Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.925
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000302

RESUMO

Dupuytren's disease (DD) is a prevalent fibroproliferative disorder of the hand, shaped by genetic, epigenetic, and environmental influences. The extracellular matrix (ECM) is a complex assembly of diverse macromolecules. Alterations in the ECM's content, structure and organization can impact both normal physiological functions and pathological conditions. This study explored the content and organization of glycosaminoglycans, proteoglycans, and collagen in the ECM of patients at various stages of DD, assessing their potential as prognostic indicators. This research reveals, for the first time, relevant changes in the complexity of chondroitin/dermatan sulfate structures, specifically an increase of disaccharides containing iduronic acid residues covalently linked to either N-acetylgalactosamine 6-O-sulfated or N-acetylgalactosamine 4-O-sulfated, correlating with the disease's severity. Additionally, we noted an increase in versican expression, a high molecular weight proteoglycan, across stages I to IV, while decorin, a small leucine-rich proteoglycan, significantly diminishes as DD progresses, both confirmed by mRNA analysis and protein detection via confocal microscopy. Coherent anti-Stokes Raman scattering (CARS) microscopy further demonstrated that collagen fibril architecture in DD varies importantly with disease stages. Moreover, the urinary excretion of both hyaluronic and sulfated glycosaminoglycans markedly decreased among DD patients.Our findings indicate that specific proteoglycans with galactosaminoglycan chains and collagen arrangements could serve as biomarkers for DD progression. The reduction in glycosaminoglycan excretion suggests a systemic manifestation of the disease.


Assuntos
Colágeno , Decorina , Contratura de Dupuytren , Proteoglicanas , Humanos , Contratura de Dupuytren/metabolismo , Contratura de Dupuytren/patologia , Colágeno/metabolismo , Proteoglicanas/metabolismo , Decorina/metabolismo , Matriz Extracelular/metabolismo , Masculino , Progressão da Doença , Feminino , Dermatan Sulfato/metabolismo , Pessoa de Meia-Idade , Idoso , Versicanas/metabolismo , Versicanas/genética , Glicosaminoglicanos/metabolismo , Sulfatos de Condroitina/metabolismo , Polissacarídeos
2.
J Biochem Mol Toxicol ; 38(7): e23761, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952040

RESUMO

Non-small cell cancer (NSCLC) is the most common cancer in the world, but its effective therapeutic methods are limited. Tilianin and sufentanil alleviate various human tumors. This research aimed to clarify the functions and mechanisms of Tilianin and sufentanil in NSCLC. The functions of Tilianin and sufentanil on NSCLC cell viability, apoptosis, mitochondrial dysfunction, and immunity in vitro were examined using Cell Counting Kit-8 assay, flow cytometry, reactive oxygen species level analysis, CD8+ T cell percentage analysis, Western blot, and enzyme-linked immunosorbent assay, respectively. The molecular mechanism regulated by Tilianin and sufentanil in NSCLC was assessed using Western blot, and immunofluorescence assays. Meanwhile, the roles of Tilianin and sufentanil in NSCLC tumor growth, apoptosis, and immunity in vivo were determined by establishing a tumor xenograft mouse model, immunohistochemistry, and Western blot assays. When sufentanil concentration was proximity 2 nM, the inhibition rate of NSCLC cell viability was 50%. The IC50 for A549 cells was 2.36 nM, and the IC50 for H1299 cells was 2.18 nM. The IC50 of Tilianin for A549 cells was 38.7 µM, and the IC50 of Tilianin for H1299 cells was 44.6 µM. Functionally, 0.5 nM sufentanil and 10 µM Tilianin reduced NSCLC cell (A549 and H1299) viability in a dose-dependent manner. Also, 0.5 nM sufentanil and 10 µM Tilianin enhanced NSCLC cell apoptosis, yet this impact was strengthened after a combination of Tilianin and Sufentanil. Furthermore, 0.5 nM sufentanil and 10 µM Tilianin repressed NSCLC cell mitochondrial dysfunction and immunity, and these impacts were enhanced after a combination of Tilianin and Sufentanil. Mechanistically, 0.5 nM sufentanil and 10 µM Tilianin repressed the NF-κB pathway in NSCLC cells, while this repression was strengthened after a combination of Tilianin and Sufentanil. In vivo experimental data further clarified that 1 µg/kg sufentanil and 10 mg/kg Tilianin reduced NSCLC growth, immunity, and NF-κB pathway-related protein levels, yet these trends were enhanced after a combination of Tilianin and Sufentanil. Tilianin strengthened the antitumor effect of sufentanil in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sufentanil , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Sufentanil/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Camundongos , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Células A549 , Camundongos Nus , Sinergismo Farmacológico , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Sulfatos de Condroitina/farmacologia , Venenos de Anfíbios
3.
Nat Commun ; 15(1): 4912, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851738

RESUMO

Bacterial adhesion is a fundamental process which enables colonisation of niche environments and is key for infection. However, in Legionella pneumophila, the causative agent of Legionnaires' disease, these processes are not well understood. The Legionella collagen-like protein (Lcl) is an extracellular peripheral membrane protein that recognises sulphated glycosaminoglycans on the surface of eukaryotic cells, but also stimulates bacterial aggregation in response to divalent cations. Here we report the crystal structure of the Lcl C-terminal domain (Lcl-CTD) and present a model for intact Lcl. Our data reveal that Lcl-CTD forms an unusual trimer arrangement with a positively charged external surface and negatively charged solvent exposed internal cavity. Through molecular dynamics simulations, we show how the glycosaminoglycan chondroitin-4-sulphate associates with the Lcl-CTD surface via distinct binding modes. Our findings show that Lcl homologs are present across both the Pseudomonadota and Fibrobacterota-Chlorobiota-Bacteroidota phyla and suggest that Lcl may represent a versatile carbohydrate-binding mechanism.


Assuntos
Proteínas de Bactérias , Colágeno , Glicosaminoglicanos , Legionella pneumophila , Simulação de Dinâmica Molecular , Ligação Proteica , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Legionella pneumophila/metabolismo , Colágeno/metabolismo , Colágeno/química , Cristalografia por Raios X , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/química , Aderência Bacteriana , Domínios Proteicos , Doença dos Legionários/microbiologia , Doença dos Legionários/metabolismo , Humanos , Sequência de Aminoácidos
4.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892083

RESUMO

Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups. AmCS-based NCs were prepared by an ultrasound-assisted emulsification of an oil phase consisting of a mixture of triglyceride oil and vitamin E in a dispersion of AmCSs. Dynamic light scattering and cryo-transmission electron microscopy showed that the as-prepared core-shell NCs have typical diameters in the range of 30-250 nm and spherical morphology. Since CS is a strong polyanion, these particles have a very low surface potential, which promotes their stabilization. The cytotoxicity of the CS derivatives and CS-based NCs and their impact on cell proliferation were analyzed using human keratinocytes (HaCaTs) and primary human skin fibroblasts (HSFs). In vitro studies showed that AmCSs dispersed in an aqueous medium, exhibiting mild cytotoxicity against HaCaTs, while for HSFs, the harmful effect was observed only for the CS derivative with octadecyl side groups. However, the nanocapsules coated with AmCSs, especially those filled with vitamin E, show high biocompatibility with human skin cells. Due to their stability under physiological conditions, the high encapsulation efficiency of their hydrophobic compounds, and biocompatibility, AmCS-based NCs are promising carriers for the topical delivery of lipophilic bioactive compounds.


Assuntos
Sulfatos de Condroitina , Portadores de Fármacos , Nanocápsulas , Nanocápsulas/química , Humanos , Sulfatos de Condroitina/química , Portadores de Fármacos/química , Suplementos Nutricionais , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Emulsões/química , Tamanho da Partícula , Vitamina E/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Células HaCaT
5.
Int J Biol Macromol ; 272(Pt 1): 132624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838594

RESUMO

In this work, the interaction of chondroitin sulfate (CS) and dermatan sulfate (DS) with plant lectins was studied by affinity capillary electrophoresis (ACE), surface plasmon resonance (SPR) technology, molecular docking simulation, and circular dichroism spectroscopy. The ACE method was used for the first time to study the interaction of Ricinus Communis Agglutinin I (RCA I), Wisteria Floribunda Lectin (WFA), and Soybean Agglutinin (SBA) with CS and DS, and the results were in good agreement with those of the SPR method. The results of experiments indicate that RCA I has a strong binding affinity with CS, and the sulfated position does not affect the relationship, but the degree of sulfation can affect the combination of RCA I with CS to some extent. However, the binding affinity with DS is very weak. This study lays the foundation for developing more specialized analysis methods for CS and DS based on RCA I.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Simulação de Acoplamento Molecular , Lectinas de Plantas , Ligação Proteica , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Ressonância de Plasmônio de Superfície , Aglutininas/química , Aglutininas/metabolismo , Dicroísmo Circular , Eletroforese Capilar
6.
Int J Nanomedicine ; 19: 5125-5138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855730

RESUMO

Purpose: Breast cancer is a prevalent malignancy among women worldwide, and malignancy is closely linked to the tumor microenvironment (TME). Here, we prepared mixed nano-sized formulations composed of pH-sensitive liposomes (Ber/Ru486@CLPs) and small-sized nano-micelles (Dox@CLGs). These liposomes and nano-micelles were modified by chondroitin sulfate (CS) to selectively target breast cancer cells. Methods: Ber/Ru486@CLPs and Dox@CLGs were prepared by thin-film dispersion and ethanol injection, respectively. To mimic actual TME, the in vitro "condition medium of fibroblasts + MCF-7" cell model and in vivo "4T1/NIH-3T3" co-implantation mice model were established to evaluate the anti-tumor effect of drugs. Results: The physicochemical properties showed that Dox@CLGs and Ber/Ru486@CLPs were 28 nm and 100 nm in particle size, respectively. In vitro experiments showed that the mixed formulations significantly improved drug uptake and inhibited cell proliferation and migration. The in vivo anti-tumor studies further confirmed the enhanced anti-tumor capabilities of Dox@CLGs + Ber/Ru486@CLPs, including smaller tumor volumes, weak collagen deposition, and low expression levels of α-SMA and CD31 proteins, leading to a superior anti-tumor effect. Conclusion: In brief, this combination therapy based on Dox@CLGs and Ber/Ru486@CLPs could effectively inhibit tumor development, which provides a promising approach for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Proliferação de Células , Doxorrubicina , Lipossomos , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Humanos , Camundongos , Lipossomos/química , Células MCF-7 , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Tamanho da Partícula , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Movimento Celular/efeitos dos fármacos , Nanopartículas/química
7.
Carbohydr Polym ; 341: 122294, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876708

RESUMO

The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling represents a recent and underexplored area. Conflicting reports suggest a dual effect: some indicate a positive influence, while others demonstrate a negative impact. This duality suggests that the localization of GAGs (either at the cell surface or within the extracellular matrix) or the specific type of GAG may dictate their signaling role. The precise sulfation patterns of heparan sulfate (HS) responsible for BMP2 binding remain elusive. BMP2 exhibits a preference for binding to HS over other GAGs. Using well-characterized biomaterials mimicking the extracellular matrix, our research reveals that HS promotes BMP2 signaling in the extracellular space, contrary to chondroitin sulfate (CS), which enhances BMP2 bioactivity at the cell surface. Further observations indicate that a central IdoA (2S)-GlcNS (6S) tri-sulfated motif within HS hexasaccharides enhances binding. Nevertheless, BMP2 exhibits a degree of adaptability to various HS sulfation types and sequences. Molecular dynamic simulations attribute this adaptability to the BMP2 N-terminal end flexibility. Our findings illustrate the complex interplay between GAGs and BMP signaling, highlighting the importance of localization and specific sulfation patterns. This understanding has implications for the development of biomaterials with tailored properties for therapeutic applications targeting BMP signaling pathways.


Assuntos
Proteína Morfogenética Óssea 2 , Glicosaminoglicanos , Heparitina Sulfato , Transdução de Sinais , Proteína Morfogenética Óssea 2/metabolismo , Heparitina Sulfato/metabolismo , Heparitina Sulfato/química , Humanos , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Simulação de Dinâmica Molecular , Animais , Ligação Proteica
8.
J Food Sci ; 89(7): 4469-4479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837700

RESUMO

This study aimed to evaluate the anti-cervical cancer activity of chondroitin sulfate-functionalized selenium nanoparticles (SeCS) and to elucidate their action mechanism. Cytotoxic effect of SeCS on HeLa cells was assessed by MTT assay. Further molecular mechanism of SeCS was analyzed by flow cytometric assay and western blotting. The results showed that treatment with SeCS resulted in a dose- and time-dependent inhibition in the proliferation of HeLa cells. The data obtained from flow cytometry demonstrated that SeCS inhibited HeLa cell growth via the induction of S-phase arrest and cell apoptosis. Further mechanism analysis found that SeCS down-regulated expression levels of cyclin A and CDK2 and up-regulated p21 expression, which contributed to S arrest. Moreover, SeCS increased the level of Bax and decreased the expression of Bcl-2, resulting in the release of cytochrome C from mitochondria and activating caspase-3/8/9 for caspase-dependent apoptosis. Meanwhile, intracellular reactive oxygen species (ROS) levels were elevated after SeCS treatment, suggesting that ROS might be upstream of SeCS-induced S-phase arrest and cell apoptosis. These data show that SeCS has anti-tumor effects and possesses the potential to become a new therapeutic agent or adjuvant therapy for cancer patients. PRACTICAL APPLICATION: In our previous study, we used chondroitin sulfate to stabilize nano-selenium to obtain SeCS to improve the bioactivity and stability of nano-selenium. We found that it possessed an inhibitory effect on HeLa cells. However, the molecular mechanism remains unclear. This study elucidated the mechanism of SeCS damage to HeLa cells. SeCS has the potential to become a new therapeutic agent or adjuvant therapy for cancer patients.


Assuntos
Apoptose , Sulfatos de Condroitina , Nanopartículas , Espécies Reativas de Oxigênio , Selênio , Humanos , Células HeLa , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Apoptose/efeitos dos fármacos , Selênio/farmacologia , Selênio/química , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/farmacologia
9.
Int J Biol Macromol ; 271(Pt 2): 132675, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845259

RESUMO

Novel hydrogel-based multifunctional systems prepared utilizing photocrosslinking and freeze-drying processes (PhotoCross/Freeze-dried) dedicated for bone tissue regeneration are presented. Fabricated materials, composed of methacrylated gelatin, chitosan, and chondroitin sulfate, possess interesting features including bioactivity, biocompatibility, as well as antibacterial activity. Importantly, their degradation and swellability might be easily tuned by playing with the biopolymeric content in the photocrosllinked systems. To broaden the potential application and deliver the therapeutic features, mesoporous silica particles functionalized with methacrylate moieties decorated with hydroxyapatite and loaded with the antiosteoporotic drug, alendronate, (MSP-MA-HAp-ALN) were dispersed within the biopolymeric sol and photocrosslinked. It was demonstrated that the obtained composites are characterized by a significantly extended degradation time, ensuring optimal conditions for balancing hybrids removal with the deposition of fresh bone. We have shown that attachment of MSP-MA-HAp-ALN to the polymeric matrix minimizes the initial burst effect and provides a prolonged release of ALN (up to 22 days). Moreover, the biological evaluation in vitro suggested the capability of the resulted systems to promote bone remodeling. Developed materials might potentially serve as scaffolds that after implantation will fill up bone defects of various origin (osteoporosis, tumour resection, accidents) providing the favourable conditions for bone regeneration and supporting the infections' treatment.


Assuntos
Regeneração Óssea , Quitosana , Sulfatos de Condroitina , Gelatina , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Quitosana/química , Gelatina/química , Regeneração Óssea/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais/química , Humanos , Reagentes de Ligações Cruzadas/química , Animais , Osso e Ossos/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Hidrogéis/farmacologia
10.
J Agric Food Chem ; 72(23): 13196-13204, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805590

RESUMO

Chondroitin sulfate (CS) is the predominant glycosaminoglycan within the human body and is widely applied in various industries. Carbohydrate-binding modules (CBMs) possessing the capacity for carbohydrate recognition are verified to be important tools for polysaccharide investigation. Only one CS-specific CBM, PhCBM100, has hitherto been characterized. In the present study, two CBM96 domains present in the same putative PL8_3 chondroitin AC lyase were discovered and recombinantly expressed. The results of microtiter plate assays and affinity gel electrophoresis assays showed that the two corresponding proteins, DmCBM96-1 and DmCBM96-2, bind specifically to CSs. The crystal structure of DmCBM96-1 was determined at a 2.20 Å resolution. It adopts a ß-sandwich fold comprising two antiparallel ß-sheets, showing structural similarities to TM6-N4, which is the founding member of the CBM96 family. Site mutagenesis analysis revealed that the residues of Arg27, Lys45, Tyr51, Arg53, and Arg157 are critical for CS binding. The characterization of the two CBM96 proteins demonstrates the diverse ligand specificity of the CBM96 family and provides promising tools for CS investigation.


Assuntos
Sulfatos de Condroitina , Ligação Proteica , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência de Aminoácidos , Alinhamento de Sequência , Condroitina Liases/química , Condroitina Liases/metabolismo , Condroitina Liases/genética
11.
Biomacromolecules ; 25(6): 3312-3324, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728671

RESUMO

3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing and filler concentration on cell differentiation were further quantitatively evaluated. The nanocomposited hydrogels render high MSC proliferation and viability, exhibiting intrinsic chondroinductive capacity without any exogenous factor when used to print scaffolds or bioprint constructs. The bioactivity depended on the GO concentration, with the best performance at 0.1 mg mL-1. These results were explained by the rational combination of the three biopolymers, with GO nanoparticles having carboxylate and sulfate groups in their structures, therefore, biomimicking the highly negatively charged ECM of cartilage. The bioactivity of this biomaterial and its good processability for 3D printing scaffolds and 3D bioprinting techniques open up a new approach to developing novel biomimetic materials for cartilage repair.


Assuntos
Alginatos , Bioimpressão , Diferenciação Celular , Condrogênese , Sulfatos de Condroitina , Gelatina , Hidrogéis , Células-Tronco Mesenquimais , Nanocompostos , Impressão Tridimensional , Alicerces Teciduais , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Alginatos/química , Alginatos/farmacologia , Gelatina/química , Bioimpressão/métodos , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Nanocompostos/química , Alicerces Teciduais/química , Hidrogéis/química , Hidrogéis/farmacologia , Engenharia Tecidual/métodos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Grafite/química , Grafite/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas
12.
J Neural Eng ; 21(3)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38806019

RESUMO

Objective.Severe traumatic brain injury (sTBI) induced neuronal loss and brain atrophy contribute significantly to long-term disabilities. Brain extracellular matrix (ECM) associated chondroitin sulfate (CS) glycosaminoglycans promote neural stem cell (NSC) maintenance, and CS hydrogel implants have demonstrated the ability to enhance neuroprotection, in preclinical sTBI studies. However, the ability of neuritogenic chimeric peptide (CP) functionalized CS hydrogels in promoting functional recovery, after controlled cortical impact (CCI) and suction ablation (SA) induced sTBI, has not been previously demonstrated. We hypothesized that neuritogenic (CS)CP hydrogels will promote neuritogenesis of human NSCs, and accelerate brain tissue repair and functional recovery in sTBI rats.Approach.We synthesized chondroitin 4-Osulfate (CS-A)CP, and 4,6-O-sulfate (CS-E)CP hydrogels, using strain promoted azide-alkyne cycloaddition (SPAAC), to promote cell adhesion and neuritogenesis of human NSCs,in vitro; and assessed the ability of (CS-A)CP hydrogels in promoting tissue and functional repair, in a novel CCI-SA sTBI model,in vivo. Main results.Results indicated that (CS-E)CP hydrogels significantly enhanced human NSC aggregation and migration via focal adhesion kinase complexes, when compared to NSCs in (CS-A)CP hydrogels,in vitro. In contrast, NSCs encapsulated in (CS-A)CP hydrogels differentiated into neurons bearing longer neurites and showed greater spontaneous activity, when compared to those in (CS-E)CP hydrogels. The intracavitary implantation of (CS-A)CP hydrogels, acutely after CCI-SA-sTBI, prevented neuronal and axonal loss, as determined by immunohistochemical analyses. (CS-A)CP hydrogel implanted animals also demonstrated the significantly accelerated recovery of 'reach-to-grasp' function when compared to sTBI controls, over a period of 5-weeks.Significance.These findings demonstrate the neuritogenic and neuroprotective attributes of (CS)CP 'click' hydrogels, and open new avenues for the development of multifunctional glycomaterials that are functionalized with biorthogonal handles for sTBI repair.


Assuntos
Lesões Encefálicas Traumáticas , Hidrogéis , Células-Tronco Neurais , Neuritos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Hidrogéis/administração & dosagem , Animais , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Masculino , Sulfatos de Condroitina/administração & dosagem , Sulfatos de Condroitina/farmacologia , Glicosaminoglicanos/administração & dosagem , Células Cultivadas , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia
13.
J Sex Med ; 21(7): 627-634, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38721680

RESUMO

BACKGROUND: Intravesical instillation of hyaluronic acid (HA) has been associated with reduced sexual dysfunction in participants with recurrent urinary tract infections (rUTIs), but the efficacy of an oral treatment has never been investigated. AIM: To investigate the efficacy of an oral preparation of HA, chondroitin sulfate, N-acetylglucosamine, and vitamin C in improving sexual and urinary symptoms in a cohort of reproductive-age participants with rUTI. METHODS: In a monocentric randomized crossover pilot trial, participants with rUTI who were referred to our institute between March 2022 and April 2023 were randomized 1:1 in 2 groups: intervention vs control. All participants had an oral preparation of cranberry, D-mannose, propolis extract, turmeric, and Boswellia twice a day for 3 months. The intervention group also included an oral preparation of HA, chondroitin sulfate, N-acetylglucosamine, and vitamin C once a day for 3 months. Crossover of treatment occurred at 3 months for an additional 3 months. At baseline and 3 and 6 months, participants were evaluated clinically and with the International Prostate Symptom Score (IPSS) and Female Sexual Function Index (FSFI). Descriptive statistics and logistic regression models tested the impact of the intervention on urinary and sexual symptoms at each follow-up assessment. OUTCOMES: Improvement in sexual and urinary symptoms as measured by the FSFI and IPSS. RESULTS: Overall, 27 (54%) participants had an FSFI score <26.5 at enrollment. At 3 months, FSFI scores were higher in the intervention group vs control (P < .001), but IPSS scores were lower (P = .03). After crossover of treatment, FSFI and IPSS scores remained stable in the intervention group. However, after crossover, the control group showed a significant improvement in IPSS and FSFI scores (all P < .01) vs the 3-month assessment. At last follow-up, urinary and sexual symptoms were comparable between groups. In logistic regression analyses, the intervention group was associated with early improvement in sexual symptoms (odds ratio, 3.9; P = .04) and urinary symptoms (odds ratio, 5.1; P = .01) after accounting for clinical confounders. CLINICAL IMPLICATIONS: Combination treatment with HA, chondroitin sulfate, N-acetylglucosamine, and vitamin C is effective if started immediately or even after a few months from symptoms in participants with rUTI. STRENGTHS AND LIMITATIONS: The main limitation is the lack of long-term follow-up. CONCLUSION: The oral formulation of HA, chondroitin sulfate, N-acetylglucosamine, and vitamin C could be an effective therapy against urinary and sexual distress in participants with rUTI (NCT06268483; ClinicalTrials.gov).


Assuntos
Acetilglucosamina , Ácido Ascórbico , Sulfatos de Condroitina , Estudos Cross-Over , Ácido Hialurônico , Infecções Urinárias , Humanos , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/uso terapêutico , Sulfatos de Condroitina/administração & dosagem , Sulfatos de Condroitina/uso terapêutico , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/uso terapêutico , Feminino , Masculino , Adulto , Infecções Urinárias/tratamento farmacológico , Acetilglucosamina/administração & dosagem , Acetilglucosamina/uso terapêutico , Administração Oral , Projetos Piloto , Disfunções Sexuais Fisiológicas/tratamento farmacológico , Pessoa de Meia-Idade , Recidiva , Própole/administração & dosagem , Própole/uso terapêutico , Manose/administração & dosagem , Manose/uso terapêutico
14.
Int J Biol Macromol ; 271(Pt 1): 132520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772463

RESUMO

Blocking the tumor nutrient supply through angiogenic inhibitors is an effective treatment approach for malignant tumors. However, using angiogenic inhibitors alone may not be enough to achieve a significant tumor response. Therefore, we recently designed a universal drug delivery system combining chemotherapy and anti-angiogenic therapy to target tumor cells while minimizing drug-related side effects. This system (termed as PCCE) is composed of biomaterial chondroitin sulfate (CS), the anti-angiogenic peptide ES2, and paclitaxel (PTX), which collectively enhance antitumor properties. Interestingly, the PCCE system is conferred exceptional cell membrane permeability due to inherent characteristics of CS, including CD44 receptor-mediated endocytosis. The PCCE could respond to the acidic and high glutathione conditions, thereby releasing PTX and ES2. PCCE could effectively inhibit the proliferation, migration, and invasion of tumor cells and cause apoptosis, while PCCE can affect the endothelial cells tube formation and exert anti-angiogenic function. Consistently, more potent in vivo antitumor efficacy and non-toxic sides were demonstrated in B16F10 xenograft mouse models. PCCE can achieve excellent antitumor activity via modulating angiogenic and apoptosis-related factors. In summary, we have successfully developed an intelligent and responsive CS-based nanocarrier known as PCCE for delivering various antitumor drugs, offering a promising strategy for treating malignant tumors.


Assuntos
Inibidores da Angiogênese , Sulfatos de Condroitina , Nanopartículas , Paclitaxel , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/uso terapêutico , Animais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/administração & dosagem , Humanos , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Movimento Celular/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem
15.
Int J Biol Macromol ; 271(Pt 1): 132518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777025

RESUMO

Chondroitinases play important roles in structural and functional studies of chondroitin sulfates. Carbohydrate-binding module (CBM) is generally considered as an accessory module in carbohydrate-active enzymes, which promotes the association of the appended enzyme with the substrate and potentiates the catalytic activity. However, the role of natural CBM in chondroitinases has not been investigated. Herein, a novel chondroitinase ChABC29So containing an unknown domain with a predicted ß-sandwich fold was discovered from Segatella oris. Recombinant ChABC29So showed enzyme activity towards chondroitin sulfates and hyaluronic acid and acted in a random endo-acting manner. The unknown domain exhibited a chondroitin sulfate-binding capacity and was identified as a CBM. Biochemical characterization of ChABC29So and the CBM-truncated enzyme revealed that the CBM enhances the catalytic activity, thermostability, and disaccharide proportion in the final enzymatic products of ChABC29So. These findings demonstrate the role of the natural CBM in a chondroitinase and will guide future modification of chondroitinases.


Assuntos
Condroitina ABC Liase , Sulfatos de Condroitina , Condroitina ABC Liase/química , Condroitina ABC Liase/metabolismo , Condroitina ABC Liase/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Especificidade por Substrato , Estabilidade Enzimática , Ligação Proteica , Sequência de Aminoácidos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo
16.
Int J Biol Macromol ; 269(Pt 2): 131952, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692541

RESUMO

Thromboembolic diseases pose a serious risk to human health worldwide. Fucosylated chondroitin sulfate (FCS) is reported to have good anticoagulant activity with a low bleeding risk. Molecular weight plays a significant role in the anticoagulant activity of FCS, and FCS smaller than octasaccharide in size has no anticoagulant activity. Therefore, identifying the best candidate for developing novel anticoagulant FCS drugs is crucial. Herein, native FCS was isolated from sea cucumber Cucumaria frondosa (FCScf) and depolymerized into a series of lower molecular weights (FCScfs). A comprehensive assessment of the in vitro anticoagulant activity and in vivo bleeding risk of FCScfs with different molecule weights demonstrated that 10 kDa FCScf (FCScf-10 K) had a greater intrinsic anticoagulant activity than low molecular weight heparin (LMWH) without any bleeding risk. Using molecular modeling combined with experimental validation, we revealed that FCScf-10 K can specifically inhibit the formation of the Xase complex by binding the negatively charged sulfate group of FCScf-10 K to the positively charged side chain of arginine residues on the specific surface of factor IXa. Thus, these data demonstrate that the intermediate molecular weight FCScf-10 K is a promising candidate for the development of novel anticoagulant drugs.


Assuntos
Anticoagulantes , Sulfatos de Condroitina , Fator IXa , Peso Molecular , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/isolamento & purificação , Anticoagulantes/farmacologia , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Fator IXa/metabolismo , Fator IXa/antagonistas & inibidores , Fator IXa/química , Cucumaria/química , Pepinos-do-Mar/química , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Modelos Moleculares
17.
Carbohydr Res ; 541: 109163, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805806

RESUMO

In this study, glycosaminoglycans (GAGs) were extracted from corb (Sciaena umbra) heads and thoroughly examined for their structure. Through cellulose acetate electrophoresis, the GAGs were identified as chondroitin sulfate (CS), with a recovery yield of 10.35 %. The CS exhibited notable characteristics including a high sulfate content (12.4 %) and an average molecular weight of 38.32 kDa. Further analysis via 1H NMR spectroscopy and SAX-HPLC revealed that the CS primarily consisted of alternating units predominantly composed of monosulfated disaccharides at positions 6 and 4 of GalNAc (52.6 % and 38.8 %, respectively). The ratio of sulfate groups between positions 4 and 6 of GalNAc (4/6 ratio) was approximately 0.74, resulting in an overall charge density of 0.98. Thermal properties of the CS were assessed using techniques such as differential scanning calorimetry and thermogravimetric analysis. Notably, the CS demonstrated concentration-dependent prolongation of activated partial thromboplastin time (aPTT) and thrombin time (TT) while showing no effect on platelet function. At 200 µg/mL, aPTT and TT coagulation times were 1.4 and 3.7 times faster than the control, respectively. These findings suggest that CS derived from corb heads holds promise as an anticoagulant agent for therapy, although further clinical investigations are necessary to validate its efficacy.


Assuntos
Anticoagulantes , Sulfatos de Condroitina , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/isolamento & purificação , Anticoagulantes/química , Anticoagulantes/farmacologia , Anticoagulantes/isolamento & purificação , Animais , Humanos , Coagulação Sanguínea/efeitos dos fármacos
18.
J Mater Chem B ; 12(22): 5535-5550, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38747002

RESUMO

Invasive neural implants allow for high-resolution bidirectional communication with the nervous tissue and have demonstrated the ability to record neural activity, stimulate neurons, and sense neurochemical species with high spatial selectivity and resolution. However, upon implantation, they are exposed to a foreign body response which can disrupt the seamless integration of the device with the native tissue and lead to deterioration in device functionality for chronic implantation. Modifying the device surface by incorporating bioactive coatings has been a promising approach to camouflage the device and improve integration while maintaining device performance. In this work, we explored the novel application of a chondroitin sulfate (CS) based hydrophilic coating, with anti-fouling and neurite-growth promoting properties for neural recording electrodes. CS-coated samples exhibited significantly reduced protein-fouling in vitro which was maintained for up to 4-weeks. Cell culture studies revealed a significant increase in neurite attachment and outgrowth and a significant decrease in microglia attachment and activation for the CS group as compared to the control. After 1-week of in vivo implantation in the mouse cortex, the coated probes demonstrated significantly lower biofouling as compared to uncoated controls. Like the in vitro results, increased neuronal population (neuronal nuclei and neurofilament) and decreased microglial activation were observed. To assess the coating's effect on the recording performance of silicon microelectrodes, we implanted coated and uncoated electrodes in the mouse striatum for 1 week and performed impedance and recording measurements. We observed significantly lower impedance in the coated group, likely due to the increased wettability of the coated surface. The peak-to-peak amplitude and the noise floor levels were both lower in the CS group compared to the controls, which led to a comparable signal-to-noise ratio between the two groups. The overall single unit yield (% channels recording a single unit) was 74% for the CS and 67% for the control group on day 1. Taken together, this study demonstrates the effectiveness of the polysaccharide-based coating in reducing biofouling and improving biocompatibility for neural electrode devices.


Assuntos
Sulfatos de Condroitina , Materiais Revestidos Biocompatíveis , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Animais , Camundongos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Propriedades de Superfície , Neurônios/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Eletrodos Implantados
19.
Sci Rep ; 14(1): 11839, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782973

RESUMO

The intestinal extracellular matrix (ECM) helps maintain appropriate tissue barrier function and regulate host-microbial interactions. Chondroitin sulfate- and dermatan sulfate-glycosaminoglycans (CS/DS-GAGs) are integral components of the intestinal ECM, and alterations in CS/DS-GAGs have been shown to significantly influence biological functions. Although pathologic ECM remodeling is implicated in inflammatory bowel disease (IBD), it is unknown whether changes in the intestinal CS/DS-GAG composition are also linked to IBD in humans. Our aim was to characterize changes in the intestinal ECM CS/DS-GAG composition in intestinal biopsy samples from patients with IBD using mass spectrometry. We characterized intestinal CS/DS-GAGs in 69 pediatric and young adult patients (n = 13 control, n = 32 active IBD, n = 24 IBD in remission) and 6 adult patients. Here, we report that patients with active IBD exhibit a significant decrease in the relative abundance of CS/DS isomers associated with matrix stability (CS-A and DS) compared to controls, while isomers implicated in matrix instability and inflammation (CS-C and CS-E) were significantly increased. This imbalance of intestinal CS/DS isomers was restored among patients in clinical remission. Moreover, the abundance of pro-stabilizing CS/DS isomers negatively correlated with clinical disease activity scores, whereas both pro-inflammatory CS-C and CS-E content positively correlated with disease activity scores. Thus, pediatric patients with active IBD exhibited increased pro-inflammatory and decreased pro-stabilizing CS/DS isomer composition, and future studies are needed to determine whether changes in the CS/DS-GAG composition play a pathogenic role in IBD.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Sulfatos de Condroitina/metabolismo , Masculino , Feminino , Adulto , Adolescente , Criança , Glicosaminoglicanos/metabolismo , Adulto Jovem , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Matriz Extracelular/metabolismo , Intestinos/patologia
20.
Mar Drugs ; 22(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786589

RESUMO

Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 µg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.


Assuntos
Sulfatos de Condroitina , Linguado , Glicosaminoglicanos , Espectrometria de Massas em Tandem , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/química , Cromatografia Líquida de Alta Pressão , Osso e Ossos/química , Pele/química , Pele/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/isolamento & purificação , Músculos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA