Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1866(9): 933-940, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29852252

RESUMO

The siroheme-containing subunit from the multimeric hemoflavoprotein NADPH-dependent sulfite reductase (SiR/SiRHP) catalyzes the six electron-reduction of SO32- to S2-. Siroheme is an iron-containing isobacteriochlorin that is found in sulfite and homologous siroheme-containing nitrite reductases. Siroheme does not work alone but is covalently coupled to a Fe4S4 cluster through one of the cluster's ligands. One long-standing hypothesis predicted from this observation is that the environment of one iron-containing cofactor influences the properties of the other. We tested this hypothesis by identifying three amino acids (F437, M444, and T477) that interact with the Fe4S4 cluster and probing the effect of altering them to alanine on the function and structure of the resulting enzymes by use of activity assays, X-ray crystallographic analysis, and EPR spectroscopy. We showed that F437 and M444 gate access for electron transfer to the siroheme-cluster assembly and the direct hydrogen bond between T477 and one of the cluster sulfides is important for determining the geometry of the siroheme active site.


Assuntos
Proteínas de Bactérias/fisiologia , Escherichia coli/enzimologia , Compostos Ferrosos/metabolismo , Sulfito Redutase (Ferredoxina)/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Mutagênese Sítio-Dirigida , NADP/metabolismo , Oxirredução , Mutação Puntual , Sulfito Redutase (Ferredoxina)/química , Sulfito Redutase (Ferredoxina)/metabolismo
2.
ACS Synth Biol ; 7(2): 706-717, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29301067

RESUMO

Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse, and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.


Assuntos
Proteínas de Arabidopsis , Proteínas de Bactérias , Ferredoxinas , Optogenética , Fitocromo B , Sulfito Redutase (Ferredoxina) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Ferredoxinas/biossíntese , Ferredoxinas/genética , Células HEK293 , Humanos , Fitocromo B/biossíntese , Fitocromo B/genética , Sulfito Redutase (Ferredoxina)/biossíntese , Sulfito Redutase (Ferredoxina)/genética , Synechococcus/genética , Synechococcus/metabolismo
3.
Biotechnol J ; 13(4): e1700562, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29247604

RESUMO

Bioplastics are derived from renewable biomass sources, such as vegetable oils, cellulose, and starches. An important and high-performance member of the bioplastic family is Nylon 12. The biosynthesis of ω-amino dodecanoic acid (ω-AmDDA), the monomer of Nylon 12 from vegetable oil derivatives is considered as an alternative to petroleum-based monomer synthesis. In this study, for the production of ω-AmDDA from dodecanoic acid (DDA), the cascade of novel P450 (CYP153A), alcohol dehydrogenase (AlkJ), and ω-transaminase (ω-TA) is developed. The regioselective ω-hydroxylation of 1 mM DDA with near complete conversion (>99%) is achieved using a whole-cell biocatalyst co-expressing CYP153A, ferredoxin reductase and ferredoxin. When the consecutive biotransformation of ω-hydroxy dodecanoic acid (ω-OHDDA) is carried out using a whole-cell biocatalyst co-expressing AlkJ and ω-TA, 1.8 mM ω-OHDDA is converted into ω-AmDDA with 87% conversion in 3 h. Finally, when a one-pot reaction is carried out with 2 mM DDA using both whole-cell systems, 0.6 mM ω-AmDDA is produced after a 5 h reaction. The results demonstrated the scope of the potential cascade reaction of novel CYP153A, AlkJ, and ω-TA for the production of industrially important bioplastic monomers, amino fatty acids, from FFAs.


Assuntos
Álcool Desidrogenase/metabolismo , Aminoácidos/biossíntese , Sistema Enzimático do Citocromo P-450/metabolismo , Transaminases/metabolismo , Álcool Desidrogenase/genética , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Ferredoxinas/metabolismo , Ácidos Láuricos/metabolismo , Engenharia Metabólica , Mycobacterium/enzimologia , Mycobacterium/genética , Proteínas Recombinantes/metabolismo , Sulfito Redutase (Ferredoxina)/metabolismo , Transaminases/genética
4.
Hum Mol Genet ; 26(24): 4937-4950, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29040572

RESUMO

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential to various cellular processes, including mitochondrial respiration, DNA repair, and iron homeostasis. A steadily increasing number of disorders are being associated with disrupted biogenesis of Fe-S clusters. Here, we conducted whole-exome sequencing of patients with optic atrophy and other neurological signs of mitochondriopathy and identified 17 individuals from 13 unrelated families with recessive mutations in FDXR, encoding the mitochondrial membrane-associated flavoprotein ferrodoxin reductase required for electron transport from NADPH to cytochrome P450. In vitro enzymatic assays in patient fibroblast cells showed deficient ferredoxin NADP reductase activity and mitochondrial dysfunction evidenced by low oxygen consumption rates (OCRs), complex activities, ATP production and increased reactive oxygen species (ROS). Such defects were rescued by overexpression of wild-type FDXR. Moreover, we found that mice carrying a spontaneous mutation allelic to the most common mutation found in patients displayed progressive gait abnormalities and vision loss, in addition to biochemical defects consistent with the major clinical features of the disease. Taken together, these data provide the first demonstration that germline, hypomorphic mutations in FDXR cause a novel mitochondriopathy and optic atrophy in humans.


Assuntos
Ferredoxinas/genética , Atrofia Óptica/genética , Sulfito Redutase (Ferredoxina)/genética , Adolescente , Alelos , Animais , Criança , Pré-Escolar , Transporte de Elétrons , Feminino , Ferredoxinas/metabolismo , Humanos , Lactente , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Mutagênese , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Linhagem , Sulfito Redutase (Ferredoxina)/metabolismo , Sequenciamento do Exoma/métodos
5.
J Biochem ; 162(1): 37-43, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057796

RESUMO

Assimilatory sulfite reductase (SiR) and nitrite reductase (NiR), which are important determinants in biomass productivity, are homologous enzymes that catalyze the reduction of sulfite to sulfide and nitrite to ammonium, respectively. They have a siroheme and a [4Fe-4S] cluster as prosthetic groups in common. The red alga Cyanidioschyzon merolae encodes two SiR-like enzymes, CmSiRA and CmSiRB, which are likely products of recent gene duplication, but no homologues of NiR. The growth in a medium containing nitrate, however, must be supported by a nitrite reducing activity. CmSiRB was not detected in the ammonium medium, but, in the nitrate medium, it was present at a level 1/6 of that of constitutively expressed CmSiRA. Kinetic analysis of the two enzymes showed that CmSiRA has high kcat values with both sulfite and nitrite, but CmSiRB has virtually only the activity of nitrite reduction, although the Km value against nitrite was fairly high in both enzymes. The six amino acid residues that are specific to CmSiRB among various SiR-like enzymes in the active site were mutagenized to mimic partially CmSiRA. Among them, the mutation S217C in CmSiRB partially recovered sulfite reduction activity, suggesting that this residue is a major determinant of substrate specificity.


Assuntos
Rodófitas/enzimologia , Sulfito Redutase (Ferredoxina)/metabolismo , Sulfitos/metabolismo , Especificidade por Substrato , Sulfito Redutase (Ferredoxina)/genética
6.
Biochem J ; 473(21): 3837-3854, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27551107

RESUMO

Although electrostatic interactions between negatively charged ferredoxin (Fd) and positively charged sulfite reductase (SiR) have been predominantly highlighted to characterize complex formation, the detailed nature of intermolecular forces remains to be fully elucidated. We investigated interprotein forces for the formation of an electron transfer complex between Fd and SiR and their relationship to SiR activity using various approaches over NaCl concentrations between 0 and 400 mM. Fd-dependent SiR activity assays revealed a bell-shaped activity curve with a maximum ∼40-70 mM NaCl and a reverse bell-shaped dependence of interprotein affinity. Meanwhile, intrinsic SiR activity, as measured in a methyl viologen-dependent assay, exhibited saturation above 100 mM NaCl. Thus, two assays suggested that interprotein interaction is crucial in controlling Fd-dependent SiR activity. Calorimetric analyses showed the monotonic decrease in interprotein affinity on increasing NaCl concentrations, distinguished from a reverse bell-shaped interprotein affinity observed from Fd-dependent SiR activity assay. Furthermore, Fd:SiR complex formation and interprotein affinity were thermodynamically adjusted by both enthalpy and entropy through electrostatic and non-electrostatic interactions. A residue-based NMR investigation on the addition of SiR to 15N-labeled Fd at the various NaCl concentrations also demonstrated that a combination of electrostatic and non-electrostatic forces stabilized the complex with similar interfaces and modulated the binding affinity and mode. Our findings elucidate that non-electrostatic forces are also essential for the formation and modulation of the Fd:SiR complex. We suggest that a complex configuration optimized for maximum enzymatic activity near physiological salt conditions is achieved by structural rearrangement through controlled non-covalent interprotein interactions.


Assuntos
Ferredoxinas/metabolismo , Sulfito Redutase (Ferredoxina)/metabolismo , Calorimetria , Dicroísmo Circular , Transporte de Elétrons/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Oxirredução/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Termodinâmica
7.
Plant Physiol Biochem ; 106: 228-35, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27182957

RESUMO

Selenium assimilation in plants is facilitated by several enzymes that participate in the transport and assimilation of sulfate. Manipulation of genes that function in sulfur metabolism dramatically affects selenium toxicity and accumulation. However, it has been proposed that selenite is not reduced by sulfite reductase. Instead, selenite can be non-enzymatically reduced by glutathione, generating selenodiglutathione and superoxide. The damaging effects of superoxide on iron-sulfur clusters in cytosolic and mitochondrial proteins are well known. However, it is unknown if superoxide damages chloroplastic iron-sulfur proteins. The goals of this study were twofold: to determine whether decreased activity of sulfite reductase impacts selenium tolerance in Arabidopsis, and to determine if superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of ferredoxin. Our data demonstrate that knockdown of sulfite reductase in Arabidopsis does not affect selenite tolerance or selenium accumulation. Additionally, we provide in vitro evidence that the non-enzymatic reduction of selenite damages the iron-sulfur cluster of ferredoxin, a plastidial protein that is an essential component of the photosynthetic light reactions. Damage to ferredoxin's iron-sulfur cluster was associated with formation of apo-ferredoxin and impaired activity. We conclude that if superoxide damages iron-sulfur clusters of ferredoxin in planta, then it might contribute to photosynthetic impairment often associated with abiotic stress, including toxic levels of selenium.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ferredoxinas/metabolismo , Glutationa/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ácido Selenioso/toxicidade , Superóxidos/metabolismo , Arabidopsis/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Citocromos c/metabolismo , Eletroforese em Gel de Poliacrilamida , Ferredoxina-NADP Redutase/metabolismo , Técnicas de Silenciamento de Genes , NADP/metabolismo , Análise Espectral , Sulfito Redutase (Ferredoxina)
8.
J Biochem ; 160(2): 101-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26920048

RESUMO

The structure of the complex of maize sulfite reductase (SiR) and ferredoxin (Fd) has been determined by X-ray crystallography. Co-crystals of the two proteins prepared under different conditions were subjected to the diffraction analysis and three possible structures of the complex were solved. Although topological relationship of SiR and Fd varied in each of the structures, two characteristics common to all structures were found in the pattern of protein-protein interactions and positional arrangements of redox centres; (i) a few negative residues of Fd contact with a narrow area of SiR with positive electrostatic surface potential and (ii) [2Fe-2S] cluster of Fd and [4Fe-4S] cluster of SiR are in a close proximity with the shortest distance around 12 Å. Mutational analysis of a total of seven basic residues of SiR distributed widely at the interface of the complex showed their importance for supporting an efficient Fd-dependent activity and a strong physical binding to Fd. These combined results suggest that the productive electron transfer complex of SiR and Fd could be formed through multiple processes of the electrostatic intermolecular interaction and this implication is discussed in terms of the multi-functionality of Fd in various redox metabolisms.


Assuntos
Mutação de Sentido Incorreto , Proteínas de Plantas/química , Sulfito Redutase (Ferredoxina)/química , Zea mays/enzimologia , Substituição de Aminoácidos , Proteínas de Plantas/genética , Domínios Proteicos , Sulfito Redutase (Ferredoxina)/genética , Zea mays/genética
10.
Phytochemistry ; 83: 34-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22944351

RESUMO

Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterized with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion has a single functional SiR gene and also expresses an unprocessed pseudogene (φ-SiR). Northern and qPCR analysis revealed differences in expression pattern between the SiR gene and the pseudogene. Western analysis using antibodies raised to a recombinant SiR revealed that the enzyme is present in chloroplasts and phylogenetic analysis has shown that the onion protein groups with lower eudicots. In hydroponically-grown plants, levels of SiR transcripts were significantly higher in the roots of S-sufficient when compared with S-deficient plants of the pungent cultivar 'W202A' but not the less pungent cultivar 'Texas Grano'. In these same treatments, a higher level of enzyme activity was observed in the S-sufficient treatment in leaves of both cultivars before and after bulbing. In a factorial field trial with and without sulfur fertilization, a statistically significant increase in SiR activity was observed in the leaves of the pungent cultivar 'Kojak' in response to added S but not in the less pungent cultivar 'Encore'.


Assuntos
Variação Genética/genética , Genótipo , Cebolas/enzimologia , Cebolas/metabolismo , Sulfito Redutase (Ferredoxina)/genética , Enxofre/metabolismo , Clonagem Molecular , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfito Redutase (Ferredoxina)/metabolismo
11.
Microb Cell Fact ; 11: 62, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22607201

RESUMO

BACKGROUND: Escherichia coli has two L-cysteine biosynthetic pathways; one is synthesized from O-acetyl L-serine (OAS) and sulfate by L-cysteine synthase (CysK), and another is produced via S-sulfocysteine (SSC) from OAS and thiosulfate by SSC synthase (CysM). SSC is converted into L-cysteine and sulfite by an uncharacterized reaction. As thioredoxins (Trx1 and Trx2) and glutaredoxins (Grx1, Grx2, Grx3, Grx4, and NrdH) are known as reductases of peptidyl disulfides, overexpression of such reductases might be a good way for improving L-cysteine production to accelerate the reduction of SSC in E. coli. RESULTS: Because the redox enzymes can reduce the disulfide that forms on proteins, we first tested whether these enzymes catalyze the reduction of SSC to L-cysteine. All His-tagged recombinant enzymes, except for Grx4, efficiently convert SSC into L-cysteine in vitro. Overexpression of Grx1 and NrdH enhanced a 15-40% increase in the E. coliL-cysteine production. On the other hand, disruption of the cysM gene cancelled the effect caused by the overexpression of Grx1 and NrdH, suggesting that its improvement was due to the efficient reduction of SSC under the fermentative conditions. Moreover, L-cysteine production in knockout mutants of the sulfite reductase genes (ΔcysI and ΔcysJ) and the L-cysteine synthase gene (ΔcysK) each decreased to about 50% of that in the wild-type strain. Interestingly, there was no significant difference in L-cysteine production between wild-type strain and gene deletion mutant of the upstream pathway of sulfite (ΔcysC or ΔcysH). These results indicate that sulfite generated from the SSC reduction is available as the sulfur source to produce additional L-cysteine molecule. It was finally found that in the E. coliL-cysteine producer that co-overexpress glutaredoxin (NrdH), sulfite reductase (CysI), and L-cysteine synthase (CysK), there was the highest amount of L-cysteine produced per cell. CONCLUSIONS: In this work, we showed that Grx1 and NrdH reduce SSC to L-cysteine, and the generated sulfite is then utilized as the sulfur source to produce additional L-cysteine molecule through the sulfate pathway in E. coli. We also found that co-overexpression of NrdH, CysI, and CysK increases L-cysteine production. Our results propose that the enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from SSC is a novel method for improvement of L-cysteine production.


Assuntos
Cisteína/análogos & derivados , Cisteína/biossíntese , Escherichia coli/metabolismo , Glutarredoxinas/metabolismo , Tiorredoxinas/metabolismo , Cisteína/metabolismo , Cisteína Sintase/genética , Cisteína Sintase/metabolismo , Escherichia coli/genética , Glutarredoxinas/genética , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Sulfito Redutase (Ferredoxina)/genética , Sulfito Redutase (Ferredoxina)/metabolismo , Tiorredoxinas/genética
12.
J Mol Biol ; 413(5): 940-51, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21945528

RESUMO

Ferredoxins are ubiquitous proteins with electron transfer activity involved in a variety of biological processes. In this work, we investigated the characteristics and function of Fdx1 from Sorangium cellulosum So ce56 by using a combination of bioinformatics and of biochemical/biophysical approaches. We were able to experimentally confirm a role of Fdx1 in the iron-sulfur cluster biosynthesis by in vitro reduction studies with cluster-loaded So ce56 IscU and by transfer studies of the cluster from the latter protein to apo-aconitase A. Moreover, we found that Fdx1 can replace mammalian adrenodoxin in supporting the activity of bovine CYP11A1. This makes S. cellulosum Fdx1 the first prokaryotic ferredoxin reported to functionally interact with this mammalian enzyme. Although the interaction with CYP11A1 is non-physiological, this is-to the best of our knowledge-the first study to experimentally prove the activity of a postulated ISC-type ferredoxin in both the ISC assembly and a cytochrome P450 system. This proves that a single ferredoxin can be structurally able to provide electrons to both cytochromes P450 and IscU and thus support different biochemical processes. Combining this finding with phylogenetic and evolutionary trace analyses led us to propose the evolution of eukaryotic mitochondrial P450-type ferredoxins and ISC-type ferredoxins from a common prokaryotic ISC-type ancestor.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/química , Evolução Molecular , Ferredoxinas/química , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/química , Mitocôndrias/enzimologia , Aconitato Hidratase/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/isolamento & purificação , Bovinos , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Dicroísmo Circular , Clonagem Molecular , Biologia Computacional , Ferredoxinas/isolamento & purificação , Ferro/análise , Proteínas Ferro-Enxofre/metabolismo , Dados de Sequência Molecular , Myxococcales/genética , Myxococcales/metabolismo , NADP , Oxirredução , Filogenia , Homologia de Sequência de Aminoácidos , Sulfito Redutase (Ferredoxina)/metabolismo
13.
Biochem J ; 423(1): 91-8, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19622064

RESUMO

Plant NiR (nitrite reductase) and SiR (sulfite reductase) have common structural and functional features. Both enzymes are generally distinguished in terms of substrate specificity for nitrite and sulfite. The genome of Cyanidioschyzon merolae, a unicellular red alga living in acidic hot springs, encodes two SiR homologues, namely CmSiRA and CmSiRB (C. merolae sulfite reductases A and B), but no NiR homologue. The fact that most known SiRs have a low nitrite-reducing activity and that the CmSiRB gene is mapped between the genes for nitrate transporter and nitrate reductase implies that CmSiRB could have a potential to function as a nitrite-reducing enzyme. To verify this hypothesis, we produced a recombinant form of CmSiRB and characterized its enzymatic properties. The enzyme was found to have a significant nitrite-reducing activity, whereas its sulfite-reducing activity was extremely low. As the affinity of CmSiRB for sulfite was higher by 25-fold than that for nitrite, nitrite reduction by CmSiRB was competitively inhibited by sulfite. These results demonstrate that CmSiRB is a unique SiR having a decreased sulfite-reducing activity and an enhanced nitrite-reducing activity. The cellular level of CmSiRB was significantly increased when C. merolae was grown in a nitrate medium. The nitrate-grown C. merolae cells showed a high nitrite uptake from the growth medium, and this consumption was inhibited by sulfite. These combined results indicate that CmSiRB has a significant nitrite-reducing activity and plays a physiological role in nitrate assimilation.


Assuntos
Nitritos/metabolismo , Rodófitas/enzimologia , Sulfito Redutase (Ferredoxina)/metabolismo , Células Cultivadas , Clonagem Molecular , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Cinética , NADP/metabolismo , NADP/farmacocinética , Oxirredução , Filogenia , Rodófitas/genética , Rodófitas/metabolismo , Especificidade por Substrato , Sulfito Redutase (Ferredoxina)/genética , Sulfito Redutase (Ferredoxina)/fisiologia , Sulfitos/metabolismo
14.
Biochem Biophys Res Commun ; 367(1): 67-71, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18162174

RESUMO

The genome sequence of Schizosaccharomyces pombe reveals only one gene for a putative glutathione peroxidase (gpx1(+)). The Gpx1 protein has a peroxidase activity but preferred thioredoxin to glutathione as an electron donor when examined in vitro and in vivo, and therefore is a thioredoxin peroxidase. Besides H(2)O(2), it can reduce alkyl and phospholipid hydroperoxides. Expression of the gpx1 gene was elevated at the stationary phase, and we found that it supported long-term survival of S. pombe. The mutant also exhibited some defect in the activity of aconitase, an oxidation-labile Fe-S enzyme in mitochondria. Activity of sulfite reductase, a labile Fe-S enzyme in the cytosol, was also dramatically lowered in the mutant in the stationary phase. The Gpx1 protein, without any obvious targeting sequence, was localized in mitochondria as well as in the cytosol. Therefore, Gpx1 must serve to ensure optimal mitochondrial function and cytosolic environment, especially in the stationary phase.


Assuntos
Glutationa Peroxidase/metabolismo , Peroxirredoxinas/metabolismo , Schizosaccharomyces/enzimologia , Aconitato Hidratase/metabolismo , Sequência de Bases , Citosol/enzimologia , Eletroforese em Gel de Poliacrilamida , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Glutationa/metabolismo , Glutationa Peroxidase/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mutação , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Schizosaccharomyces/genética , Sulfito Redutase (Ferredoxina)/metabolismo , Glutationa Peroxidase GPX1
15.
FEBS J ; 274(8): 2054-69, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17371503

RESUMO

Sulfite reductase (SiR) is an important enzyme catalyzing the reduction of sulfite to sulfide during sulfur assimilation in plants. This enzyme is localized in plastids, including chloroplasts, and uses ferredoxin as an electron donor. Ferredoxin-dependent SiR has been found in isolated chloroplast nucleoids, but its localization in vivo or in intact plastids has not been examined. Here, we report the DNA-binding properties of SiRs from pea (PsSiR) and maize (ZmSiR) using an enzymatically active holoenzyme with prosthetic groups. PsSiR binds to both double-stranded and single-stranded DNA without significant sequence specificity. DNA binding did not affect the enzymatic activity of PsSiR, suggesting that ferredoxin and sulfite are accessible to SiR molecules within the nucleoids. Comparison of PsSiR and ZmSiR suggests that ZmSiR does indeed have DNA-binding activity, as was reported previously, but the DNA affinity and DNA-compacting ability are higher in PsSiR than in ZmSiR. The tight compaction of nucleoids by PsSiR led to severe repression of transcription activity in pea nucleoids. Indirect immunofluorescence microscopy showed that the majority of SiR molecules colocalized with nucleoids in pea chloroplasts, whereas no particular localization to nucleoids was detected in maize chloroplasts. These results suggest that SiR plays an essential role in compacting nucleoids in plastids, but that the extent of association of SiR with nucleoids varies among plant species.


Assuntos
Cloroplastos/enzimologia , DNA/metabolismo , Sulfito Redutase (Ferredoxina)/análise , Sequência de Aminoácidos , Estruturas do Núcleo Celular/enzimologia , Cloroplastos/ultraestrutura , Dados de Sequência Molecular , Pisum sativum/enzimologia , Sulfito Redutase (Ferredoxina)/química , Sulfito Redutase (Ferredoxina)/genética , Uridina Trifosfato/metabolismo , Zea mays/enzimologia
16.
Theor Appl Genet ; 114(5): 815-22, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17180376

RESUMO

Onion exhibits wide genetic and environmental variation in bioactive organosulfur compounds that impart pungency and health benefits. A PCR-based molecular marker map that included candidate genes for sulfur assimilation was used to identify genomic regions affecting pungency in the cross 'W202A' x 'Texas Grano 438'. Linkage mapping revealed that genes encoding plastidic ferredoxin-sulfite reductase (SiR) and plastidic ATP sulfurylase (ATPS) are closely linked (1-2 cM) on chromosome 3. Inbred F(3) families derived from the F(2 )population used to construct the genetic map were grown in replicated trials in two environments and bulb pungency was evaluated as pyruvic acid or lachrymatory factor. Broad-sense heritability of pungency was estimated to be 0.78-0.80. QTL analysis revealed significant associations of both pungency and bulb soluble solids content with marker intervals on chromosomes 3 and 5, which have previously been reported to condition pleiotropic effects on bulb carbohydrate composition. Highly significant associations (LOD 3.7-8.7) were observed between ATPS and SiR Loci and bulb pungency but not with bulb solids content. This association was confirmed in two larger, independently derived F(2) families from the same cross. Single-locus models suggested that the partially dominant locus associated with these candidate genes controls 30-50% of genetic variation in pungency in these pedigrees. These markers may provide a practical means to select for lower pungency without correlated selection for lowered solids.


Assuntos
Cebolas/genética , Cebolas/metabolismo , Enxofre/metabolismo , Sequência de Bases , Mapeamento Cromossômico , Primers do DNA/genética , DNA de Plantas/genética , Genes de Plantas , Odorantes/análise , Locos de Características Quantitativas , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Sulfito Redutase (Ferredoxina)/genética , Sulfito Redutase (Ferredoxina)/metabolismo
17.
Photosynth Res ; 86(3): 325-36, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16307304

RESUMO

The ferredoxin-dependent sulfite reductase from maize was treated, in separate experiments, with three different covalent modifiers of specific amino acid side chains. Treatment with the tryptophan-modifying reagent, N-bromosuccinimide (NBS), resulted in a loss of enzymatic activity with both the physiological donor for the enzyme, reduced ferredoxin, and with reduced methyl viologen, a non-physiological electron donor. Formation of the 1:1 ferredoxin/sulfite reductase complex prior to treating the enzyme with NBS completely protected the enzyme against the loss of both activities. Neither the secondary structure, nor the oxidation-reduction midpoint potential (Em) values of the siroheme and [4Fe-4S] cluster prosthetic groups of sulfite reductase, nor the binding affinity of the enzyme for ferredoxin were affected by NBS treatment. Treatment of sulfite reductase with the lysine-modifying reagent, N-acetylsuccinimide, inhibited the ferredoxin-linked activity of the enzyme without inhibiting the methyl viologen-linked activity. Complex formation with ferredoxin protects the enzyme against the inhibition of ferredoxin-linked activity produced by treatment with N-acetylsuccinimide. Treatment of sulfite reductase with N-acetylsuccinimide also decreased the binding affinity of the enzyme for ferredoxin. Treatment of sulfite reductase with the arginine-modifying reagent, phenylglyoxal, inhibited both the ferredoxin-linked and methyl viologen-linked activities of the enzyme but had a significantly greater effect on the ferredoxin-dependent activity than on the reduced methyl viologen-linked activity. The effects of these three inhibitory treatments are consistent with a possible role for a tryptophan residue the catalytic mechanism of sulfite reductase and for lysine and arginine residues at the ferredoxin-binding site of the enzyme.


Assuntos
Arginina/metabolismo , Cloroplastos/enzimologia , Lisina/metabolismo , Sulfito Redutase (Ferredoxina)/metabolismo , Triptofano/metabolismo , Zea mays/enzimologia , Acetilação , Sequência de Aminoácidos , Arginina/química , Bromosuccinimida/farmacologia , Sequência Conservada , Lisina/química , Dados de Sequência Molecular , Oxirredução , Fenilglioxal/farmacologia , Ligação Proteica , Alinhamento de Sequência , Análise Espectral , Succinimidas/química , Succinimidas/farmacologia , Sulfito Redutase (Ferredoxina)/química , Sulfito Redutase (Ferredoxina)/genética , Triptofano/química , Zea mays/efeitos dos fármacos , Zea mays/genética
18.
J Biol Chem ; 280(29): 27319-28, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15917234

RESUMO

The nirA gene of Mycobacterium tuberculosis is up-regulated in the persistent state of the bacteria, suggesting that it is a potential target for the development of antituberculosis agents particularly active against the pathogen in its dormant phase. This gene encodes a ferredoxin-dependent sulfite reductase, and the structure of the enzyme has been determined using x-ray crystallography. The enzyme is a monomer comprising 555 amino acids and contains a [Fe4-S4] cluster and a siroheme cofactor. The molecule is built up of three domains with an alpha/beta fold. The first domain consists of two ferredoxin-like subdomains, related by a pseudo-2-fold symmetry axis passing through the whole molecule. The other two domains, which provide much of the binding interactions with the cofactors, have a common fold that is unique to the sulfite/nitrite reductase family. The domains form a trilobal structure, with the cofactors and the active site located at the interface of all three domains in the center of the molecule. NirA contains an unusual covalent bond between the side chains of Tyr69 and Cys161 in the active site, in close proximity to the siroheme cofactor. Removal of this covalent bond by site-directed mutagenesis impairs catalytic activity, suggesting that it is important for the enzymatic reaction. These residues are part of a sequence fingerprint, able to distinguish between ferredoxin-dependent sulfite and nitrite reductases. Comparison of NirA with the structure of the truncated NADPH-dependent sulfite reductase from Escherichia coli suggests a binding site for the external electron donor ferredoxin close to the [Fe4-S4] cluster.


Assuntos
Heme/análogos & derivados , Proteínas Ferro-Enxofre/química , Mycobacterium tuberculosis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Heme/química , Mutagênese Sítio-Dirigida , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Conformação Proteica , Sulfito Redutase (Ferredoxina)
19.
J Mol Microbiol Biotechnol ; 10(2-4): 223-33, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16645317

RESUMO

Many essential life processes, such as photosynthesis, respiration, nitrogen fixation, depend on transition metal ions and their ability to catalyze multi-electron redox and hydrolytic transformations. Here we review some recent structural studies on three multi-site metal enzymes involved in respiratory processes which represent important branches within the global cycles of nitrogen and sulfur: (i) the multi-heme enzyme cytochrome c nitrite reductase, (ii) the FAD, FeS-enzyme adenosine-5'-phosphosulfate reductase, and (iii) the siroheme, FeS-enzyme sulfite reductase. Structural information comes from X-ray crystallography and spectroscopical techniques, in special cases catalytically competent intermediates could be trapped and characterized by X-ray crystallography.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Nitratos/metabolismo , Sulfatos/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Transporte de Elétrons , Formiato Desidrogenases/metabolismo , Nitrato Redutases/metabolismo , Sulfito Redutase (Ferredoxina)/metabolismo
20.
Biochim Biophys Acta ; 1608(2-3): 140-8, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14871491

RESUMO

Oxidation-reduction titrations have been carried out on the wild-type, ferredoxin-dependent sulfite reductase from maize and two site-specific variants of the enzyme. E(m) values have been determined for the siroheme and [4Fe-4S] cluster prosthetic groups of the enzyme, which titrate as independent, one-electron carriers. Visible-region difference spectra suggest that reduction of the [4Fe-4S] cluster significantly perturbs the spectrum of the reduced siroheme group of the enzyme. The effects of siroheme axial ligation, by either cyanide or phosphate ligands, on the redox properties of sulfite reductase have also been examined. For comparison, the effects of phosphate and cyanide on the redox properties of the ferredoxin-dependent nitrite reductase of spinach chloroplasts, an enzyme with the same prosthetic group arrangement as sulfite reductase, have been examined.


Assuntos
Proteínas de Arabidopsis , Ferredoxinas/metabolismo , Heme/análogos & derivados , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Zea mays/metabolismo , Cianetos , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/química , Heme/química , Concentração de Íons de Hidrogênio , Nitrito Redutases/química , Nitrito Redutases/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Fosfatos , Potenciometria , Espectrofotometria , Spinacia oleracea/enzimologia , Especificidade por Substrato , Sulfito Redutase (Ferredoxina) , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA