/química , Proteoglicanas/metabolismo , Mamíferos/metabolismo
3.
Glycobiology ; 34(1)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37440446

RESUMO

Keratan sulfate glycosaminoglycan is composed of repeating N-acetyllactosamine (LacNAc) disaccharide units consisting of galactose (Gal) and N-acetylglucosamine (GlcNAc), both often 6-O-sulfated. Sulfate contents of keratan sulfate are heterogeneous depending upon the origins. In this study, keratan sulfate is classified as either highly sulfated (in which both GlcNAc and Gal residues are 6-O-sulfated) or low-sulfated (in which only GlcNAc residues are 6-O-sulfated). It is reported that highly sulfated keratan sulfate detected by the 5D4 monoclonal antibody is preferentially expressed in normal epithelial cells lining the female genital tract and in their neoplastic counterparts; however, expression of low-sulfated keratan sulfate in either has not been characterized. In the present study, we generated the 294-1B1 monoclonal antibody, which selectively recognizes low-sulfated keratan sulfate, and performed precise glycan analysis of sulfated glycans expressed on human serous ovarian carcinoma OVCAR-3 cells. We found that OVCAR-3 cells do not express highly sulfated keratan sulfate but rather express low-sulfated form, which was heterogeneous in 294-1B1 reactivity. Comparison of mass spectrometry spectra of sulfated glycans in 294-1B1-positive versus -negative OVCAR-3 cells indicated that the 294-1B1 epitope is likely at least 2, and possibly 3 or more, tandem GlcNAc-6-O-sulfated LacNAc units. Then, using the 294-1B1 antibody, we performed quantitative immunohistochemical analysis of 40 specimens from patients with ovarian cancer, consisting of 10 each of serous, endometrioid, clear cell, and mucinous carcinomas, and found that among them low-sulfated keratan sulfate was widely expressed in all but mucinous ovarian carcinoma.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias Ovarianas , Humanos , Feminino , Sulfato de Queratano/química , Sulfatos , Apoptose , Linhagem Celular Tumoral , Polissacarídeos , Anticorpos Monoclonais
4.
Mar Drugs ; 21(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132953

RESUMO

A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from the free radical depolymerized product, suggesting that the repeating building blocks in a natural AG should comprise the disaccharide ß-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/ß-L-Fuc3S linked to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time (TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could inhibit the intrinsic and common coagulation pathways.


Assuntos
Holothuria , Pepinos-do-Mar , Animais , Humanos , Sulfato de Queratano/química , Holothuria/química , Pepinos-do-Mar/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Dissacarídeos , Anticoagulantes/química
5.
Glycobiology ; 33(2): 150-164, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36373215

RESUMO

This report describes the isolation and characterization of two new antibodies, R-6C (IgM) and R-13E (IgM), which were generated in C57BL/6 mice (Mus musculus) using the Tic (JCRB1331) human induced pluripotent cell (hiPSC) line as an antigen, and their comparisons with two existing antibodies, R-10G (IgG1) and R-17F (IgG1). Their epitopes were studied by western blotting after various glycosidase digestions, binding analyses using enzyme-linked immunosorbent assays (ELISAs) and microarrays with various synthetic oligosaccharides. The minimum epitope structures identified were: Siaα2-3Galß1-3GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S)ß1 (R-6C), Fucα1-2Galß1-3GlcNAcß1-3Galß1 (R-13E), Galß1-4GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S)ß1 (R-10G), and Fucα1-2Galß1-3GlcNAß1-3Galß1-4Glc (lacto-N-fucopentaose I) (R-17F). Most glycoprotein epitopes are expressed as O-glycans. The common feature of these epitopes is the presence of an N-acetyllactosamine type 1 structure (Galß1-3GlcNAc) at their nonreducing termini, followed by a type 2 structure (Galß1-4GlcNAc); this arrangement comprises a type 1-type 2 motif. This motif is also shared by TRA-1-60, a traditional onco-fetal antigen. In contrast, the R-10G epitope has a type 2-type 2 motif. Among these antibodies, R-17F and R-13E exhibit cytotoxic activity toward hiPSCs. R-17F and R-13E exhibit extremely high similarity in the amino acid sequences in their complementarity-determining regions (CDRs), which is consistent with their highly similar glycan recognition. These antibodies are excellent tools for investigating the biological functions of glycoconjugates in hiPSCs/hESCs; they could be useful for the selection, isolation and selective killing of such undifferentiated pluripotent stem cells.


Assuntos
Sulfato de Queratano , Oligossacarídeos , Camundongos , Animais , Humanos , Sulfato de Queratano/química , Camundongos Endogâmicos C57BL , Oligossacarídeos/química , Polissacarídeos/química , Epitopos/química , Imunoglobulina G , Imunoglobulina M
6.
Carbohydr Res ; 512: 108502, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35092907

RESUMO

In this paper, the chemical synthesis of polylactosamine fragments up to docosasaccharide (22-mer) via the blockwise synthetic approach is reported. We used suitably protected tetrasaccharide and octasaccharide sequences as key building blocks. The use of such large building blocks as glycosyl donors and acceptors enabled the rapid construction of polysaccharide frameworks. Furthermore, the coupling reaction between these large building blocks facilitated the purification of glycosylated products, for which size exclusion column chromatography is highly effective. Then, we applied the building blocks to the synthesis of keratan sulfate glycan, which is partially sulfated poly-N-acetyllactosamine. Consequently, we achieved the synthesis of the octasaccharide of a keratan sulfate glycan comprised of a repeating Galß(1 â†’ 4)GlcNAc6Sß disaccharide unit.


Assuntos
Amino Açúcares , Sulfato de Queratano , Sulfato de Queratano/química , Oligossacarídeos/química , Polissacarídeos
7.
Biochem Soc Trans ; 49(1): 441-453, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33616615

RESUMO

Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.


Assuntos
Materiais Biomiméticos/uso terapêutico , Sulfato de Queratano/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Antígenos de Superfície/fisiologia , Materiais Biomiméticos/química , Fucose/metabolismo , Fucosiltransferases/fisiologia , Glicosilação , Humanos , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lectinas Tipo C/fisiologia , Lectinas de Ligação a Manose/antagonistas & inibidores , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/fisiologia , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular/métodos , Polissacarídeos/química , Polissacarídeos/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
8.
Glycoconj J ; 37(5): 577-588, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827291

RESUMO

ß1,4-galactosyltransferase 4 (B4GalT4) is one of seven B4GalTs that belong to CAZy glycosyltransferase family 7 and transfer galactose to growing sugar moieties of proteins, glycolipids, glycosaminoglycans as well as single sugar for lactose synthesis. Herein, we identify two asparagine-linked glycosylation sites in B4GalT4. We found that mutation of one site (Asn220) had greater impact on enzymatic activity while another (Asn335) on Golgi localization and presence of N-glycans at both sites is required for production of stable and enzymatically active protein and its secretion. Additionally, we confirm B4GalT4 involvement in synthesis of keratan sulfate (KS) by generating A375 B4GalT4 knock-out cell lines that show drastic decrease in the amount of KS proteoglycans and no significant structural changes in N- and O-glycans. We show that KS decrease in A375 cells deficient in B4GalT4 activity can be rescued by overproduction of either partially or fully glycosylated B4GalT4 but not with N-glycan-depleted B4GalT4 version.


Assuntos
Galactosiltransferases/genética , Glicosaminoglicanos/genética , Complexo de Golgi/genética , Polissacarídeos/genética , Linhagem Celular , Galactose/genética , Galactosiltransferases/química , Técnicas de Inativação de Genes , Glicosaminoglicanos/química , Glicosilação , Humanos , Sulfato de Queratano/química , Polissacarídeos/metabolismo
9.
Cells ; 9(4)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235499

RESUMO

This study has identified keratan sulfate in fetal and adult rat spinal cord and vertebral connective tissues using the antibody BKS-1(+) which recognizes a reducing terminal N-acetyl glucosamine-6-sulfate neo-epitope exposed by keratanase-I digestion. Labeling patterns were correlated with those of lumican and keratocan using core protein antibodies to these small leucine rich proteoglycan species. BKS-1(+) was not immunolocalized in fetal spinal cord but was apparent in adult cord and was also prominently immunolocalized to the nucleus pulposus and inner annulus fibrosus of the intervertebral disc. Interestingly, BKS-1(+) was also strongly associated with vertebral body ossification centers of the fetal spine. Immunolocalization of lumican and keratocan was faint within the vertebral body rudiments of the fetus and did not correlate with the BKS-1(+) localization indicating that this reactivity was due to another KS-proteoglycan, possibly osteoadherin (osteomodulin) which has known roles in endochondral ossification. Western blotting of adult rat spinal cord and intervertebral discs to identify proteoglycan core protein species decorated with the BKS-1(+) motif confirmed the identity of 37 and 51 kDa BKS-1(+) positive core protein species. Lumican and keratocan contain low sulfation KS-I glycoforms which have neuroregulatory and matrix organizational properties through their growth factor and morphogen interactive profiles and ability to influence neural cell migration. Furthermore, KS has interactive capability with a diverse range of neuroregulatory proteins that promote neural proliferation and direct neural pathway development, illustrating key roles for keratocan and lumican in spinal cord development.


Assuntos
Anticorpos/metabolismo , Epitopos/metabolismo , Glicosídeo Hidrolases/metabolismo , Sulfato de Queratano/metabolismo , Lumicana/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Medula Espinal/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Humanos , Sulfato de Queratano/química , Masculino , Ratos Wistar , Reprodutibilidade dos Testes
10.
Carbohydr Polym ; 222: 114984, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31320062

RESUMO

Chondroitin sulfate and glucosamine, commercialized as anti-osteoarthritis food supplements, do not undergo the strict quality controls of pharmaceuticals. In this paper a systematic multi-analytical approach was designed to analyse 25 food supplements from 8 European countries compared to 2 pharmaceuticals by using high performance anion-exchange chromatography with pulsed amperometric detection, size exclusion chromatography with triple detector array, capillary electrophoresis, mono and bi-dimensional NMR. Furthermore the biological activity was assessed on in vitro human synoviocyte and chondrocyte primary cell models. Most of the samples (over 19 out of 25) showed lower condroitin sulfate and glucosamine contents than the declared ones (up to -60.3%) while all of them showed a KS contamination (up to 47.1%). Mixed animal origin chondroitin sulfate and multiple molecular weight species were determined in more than 32% of the samples. Only 1 on 5 biologically screened samples had an effective action in vitro almost comparable to the pharmaceuticals.


Assuntos
Sulfatos de Condroitina/análise , Suplementos Nutricionais/análise , Glucosamina/análise , Sulfato de Queratano/química , Osteoartrite/tratamento farmacológico , Células Cultivadas , Condrócitos/efeitos dos fármacos , Contaminação de Medicamentos , Europa (Continente) , Humanos , Sinoviócitos/efeitos dos fármacos
11.
PLoS One ; 14(3): e0202713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30849116

RESUMO

Proton conductivity is important in many natural phenomena including oxidative phosphorylation in mitochondria and archaea, uncoupling membrane potentials by the antibiotic Gramicidin, and proton actuated bioluminescence in dinoflagellate. In all of these phenomena, the conduction of protons occurs along chains of hydrogen bonds between water and hydrophilic residues. These chains of hydrogen bonds are also present in many hydrated biopolymers and macromolecule including collagen, keratin, chitosan, and various proteins such as reflectin. All of these materials are also proton conductors. Recently, our group has discovered that the jelly found in the Ampullae of Lorenzini- shark's electro-sensing organs- is the highest naturally occurring proton conducting substance. The jelly has a complex composition, but we proposed that the conductivity is due to the glycosaminoglycan keratan sulfate (KS). Here we measure the proton conductivity of hydrated keratan sulfate purified from Bovine Cornea. PdHx contacts at 0.50 ± 0.11 mS cm -1, which is consistent to that of Ampullae of Lorenzini jelly at 2 ± 1 mS cm -1. Proton conductivity, albeit with lower values, is also shared by other glycosaminoglycans with similar chemical structures including dermatan sulfate, chondroitin sulfate A, heparan sulfate, and hyaluronic acid. This observation supports the relationship between proton conductivity and the chemical structure of biopolymers.


Assuntos
Glicosaminoglicanos/metabolismo , Animais , Bovinos , Córnea/metabolismo , Condutividade Elétrica , Glicosaminoglicanos/química , Técnicas In Vitro , Sulfato de Queratano/química , Sulfato de Queratano/metabolismo , Paládio , Prótons , Órgãos dos Sentidos/metabolismo , Tubarões/metabolismo
12.
Glycobiology ; 28(10): 786-801, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29924315

RESUMO

Human siglecs are a family of 14 sialic acid-binding proteins, most of which are expressed on subsets of immune cells where they regulate immune responses. Siglec-8 is expressed selectively on human allergic inflammatory cells-primarily eosinophils and mast cells-where engagement causes eosinophil apoptosis and inhibits mast cell mediator release. Evidence supports a model in which human eosinophils and mast cells bind to Siglec-8 sialoglycan ligands on inflammatory target tissues to resolve allergic inflammation and limit tissue damage. To identify Siglec-8-binding sialoglycans from human airways, proteins extracted from postmortem human trachea were resolved by size-exclusion chromatography and composite agarose-acrylamide gel electrophoresis, blotted and probed by Siglec-8-Fc blot overlay. Three size classes of Siglec-8 ligands were identified: 250 kDa, 600 kDa and 1 MDa, each of which was purified by affinity chromatography using a recombinant pentameric form of Siglec-8. Proteomic mass spectrometry identified all size classes as the proteoglycan aggrecan, a finding validated by immunoblotting. Glycan array studies demonstrated Siglec-8 binding to synthetic glycans with a terminal Neu5Acα2-3(6-sulfo)-Gal determinant, a quantitatively minor terminus on keratan sulfate (KS) chains of aggrecan. Treating human tracheal extracts with sialidase or keratanase eliminated Siglec-8 binding, indicating sialylated KS chains as Siglec-8-binding determinants. Treating human tracheal histological sections with keratanase also completely eliminated the binding of Siglec-8-Fc. Finally, Siglec-8 ligand purified from human trachea extracts induced increased apoptosis of freshly isolated human eosinophils in vitro. We conclude that sialylated KS proteoglycans are endogenous human airway ligands that bind Siglec-8 and may regulate allergic inflammation.


Assuntos
Antígenos CD/química , Antígenos de Diferenciação de Linfócitos B/química , Sulfato de Queratano/química , Lectinas/química , Proteoglicanas/química , Ácidos Siálicos/química , Traqueia/química , Antígenos CD/isolamento & purificação , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/isolamento & purificação , Antígenos de Diferenciação de Linfócitos B/metabolismo , Apoptose/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Sulfato de Queratano/metabolismo , Sulfato de Queratano/farmacologia , Lectinas/isolamento & purificação , Lectinas/metabolismo , Ligantes , Masculino , Pessoa de Meia-Idade , Proteoglicanas/metabolismo , Proteoglicanas/farmacologia , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Traqueia/metabolismo
13.
ACS Chem Biol ; 13(6): 1677-1685, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29708722

RESUMO

The skate, a cartilaginous fish related to sharks and rays, possesses a unique electrosensitive sensory organ known as the ampullae of Lorenzini (AoL). This organ is responsible for the detection of weak electric field changes caused by the muscle contractions of their prey. While keratan sulfate (KS) is believed to be a component of a jelly that fills this sensory organ and has been credited with its high proton conductivity, modern analytical methods have not been applied to its characterization. Surprisingly, total glycosaminoglycan (GAG) analysis demonstrates that the KS from skate jelly is extraordinarily pure, containing no other GAGs. This KS had a molecular weight of 20 to 30 kDa, consisting primarily of N-linked KS comprised mostly of a monosulfated disaccharide repeating unit, →3) Gal (1→4) GlcNAc6S (1→. Proteomic analysis of AoL jelly suggests that transferrin, keratin, and mucin serve as KS core proteins. Actin and tropomyosin are responsible for assembling the macrostructure of the jelly, and parvalbumin α-like protein and calreticulin regulate calcium and potassium channels involved in the transduction of the electrical signal, once conducted down the AoL by the jelly, serving as the molecular basis for electroreception.


Assuntos
Sulfato de Queratano/química , Proteoma/análise , Órgãos dos Sentidos/química , Animais , Sequência de Carboidratos , Sulfato de Queratano/isolamento & purificação , Peso Molecular , Proteoma/isolamento & purificação , Proteômica , Rajidae
14.
Biochim Biophys Acta Gen Subj ; 1862(7): 1592-1601, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29631057

RESUMO

BACKGROUND: Langerin, a C-type lectin receptor (CLR) expressed in a subset of dendritic cells (DCs), binds to glycan ligands for pathogen capture and clearance. Previous studies revealed that langerin has an unusual binding affinity toward 6-sulfated galactose (Gal), a structure primarily found in keratan sulfate (KS). However, details and biological outcomes of this interaction have not been characterized. Based on a recent discovery that the disaccharide L4, a KS component that contains 6-sulfo-Gal, exhibits anti-inflammatory activity in mouse lung, we hypothesized that L4-related compounds are useful tools for characterizing the langerin-ligand interactions and their therapeutic application. METHODS: We performed binding analysis between purified long and short forms of langerin and a series of KS disaccharide components. We also chemically synthesized oligomeric derivatives of L4 to develop a new high-affinity ligand of langerin. RESULTS: We show that the binding critically requires the 6-sulfation of Gal and that the long form of langerin displays higher affinity than the short form. The synthesized trimeric (also designated as triangle or Tri) and polymeric (pendant) L4 derivatives displayed over 1000-fold higher affinity toward langerin than monomeric L4. The pendant L4, but not the L4 monomer, was found to effectively transduce langerin signaling in a model cell system. CONCLUSIONS: L4 is a specific ligand for langerin. Oligomerization of L4 unit increased the affinity toward langerin. GENERAL SIGNIFICANCE: These results suggest that oligomeric L4 derivatives will be useful for clarifying the langerin functions and for the development of new glycan-based anti-inflammatory drugs.


Assuntos
Antígenos CD/metabolismo , Antígenos de Superfície/metabolismo , Dissacarídeos/metabolismo , Sulfato de Queratano/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Antígenos CD/química , Antígenos de Superfície/química , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Células Dendríticas/metabolismo , Dissacarídeos/química , Dissacarídeos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , Galactose/metabolismo , Humanos , Sulfato de Queratano/química , Lectinas Tipo C/química , Ligantes , Lectinas de Ligação a Manose/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Proteínas Recombinantes/metabolismo
15.
Mar Drugs ; 16(4)2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29662015

RESUMO

As an important glycosaminoglycan, keratan sulfate (KS) mainly exists in corneal and cartilage, possessing various biological activities. In this study, we purified KS from blue shark (Prionace glauca) cartilage and prepared KS oligosaccharides (KSO) through keratanase II-catalyzed hydrolysis. The structures of KS and KSO were characterized using multi-dimensional nuclear magnetic resonance (NMR) spectra and liquid chromatography-mass spectrometry (LC-MS). Shark cartilage KS was highly sulfated and modified with ~2.69% N-acetylneuraminic acid (NeuAc) through α(2,3)-linked to galactose. Additionally, KS exhibited binding affinity to Ricinus communis agglutinin I (RCA120) in a concentration-dependent manner, a highly toxic lectin from beans of the castor plant. Furthermore, KSO from dp2 to dp8 bound to RCA120 in the increasing trend while the binding affinity of dp8 was superior to polysaccharide. These results define novel structural features for KS from Prionace glauca cartilage and demonstrate the potential application on ricin-antidote exploitation.


Assuntos
Cartilagem/química , Sulfato de Queratano/química , Lectinas de Plantas/química , Tubarões/metabolismo , Acetilglucosaminidase/química , Animais , Cromatografia Líquida , Galactose/química , Hidrólise/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Oligossacarídeos/química , Espectrometria de Massas em Tandem/métodos
16.
Glycobiology ; 28(4): 182-206, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29340594

RESUMO

From an evolutionary perspective keratan sulfate (KS) is the newest glycosaminoglycan (GAG) but the least understood. KS is a sophisticated molecule with a diverse structure, and unique functional roles continue to be uncovered for this GAG. The cornea is the richest tissue source of KS in the human body but the central and peripheral nervous systems also contain significant levels of KS and a diverse range of KS-proteoglycans with essential functional roles. KS also displays important cell regulatory properties in epithelial and mesenchymal tissues and in bone and in tumor development of diagnostic and prognostic utility. Corneal KS-I displays variable degrees of sulfation along the KS chain ranging from non-sulfated polylactosamine, mono-sulfated and disulfated disaccharide regions. Skeletal KS-II is almost completely sulfated consisting of disulfated disaccharides interrupted by occasional mono-sulfated N-acetyllactosamine residues. KS-III also contains highly sulfated KS disaccharides but differs from KS-I and KS-II through 2-O-mannose linkage to serine or threonine core protein residues on proteoglycans such as phosphacan and abakan in brain tissue. Historically, the major emphasis on the biology of KS has focused on its sulfated regions for good reason. The sulfation motifs on KS convey important molecular recognition information and direct cell behavior through a number of interactive proteins. Emerging evidence also suggest functional roles for the poly-N-acetyllactosamine regions of KS requiring further investigation. Thus further research is warranted to better understand the complexities of KS.


Assuntos
Sulfato de Queratano/metabolismo , Animais , Humanos , Sulfato de Queratano/química
17.
Carbohydr Res ; 456: 61-68, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29275050

RESUMO

The reaction specificity of the transglycosylation catalyzed by keratanase II from Bacillus circulans KsT202 (KSase II) was studied by using the oxazoline derivatives having keratan sulfate repeating units. The addition of 10% organic cosolvent reduced the activity for the enzymatic transglycosylation. The oxazoline derivative of 6-O-sulfonato-N-acetyllactosamine (su-LacNAc) was processively oligomerized to the corresponding hexamer or longer by the enzyme. This result strongly implies that the enzyme has the large positively numbered subsites. In contrast, the transglycosylation of the su-LacNAc oxazoline donor with the 6-O-sulfonato-Lewis X (su-LeX) acceptor solely gave the su-LacNAc-su-LeX pentasaccharide. In addition, both the oxazoline derivatives of su-LeX and 6,6'-di-O-sulfonato-LacNAc have been exclusively oligomerized to the corresponding dimers respectively. These results strongly suggest that the steric hindrance exists around the (+3)(+4) subsites in KSase II. Furthermore, KSase II-catalyzed reaction of the excess su-LeX oxazoline with the su-LacNAc gave the su-LeX-su-LacNAc pentasaccharide as the sole transglycosylation product, also implying the steric hindrance at the catalytic center hampering processive shift of this pentasaccharide. Thus, KSase II has the sterically crowded structures at the catalytic center and around the (+3)(+4) subsites, which are all expected to be tunnel-like.


Assuntos
Acetilglucosaminidase/metabolismo , Carboidratos/química , Sulfato de Queratano/química , Oxazóis/química , Sequência de Carboidratos , Glicosilação , Especificidade por Substrato
18.
Carbohydr Res ; 452: 97-107, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29096187

RESUMO

We successfully synthesized the biotinylated keratan sulfate tetrasaccharide, Galß1-4GlcNAc6Sß1-3Galß1-4GlcNAc6Sß in a stereocontrolled manner. The suitably protected Galß1-4GlcNPhth unit was converted to the corresponding donor and acceptor. Optimization in 2 + 2 coupling using AgOTf, CuBr2, and n-Bu4NBr in CH3NO2 at a low temperature afforded the desired tetrasaccharide that suppressed glycal formation. The subsequent chemoselective removal of the protecting group at O-6 of two GlcNAcs, sulfation, and deprotection procedures as well as biotinylation gave the target compound.


Assuntos
Sulfato de Queratano/química , Oligossacarídeos/química , Biotinilação , Sequência de Carboidratos , Glicosilação , Especificidade por Substrato
19.
Glycoconj J ; 34(5): 643-649, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28752383

RESUMO

There is a need for degradative enzymes in the study of glycosaminoglycans. Many of these enzymes are currently available either in their natural or recombinant forms. Unfortunately, progress in structure-activity studies of keratan sulfate (KS) have been impeded by the lack of a commercially available endo-ß-N-acetylglucosaminidase, keratantase II. The current study uses a recently published sequence of a highly thermostable keratanase II identified in Bacillus circulans to clone and express a series of truncation mutants in Escherichia coli BL21. The resulting truncated forms of keratanase II exhibit activity and excellent storage and thermal stability making these useful tools for glycobiology research.


Assuntos
Acetilglucosaminidase/metabolismo , Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Sulfato de Queratano/metabolismo , Plasmídeos/química , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Sequência de Aminoácidos , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hidrólise , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Sulfato de Queratano/química , Cinética , Plasmídeos/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
20.
Biomacromolecules ; 18(6): 1713-1723, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28398752

RESUMO

Aging and degeneration of human tissue come with the loss of tissue water retention and associated changes in physical properties partially due to degradation and subsequent loss of proteoglycans. We demonstrated a novel method of fabrication of biomimetic proteoglycans, which mimic the three-dimensional bottlebrush architecture and physical behavior of natural proteoglycans responsible for tissue hydration and structural integrity. Biomimetic proteoglycans are synthesized by an end-on attachment of natural chondroitin sulfate bristles to a synthetic poly(acryloyl chloride) backbone. Atomic force microscopy imaging suggested three-dimensional core-bristle architecture, and hydrodynamic size of biomimetic proteoglycans was estimated at 61.3 ± 12.3 nm using dynamic light scattering. Water uptake results indicated that biomimetic proteoglycans had a ∼50% increased water uptake compared to native aggrecan and chondroitin sulfate alone. The biomimetic proteoglycans are cytocompatible in the physiological ranges of concentrations and could be potentially used to repair damaged or diseased tissue with depleted proteoglycan content.


Assuntos
Resinas Acrílicas/síntese química , Materiais Biomiméticos/síntese química , Sulfatos de Condroitina/química , Água/química , Resinas Acrílicas/farmacologia , Agrecanas/química , Agrecanas/ultraestrutura , Animais , Materiais Biomiméticos/farmacologia , Cartilagem Articular/química , Cartilagem Articular/fisiologia , Cartilagem Articular/ultraestrutura , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sulfatos de Condroitina/ultraestrutura , Dermatan Sulfato/química , Dermatan Sulfato/ultraestrutura , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Sulfato de Queratano/química , Sulfato de Queratano/ultraestrutura , Camundongos , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA