Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.784
Filtrar
1.
Sci Total Environ ; 931: 172898, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697543

RESUMO

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Sulfitos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Sulfitos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Sulfatos/metabolismo , Hidrogênio/metabolismo , Bactérias/metabolismo , Ferro/metabolismo
2.
PLoS One ; 19(5): e0297006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743704

RESUMO

Epigenetic ageing in a human context, has been used to better understand the relationship between age and factors such as lifestyle and genetics. In an ecological setting, it has been used to predict the age of individual animals for wildlife management. Despite the importance of epigenetic ageing in a range of research fields, the assays to measure epigenetic ageing are either expensive on a large scale or complex. In this study, we aimed to improve the efficiency and sequencing quality of an existing epigenetic ageing assay for the Australian Lungfish (Neoceratodus forsteri). We used an enzyme-based alternative to bisulfite conversion to reduce DNA fragmentation and evaluated its performance relative to bisulfite conversion. We found the sequencing quality to be 12% higher with the enzymatic alternative compared to bisulfite treatment (p-value < 0.01). This new enzymatic based approach, although currently double the cost of bisulfite treatment can increases the throughput and sequencing quality. We envisage this assay setup being adopted increasingly as the scope and scale of epigenetic ageing research continues to grow.


Assuntos
Envelhecimento , Epigênese Genética , Sulfitos , Animais , Envelhecimento/genética , Sulfitos/química , Peixes/genética , Análise de Sequência de DNA/métodos , Metilação de DNA , Fragmentação do DNA
3.
Sci Rep ; 14(1): 10124, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698114

RESUMO

Despite the high energetic cost of the reduction of sulfate to H2S, required for the synthesis of sulfur-containing amino acids, some wine Saccharomyces cerevisiae strains have been reported to produce excessive amounts of H2S during alcoholic fermentation, which is detrimental to wine quality. Surprisingly, in the presence of sulfite, used as a preservative, wine strains produce more H2S than wild (oak) or wine velum (flor) isolates during fermentation. Since copper resistance caused by the amplification of the sulfur rich protein Cup1p is a specific adaptation trait of wine strains, we analyzed the link between copper resistance mechanism, sulfur metabolism and H2S production. We show that a higher content of copper in the must increases the production of H2S, and that SO2 increases the resistance to copper. Using a set of 51 strains we observed a positive and then negative relation between the number of copies of CUP1 and H2S production during fermentation. This complex pattern could be mimicked using a multicopy plasmid carrying CUP1, confirming the relation between copper resistance and H2S production. The massive use of copper for vine sanitary management has led to the selection of resistant strains at the cost of a metabolic tradeoff: the overproduction of H2S, resulting in a decrease in wine quality.


Assuntos
Cobre , Fermentação , Sulfeto de Hidrogênio , Metalotioneína , Odorantes , Saccharomyces cerevisiae , Vitis , Vinho , Vinho/análise , Cobre/metabolismo , Vitis/microbiologia , Saccharomyces cerevisiae/metabolismo , Sulfeto de Hidrogênio/metabolismo , Odorantes/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfitos/farmacologia , Controle de Pragas/métodos
4.
Oncol Res ; 32(4): 737-752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560573

RESUMO

Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sulfitos , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Metaloproteinase 12 da Matriz , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 16 da Matriz , Prognóstico , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Rim/metabolismo , Rim/patologia
5.
J Colloid Interface Sci ; 666: 512-528, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613974

RESUMO

Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.


Assuntos
Cobalto , Hidróxidos , Manganês , Metronidazol , Cobalto/química , Metronidazol/química , Hidróxidos/química , Manganês/química , Porosidade , Propriedades de Superfície , Sulfitos/química , Catálise , Tamanho da Partícula , Teoria da Densidade Funcional , Poluentes Químicos da Água/química
6.
Anal Biochem ; 691: 115532, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38609028

RESUMO

The bisulfite reaction with native DNA has been extensively employed in the detection of non-B DNA structures that can form spontaneously in DNA. These sequences are dynamic in that they can adopt both normal Watson-Crick paired B-DNA or unusual structures like the Triplex, G-Quadruplex, i-motif and Cruciform or Hairpin. Considerable evidence now suggests that these dynamic sequences play roles in both epigenetics and mutagenesis. The bisulfite reaction with native DNA offers a key approach to their detection. In this application whole cells, isolated nuclei or isolated DNA are treated with bisulfite under non-denaturing conditions in order to detect bisulfite accessible regions DNA that are associated with these structures. Here I review the stereochemistry of the bisulfite reaction, the electronic structure of its DNA cytosine substrates and its application in the detection of unusual structures in native DNA.


Assuntos
Citosina , DNA , Conformação de Ácido Nucleico , Sulfitos , Citosina/química , DNA/química , Sulfitos/química , Humanos , Quadruplex G
7.
Water Res ; 256: 121611, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640567

RESUMO

Natural small molecular organic matter (NSOM), ubiquitous in natural waters and distinct from humic acid or fulvic acid, is a special type of dissolved organic matter (DOM) which is characterized as strong photosensitivity and simple molecular structure. However, little study had been directed on the role of NSOM in eliminating emerging contaminants in advanced reduction process (ARP). This study took three small molecular isomeric organic acids (p-hydroxybenzoic acid, pHBA; salicylic acid, SA; m-hydroxybenzoic acid, mHBA) as the representative substances of NSOM to explore these mechanisms on promoting Ribavirin (RBV, an anti COVID-19 medicine) degradation in ultraviolet activated sulfite (UV/Sulfite) process. The results demonstrated that the observed degradation rate constant of RBV (kobs-RBV) was 7.56 × 10-6 s-1 in UV/Sulfite process, indicating that hydrated electron (eaq-) from UV/Sulfite process could not effectively degrade RBV, while it increased by 178 and 38 times when pHBA and SA were introduced into UV/Sulfite process respectively, suggesting that pHBA and SA strongly promoted RBV degradation while mHBA had no promotion on RBV abatement in UV/Sulfite process. Transient absorption spectra and reactive intermediates scavenging experiment indicated that the triplet excited state pHBA and SA (3pHBA* and 3SA*) contributed to the degradation of RBV through non-radical process. Notably, eaq- played the role of key initiator in transforming pHBA and SA into their triplet states. The difference of kobs-RBV in UV/Sulfite/pHBA and UV/Sulfite/SA process was attributed to different generation pathways of 3pHBA* and 3SA* (high molar absorptivity at the wavelength of 254 nm and photosensitive cycle, respectively) and their second order rate constants towards RBV (kRBV-3pHBA* = 8.60 × 108 M-1 s-1 and kRBV-3SA* = 6.81 × 107 M-1 s-1). mHBA could not degrade RBV for its lack of intramolecular hydrogen bond and low molar absorptivity at 254 nm to abundantly transform into its triplet state. kobs-RBV increased as pH increased from 5.0 to 11.0 in UV/Sulfite/SA process, due to the high yield of eaq- in alkaline condition which promoted the generation of 3SA* and the stable of the absorbance of SA at 254 nm. By contrast, kobs-RBV underwent a process of first increasing and then decreasing in UV/Sulfite/pHBA process as the increase of pH, and its highest value achieved in a neutral condition. This lied in the exposure of eaq- increased as the increase of pH which promoted the generation of 3pHBA*, while the molar absorptivity of pHBA at 254 nm decreased as the increase of pH in an alkaline condition which inhibited the yield of 3pHBA*. The RBV degradation pathways and products toxicity assessment indicated that UV/Sulfite/pHBA had better detoxification performance on RBV than UV/Sulfite/SA process. This study disclosed a novel mechanism of emerging contaminants abatement through non-radical process in NSOM mediated ARP, and provide a wide insight into positive profile of DOM in water treatment process, instead of only taking DOM as a quencher of reactive intermediates.


Assuntos
Antivirais , Antivirais/química , Raios Ultravioleta , Sulfitos/química
8.
Methods Mol Biol ; 2757: 447-460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38668978

RESUMO

Epigenomic regulation and dynamic DNA methylation, in particular, are widespread mechanisms orchestrating the genome operation across time and species. Whole-genome bisulfite sequencing (WGBS) is currently the only method for unbiasedly capturing the presence of 5-methylcytosine (5-mC) DNA methylation patterns across an entire genome with single-nucleotide resolution. Bisulfite treatment converts unmethylated cytosines to uracils but leaves methylated cytosines intact, thereby creating a map of all methylated cytosines across a genome also known as a methylome. These epigenomic patterns of DNA methylation have been found to regulate gene expression and influence gene evolution rates between species. While protocols have been optimized for vertebrate methylome production, little adaptation has been done for invertebrates. Creating a methylome reference allows comparisons to be made between rates of transcription and epigenomic patterning in animals. Here we present a method of library construction for bisulfite sequencing optimized for non-bilateral metazoans such as the ctenophore, Mnemiopsis leidyi. We have improved upon our previously published method by including spike-in genomic DNA controls to measure methylation conversion rates. By pooling two bisulfite conversion reactions from the same individual, we also produced sequencing libraries that yielded a higher percentage of sequenced reads uniquely mapping to the reference genome. We successfully detected 5-mC in whole-animal methylomes at CpG, CHG, and CHH sites and visualized datasets using circos diagrams. The proof-of-concept tests were performed both under control conditions and following injury tests with changes in methylation patterns of genes encoding innexins, toxins and neuropeptides. Our approach can be easily adapted to produce epigenomes from other fragile marine animals.


Assuntos
Ctenóforos , Metilação de DNA , Animais , Ctenóforos/genética , Sulfitos/química , Epigenômica/métodos , Epigênese Genética , Epigenoma , 5-Metilcitosina/metabolismo , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Genoma
9.
Methods ; 225: 100-105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565390

RESUMO

The development of reliable probe technology for the detection of bisulfite (HSO3-) in situ in food and biological samples is contributing significantly to food quality and safety assurance as well as community health. In this work, a responsive probe, EHDI, is developed for ratiometric fluorescence detection of HSO3- in aqueous solution, meat samples, and living cells. The probe is designed based on the HSO3- triggered 1,4-addition of electron deficit C = C bond of EHDI. As a result of this specific 1,4-addition, the π-conjugation system was destructed, resulting in blue shifts of the emission from 687 to 440 nm and absorption from 577 to 355 nm. The probe has good water solubility, high sensitivity and selectivity, allowing it to be used for imaging of HSO3- internalization and production endogenously. The capability of probe EHDI for HSO3- was then validated by traditional HPLC technology, enabling accurately detect HSO3- in beef samples. The successful development of this probe thus offers a new tool for investigating HSO3- in situ in food and biological conditions.


Assuntos
Corantes Fluorescentes , Carne , Sulfitos , Sulfitos/análise , Sulfitos/química , Corantes Fluorescentes/química , Animais , Humanos , Carne/análise , Espectrometria de Fluorescência/métodos , Bovinos , Carne Vermelha/análise
10.
Biomed Environ Sci ; 37(2): 228-232, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582987

RESUMO

As a reducing salt, sodium sulfite could deprive oxygen in solution, which could mimic hypoxic stress in Caenorhabditis elegans. In this study, the wild-type Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves. We also analyzed the growth curves of mutant strains (for arcA/B, soxR/S, fnr, and oxyR) related to E. coli hypoxic pathways to reveal roles of the related genes during hypoxia. The ultrastructure of hypoxia-inhibited bacteria were also observed using transmission electron microscopy. Sodium sulfite could maintain hypoxic condition of bacterial culture for 8 h with concentrations over 40 mmol/L. Complete ultrastructure of the bacteria indicated sodium sulfite did inhibit bacterial growth and division. Among the hypoxia genes, fnr and arcB played key roles in sodium sulfite-induced hypoxia. This study showed that sodium sulfite could be used as a novel hypoxia revulsant for bacterial cultures.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sulfitos , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Hipóxia , Regulação Bacteriana da Expressão Gênica
11.
Food Chem ; 449: 138944, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613993

RESUMO

Sulfite addition is a common tool for ensuring wines' oxidative stability via the activity of its free and weakly bound molecular fraction. As a nucleophile, bisulfite forms covalent adducts with wine's most relevant electrophiles, such as carbonyls, polyphenols, and thiols. The equilibrium in these reactions is often represented as dissociation rather than formation. Recent studies from our laboratory demonstrate, first, the acetaldehyde sulfonate dissociation, and second, the chemical stability of cysteine and epicatechin sulfonates under wine aging conditions. Thus, the objective of this study was to monitor by 1H NMR the binding specificity of known carbonyl-derived SO2 binders (acetaldehyde and pyruvic acid) in the presence of S-containing compounds (cysteine and glutathione). We report that during simulated wine aging, the sulfur dioxide that is rapidly bound to carbonyl compounds will be released and will bind to cysteine and glutathione, demonstrating the long-term sulfur dioxide binding potential of S-containing compounds. These results are meant to serve as a complement to existing literature reviews focused on molecular markers related to wines' oxidative stability and emphasize once more the importance of S-containing compounds in wine aging chemical mechanisms.


Assuntos
Compostos de Sulfidrila , Vinho , Vinho/análise , Cinética , Compostos de Sulfidrila/química , Oxirredução , Dióxido de Enxofre/química , Cisteína/química , Cisteína/metabolismo , Acetaldeído/química , Sulfitos/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Glutationa/química , Glutationa/metabolismo
12.
J Agric Food Chem ; 72(17): 10097-10105, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630689

RESUMO

With the booming development of food manufacturing, developing ideal analytical tools to precisely quantify food additives is highly sought after in the food science field. Herein, a new series of quinoline-derived multifunctional fluorescent probes has been synthesized. Bearing double reactive sites, these compounds display fluorescence response toward both bisulfite (HSO3-) and hypochlorous acid (HClO). Among these compact structures, compound ethyl-2-cyano-3-(6-(methylthio)quinolin-2-yl)acrylate (QTE) was screened out. Probe QTE not only shows ratiometric variation toward HSO3- with little cross talk but also performs turn-off signal toward HClO. In addition, probe QTE has been utilized for bioimaging of HClO in living cells. Furthermore, the HSO3- content in dried food samples has been appraised by QTE with satisfactory results. Meanwhile, relying on the apparent chromaticity change, a flexible dark-box device has been elaborated for chromatic analysis, promoting visualization of HSO3- in the field.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Quinolinas , Sulfitos , Corantes Fluorescentes/química , Quinolinas/química , Ácido Hipocloroso/análise , Humanos , Sulfitos/análise , Sulfitos/química , Análise de Alimentos/métodos
13.
Food Chem ; 448: 139112, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569404

RESUMO

Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.


Assuntos
Fumigação , Ginsenosídeos , Panax , Controle de Qualidade , Enxofre , Ginsenosídeos/química , Ginsenosídeos/análise , Panax/química , Enxofre/química , Sulfitos/química , Sulfitos/análise , Metais/química , Metais/análise , Extratos Vegetais/química
14.
Anal Chim Acta ; 1305: 342588, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677842

RESUMO

BACKGROUND: Sulfur dioxide (SO2) is a significant gas signaling molecule in organisms, and viscosity is a crucial parameter of the cellular microenvironment. They are both involved in regulating many physiological processes in the human body. However, abnormalities in SO2 and viscosity levels are associated with various diseases, such as cardiovascular disease, lung cancer, respiratory diseases, neurological disorders, diabetes and Alzheimer's disease. Hence, it is essential to explore novel and efficient fluorescent probes for simultaneously monitoring SO2 and viscosity in organisms. RESULTS: We selected quinolinium salt with good stability, high fluorescence intensity, good solubility and low cytotoxicity as the fluorophore and developed a highly sensitive ratiometric probe QQD to identify SO2 and viscosity changes based on Förster resonance energy transfer/twisted intramolecular charge transfer (FRET/TICT) mechanism. Excitingly, compared with other probes for SO2 detection, QQD not only identified HSO3-/SO32- with a large Stokes shift (218 nm), low detection limit (1.87 µM), good selectivity, high energy transfer efficiency (92 %) and wide recognition range (1.87-200 µM), but also identified viscosity with a 26-fold fluorescence enhancement and good linearity. Crucially, QQD was applied to detect HSO3-/SO32- and viscosity in actual water and food samples. In addition, QQD had low toxicity and good photostability for imaging HSO3-/SO32- and viscosity in cells. These results confirmed the feasibility and reliability of QQD for HSO3-/SO32- and viscosity imaging and environmental detection. SIGNIFICANCE: We reported a unique ratiometric probe QQD for detecting HSO3-/SO32- and viscosity based on the quinolinium skeleton. In addition to detecting HSO3-/SO32- and viscosity change in actual water and food samples, QQD could also monitor the variations of HSO3-/SO32- and viscosity in cells, which provided an experimental basis for further exploration of the role of SO2 derivatives and viscosity in biological systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Viscosidade , Humanos , Dióxido de Enxofre/análise , Sulfitos/análise , Sulfitos/química , Limite de Detecção , Compostos de Quinolínio/química
15.
Mol Biol Rep ; 51(1): 475, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553662

RESUMO

BACKGROUND: Patients with chronic liver disease were found nearly all to have liver fibrosis, which is characterized by excess accumulation of extracellular matrix (ECM) proteins. While ECM accumulation can prevent liver infection and injury, it can destroy normal liver function and architecture. miRNA's own regulation was involved in DNA methylation change. The purpose of this study is to detect DNA methylation landscape of miRNAs genes in mice liver fibrosis tissues. METHODS: Male mice (10-12 weeks) were injected CCl4 from abdominal cavity to induced liver fibrosis. 850 K BeadChips were used to examine DNA methylation change in whole genome. The methylation change of 16 CpG dinucleotides located in promoter regions of 4 miRNA genes were detected by bisulfite sequencing polymerase chain reaction (BSP) to verify chip data accuracy, and these 4 miRNA genes' expressions were detected by RT-qPCR methods. RESULTS: There are 769 differential methylation sites (DMS) in total between fibrotic liver tissue and normal mice liver tissue, which were related with 148 different miRNA genes. Chips array data were confirmed by bisulfite sequencing polymerase chain reaction (R = 0.953; P < 0.01). GO analysis of the target genes of 2 miRNA revealed that protein binding, cytoplasm and chromatin binding activity were commonly enriched; KEGG pathway enrichment analysis displayed that TGF-beta signaling pathway was commonly enriched. CONCLUSION: The DNA of 148 miRNA genes was found to have methylation change in liver fibrosis tissue. These discoveries in miRNA genes are beneficial to future miRNA function research in liver fibrosis.


Assuntos
Metilação de DNA , MicroRNAs , Sulfitos , Humanos , Masculino , Camundongos , Animais , Metilação de DNA/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , DNA/metabolismo
16.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542469

RESUMO

The use of non-invasive liquid biopsy-based cell-free DNA (cfDNA) analysis is an emerging method of cancer detection and intervention. Different analytical methodologies are used to investigate cfDNA characteristics, resulting in costly and long analysis processes needed for combining different data. This study investigates the possibility of using cfDNA data converted for methylation analysis for combining the cfDNA fragment size with copy number variation (CNV) in the context of early colorectal cancer detection. Specifically, we focused on comparing enzymatically and bisulfite-converted data for evaluating cfDNA fragments belonging to chromosome 18. Chromosome 18 is often reported to be deleted in colorectal cancer. We used counts of short and medium cfDNA fragments of chromosome 18 and trained a linear model (LDA) on a set of 2959 regions to predict early-stage (I-IIA) colorectal cancer on an independent test set. In total, 87.5% sensitivity and 92% specificity were obtained on the enzymatically converted libraries. Repeating the same workflow on bisulfite-converted data yielded lower accuracy results with 58.3% sensitivity, implying that enzymatic conversion preserves the cancer fragmentation footprint in whole genome data better than bisulfite conversion. These results could serve as a promising new avenue for the early detection of colorectal cancer using fragmentation and methylation approaches on the same datasets.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Sulfitos , Humanos , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Biomarcadores Tumorais/genética
17.
Bioorg Chem ; 146: 107305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537335

RESUMO

Sulfite is one of the main existing forms of sulfur dioxide (SO2) in living system, which has been recognized as an endogenous mediator in inflammation. Evidence has accumulated to show that abnormal level of sulfite is associated with many inflammatory diseases, including neurological diseases and cancers. Herein, a novel fluorescent probe named QX-OA was designed and synthesized to detect sulfite. QX-OA was constructed by choosing quinolinium-xanthene as the fluorophore and levulinate as the specific and relatively steady recognition reaction. The probe showed remarkable green turn-on signal at 550 nm, together with high sensitivity (90-fold) and excellent selectivity to sulfite over other possible interfering species. In the meantime, QX-OA was successfully applied to visualize endogenous and exogenous sulfite in Hela cells. In the LPS-induced inflammation model, QX-OA could visualize the dose-dependent increase of sulfite level (0-2 mg/mL). Consequently, QX-OA was determined to be a potential method for detecting sulfite in pre-clinical diagnosis.


Assuntos
Corantes Fluorescentes , Sulfitos , Humanos , Células HeLa , Dióxido de Enxofre , Inflamação/induzido quimicamente , Inflamação/diagnóstico por imagem
18.
Am J Hum Genet ; 111(4): 654-667, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38471507

RESUMO

Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.


Assuntos
Metilação de DNA , Leucemia Linfocítica Crônica de Células B , Sulfitos , Humanos , Metilação de DNA/genética , Alelos , Leucemia Linfocítica Crônica de Células B/genética , Funções Verossimilhança , Impressão Genômica/genética , Ilhas de CpG/genética
19.
Biosystems ; 238: 105189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479655

RESUMO

A frequently debated topic related to the origin of life centers around the question of how complex forms of life on today's Earth may have evolved over time from simpler predecessors. For example, the question of how proton concentration gradients across cellular membranes developed in ancestral protocells remains unanswered. This process, which is indispensable for the generation of chemical energy in modern organisms, is driven by energy derived from redox processes in the respiratory chain. Since it is highly unlikely that the complex machinery of the respiratory chain was available on early Earth, we provide an example of how proton gradients can be established in less complex systems. Utilizing liposomes as models of primitive cells, we were able to generate proton gradients of about two pH units across the liposome bilayers using redox reactions as the driving force. Electrons were transferred from sodium sulfite present on the outside of the liposomes to ferricyanide, which was trapped on the inside. A lipid-soluble phenazine derivative served as a shuttle that transferred both electrons and protons across the lipid bilayer. Because sulfite would have been an abundant reduced solute available to the earliest cells, we propose that it may have been a primary source of redox energy for primitive chemiosmotic energy transduction.


Assuntos
Lipossomos , Prótons , Lipossomos/química , Bicamadas Lipídicas/química , Oxirredução , Sulfitos
20.
Bioresour Technol ; 399: 130535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492653

RESUMO

For a sustainable economy, biorefineries that use second-generation feedstocks to produce biochemicals and biofuels are essential. However, the exact composition of renewable feedstocks depends on the natural raw materials used and is therefore highly variable. In this contribution, a process analytical technique (PAT) strategy for determining the sugar composition of lignocellulosic process streams in real-time to enable better control of bioprocesses is presented. An in-line mid-IR probe was used to acquire spectra of ultra-filtered spent sulfite liquor (UF-SSL). Independent partial least squares models were developed for the most abundant sugars in the UF-SSL. Up to 5 sugars were quantified simultaneously to determine the sugar concentration and composition of the UF-SSL. The lowest root mean square errors of the predicted values obtained per analyte were 1.02 g/L arabinose, 1.25 g/L galactose, 0.50 g/L glucose, 1.60 g/L mannose, and 0.85 g/L xylose. Equipped with this novel PAT tool, new bioprocessing strategies can be developed for UF-SSL.


Assuntos
Glucose , Açúcares , Fermentação , Espectroscopia de Infravermelho com Transformada de Fourier , Glucose/química , Xilose/química , Sulfitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA