Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Int J Mycobacteriol ; 13(1): 73-82, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771283

RESUMO

BACKGROUND: Tuberculosis (TB) remains a prominent global health challenge, distinguished by substantial occurrences of infection and death. The upsurge of drug-resistant TB strains underscores the urgency to identify novel therapeutic targets and repurpose existing compounds. Rv0295c is a potentially druggable enzyme involved in cell wall biosynthesis and virulence. We evaluated the inhibitory activity of Food and Drug Administration (FDA)-approved compounds against Rv0295c of Mycobacterium tuberculosis, employing molecular docking, ADME evaluation, and dynamics simulations. METHODS: The study screened 1800 FDA-approved compounds and selected the top five compounds with the highest docking scores. Following this, we subjected the initially screened ligands to ADME analysis based on their dock scores. In addition, the compound exhibited the highest binding affinity chosen for molecular dynamics (MD) simulation to investigate the dynamic behavior of the ligand-receptor complex. RESULTS: Dihydroergotamine (CHEMBL1732) exhibited the highest binding affinity (-12.8 kcal/mol) for Rv0295c within this set of compounds. We evaluated the stability and binding modes of the complex over extended simulation trajectories. CONCLUSION: Our in silico analysis demonstrates that FDA-approved drugs can serve as potential Rv0295c inhibitors through repurposing. The combination of molecular docking and MD simulation offers a comprehensive understanding of the interactions between ligands and the protein target, providing valuable guidance for further experimental validation. Identifying Rv0295c inhibitors may contribute to new anti-TB drugs.


Assuntos
Antituberculosos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis , United States Food and Drug Administration , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Antituberculosos/química , Estados Unidos , Sulfotransferases/metabolismo , Sulfotransferases/química , Sulfotransferases/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Aprovação de Drogas , Humanos , Ligantes , Tuberculose/microbiologia , Tuberculose/tratamento farmacológico
2.
Toxicol Appl Pharmacol ; 425: 115553, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33915121

RESUMO

p-Cresol sulfate, the primary metabolite of p-cresol, is a uremic toxin that has been associated with toxicities and mortalities. The study objectives were to i) characterize the contributions of human sulfotransferases (SULT) catalyzing p-cresol sulfate formation using multiple recombinant SULT enzymes (including the polymorphic variant SULT1A1*2), pooled human liver cytosols, and pooled human kidney cytosols; and ii) determine the potencies and mechanisms of therapeutic inhibitors capable of attenuating the production of p-cresol sulfate. Human recombinant SULT1A1 was the primary enzyme responsible for the formation of p-cresol sulfate (Km = 0.19 ±â€¯0.02 µM [with atypical kinetic behavior at lower substrate concentrations; see text discussion], Vmax = 789.5 ±â€¯101.7 nmol/mg/min, Ksi = 2458.0 ±â€¯332.8 µM, mean ±â€¯standard deviation, n = 3), while SULT1A3, SULT1B1, SULT1E1, and SULT2A1 contributed negligible or minor roles at toxic p-cresol concentrations. Moreover, human recombinant SULT1A1*2 exhibited reduced enzyme activities (Km = 81.5 ±â€¯31.4 µM, Vmax = 230.6 ±â€¯17.7 nmol/mg/min, Ksi = 986.0 ±â€¯434.4 µM) compared to the wild type. The sulfonation of p-cresol was characterized by Michaelis-Menten kinetics in liver cytosols (Km = 14.8 ±â€¯3.4 µM, Vmax = 1.5 ±â€¯0.2 nmol/mg/min) and substrate inhibition in kidney cytosols (Km = 0.29 ±â€¯0.02 µM, Vmax = 0.19 ±â€¯0.05 nmol/mg/min, Ksi = 911.7 ±â€¯278.4 µM). Of the 14 investigated therapeutic inhibitors, mefenamic acid (Ki = 2.4 ±â€¯0.1 nM [liver], Ki = 1.2 ±â€¯0.3 nM [kidney]) was the most potent in reducing the formation of p-cresol sulfate, exhibiting noncompetitive inhibition in human liver cytosols and recombinant SULT1A1, and mixed inhibition in human kidney cytosols. Our novel findings indicated that SULT1A1 contributed an important role in p-cresol sulfonation (hence it can be considered a probe reaction) in liver and kidneys, and mefenamic acid may be utilized as a potential therapeutic agent to attenuate the generation of p-cresol sulfate as an approach to detoxification.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cresóis/metabolismo , Cresóis/toxicidade , Ácido Mefenâmico/farmacologia , Sulfotransferases/metabolismo , Ésteres do Ácido Sulfúrico/metabolismo , Ésteres do Ácido Sulfúrico/toxicidade , Catálise , Citosol/enzimologia , Humanos , Rim , Fígado , Proteínas Recombinantes , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/genética
3.
Nat Chem Biol ; 17(6): 684-692, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33846619

RESUMO

Heparan sulfate (HS) proteoglycans bind extracellular proteins that participate in cell signaling, attachment and endocytosis. These interactions depend on the arrangement of sulfated sugars in the HS chains generated by well-characterized biosynthetic enzymes; however, the regulation of these enzymes is largely unknown. We conducted genome-wide CRISPR-Cas9 screens with a small-molecule ligand that binds to HS. Screening of A375 melanoma cells uncovered additional genes and pathways impacting HS formation. The top hit was the epigenetic factor KDM2B, a histone demethylase. KDM2B inactivation suppressed multiple HS sulfotransferases and upregulated the sulfatase SULF1. These changes differentially affected the interaction of HS-binding proteins. KDM2B-deficient cells displayed decreased growth rates, which was rescued by SULF1 inactivation. In addition, KDM2B deficiency altered the expression of many extracellular matrix genes. Thus, KDM2B controls proliferation of A375 cells through the regulation of HS structure and serves as a master regulator of the extracellular matrix.


Assuntos
Proteínas F-Box/antagonistas & inibidores , Estudo de Associação Genômica Ampla , Heparitina Sulfato/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Algoritmos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Matriz Extracelular/genética , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica/genética , RNA-Seq , Sulfotransferases/antagonistas & inibidores
4.
J Biol Chem ; 296: 100353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524392

RESUMO

Polychlorinated bisphenols (PCBs) continue to contaminate food chains globally where they concentrate in tissues and disrupt the endocrine systems of species throughout the ecosphere. Hydroxylated PCBs (OH-PCBs) are major PCB metabolites and high-affinity inhibitors of human estrogen sulfotransferase (SULT1E1), which sulfonates estrogens and thus prevents them from binding to and activating their receptors. OH-PCB inhibition of SULT1E1 is believed to contribute significantly to PCB-based endocrine disruption. Here, for the first time, the molecular basis of OH-PCB inhibition of SULT1E1 is revealed in a structure of SULT1E1 in complex with OH-PCB1 (4'-OH-2,6-dichlorobiphenol) and its substrates, estradiol (E2), and PAP (3'-phosphoadenosine-5-phosphosulfate). OH-PCB1 prevents catalysis by intercalating between E2 and catalytic residues and establishes a new E2-binding site whose E2 affinity and positioning are greater than and competitive with those of the reactive-binding pocket. Such complexes have not been observed previously and offer a novel template for the design of high-affinity inhibitors. Mutating residues in direct contact with OH-PCB weaken its affinity without compromising the enzyme's catalytic parameters. These OH-PCB resistant mutants were used in stable transfectant studies to demonstrate that OH-PCBs regulate estrogen receptors in cultured human cell lines by binding the OH-PCB binding pocket of SULT1E1.


Assuntos
Inibidores Enzimáticos/farmacologia , Estrogênios/farmacologia , Bifenilos Policlorados/farmacologia , Sulfotransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Estrogênios/química , Humanos , Hidroxilação , Modelos Moleculares , Bifenilos Policlorados/química , Receptores de Estrogênio/metabolismo , Sulfotransferases/química , Sulfotransferases/metabolismo
5.
Biochem J ; 478(4): 735-748, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33480417

RESUMO

Sulfated carbohydrate metabolism is a fundamental process, which occurs in all domains of life. Carbohydrate sulfatases are enzymes that remove sulfate groups from carbohydrates and are essential to the depolymerisation of complex polysaccharides. Despite their biological importance, carbohydrate sulfatases are poorly studied and challenges remain in accurately assessing the enzymatic activity, specificity and kinetic parameters. Most notably, the separation of desulfated products from sulfated substrates is currently a time-consuming process. In this paper, we describe the development of rapid capillary electrophoresis coupled to substrate fluorescence detection as a high-throughput and facile means of analysing carbohydrate sulfatase activity. The approach has utility for the determination of both kinetic and inhibition parameters and is based on existing microfluidic technology coupled to a new synthetic fluorescent 6S-GlcNAc carbohydrate substrate. Furthermore, we compare this technique, in terms of both time and resources, to high-performance anion exchange chromatography and NMR-based methods, which are the two current 'gold standards' for enzymatic carbohydrate sulfation analysis. Our study clearly demonstrates the advantages of mobility shift assays for the quantification of near real-time carbohydrate desulfation by purified sulfatases, and will support the search for small molecule inhibitors of these disease-associated enzymes.


Assuntos
Eletroforese Capilar/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Fluorometria/métodos , Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/métodos , Sulfotransferases/análise , Proteínas de Bactérias/análise , Proteínas de Bactérias/antagonistas & inibidores , Bacteroides thetaiotaomicron/enzimologia , Compostos de Boro/análise , Configuração de Carboidratos , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Sistemas Computacionais , Corantes Fluorescentes/análise , Glicosaminoglicanos/metabolismo , Cinética , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/análise , Especificidade por Substrato , Sulfotransferases/antagonistas & inibidores
6.
Med Sci Monit ; 26: e926780, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33079922

RESUMO

BACKGROUND Cervical cancer threatens women's health worldwide. Verteporfin (VP), a small-molecule YAP1 inhibitor, inhibits cancer cell growth. This study investigated whether VP could inhibit the proliferation and promote the apoptosis of cervical cancer cells by decreasing SULT2B1 expression. MATERIAL AND METHODS Normal and cancerous cervical cell proliferation after VP treatment was detected by CCK-8 assay. HeLa cell migration, invasion, and apoptosis after VP treatment and transfection were analyzed by wound healing assay, transwell assay, and TUNEL assay, respectively. The expression of related proteins was determined by western blot analysis. Western blot and RT-qPCR analysis detected mRNA and protein expression of SULT2B1. RESULTS Different VP concentrations (0.5, 1, 2, and 5 µM) inhibited the viability of HeLa cells and had no obvious effect on H8 cells. Therefore, 5 µM VP was selected for subsequent experiments. VP inhibited the proliferation, migration, and invasion of HeLa cells and promoted their apoptosis. Bcl-2 expression decreased, and expression of Bax, caspase-3, and caspase-9 in VP-treated HeLa cells increased. SULT2B1 expression increased in cervical cancer cells compared with normal cervical cells. Furthermore, SULT2B1 expression increased in HeLa cells and VP suppressed SULT2B1 expression. SULT2B1 overexpression reduced the inhibiting effect of VP on the proliferation, migration, and apoptosis of HeLa cells, and reduced VP effect on apoptosis of HeLa cells. SULT2B1 overexpression upregulated the Bcl-2 expression and downregulated the expression of Bax, caspase-3, and caspase-9 in VP-treated HeLa cells. CONCLUSIONS VP inhibited the proliferation, migration, and invasion and promoted apoptosis of cervical cancer cells by decreasing SULT2B1 expression.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sulfotransferases , Neoplasias do Colo do Útero/tratamento farmacológico , Verteporfina , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Movimento Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Invasividade Neoplásica , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/metabolismo , Neoplasias do Colo do Útero/patologia , Verteporfina/farmacologia
7.
Biochem Pharmacol ; 180: 114197, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798464

RESUMO

Hepatic estrogen sulfotransferase (SULT1E1), the enzyme that inactivates estrogen, regulates metabolic estrogen homeostasis. Here, we have demonstrated how nuclear receptor PXR regulated the SULT1E1 gene in response to glucose in human hepatoma-derived cells and in response to fasting in mouse livers. The SULT1E1 gene was activated by a nuclear receptor HNF4α-RORα complex binding on an upstream enhancer of the SULT1E1 promoter in cells cultured in high glucose medium (Hu and Negishi, 2020). The SULT1E1 gene was repressed in cells cultured in low glucose medium, in which PXR was phosphorylated at Ser350 by vaccinia virus-related kinase 1. Phosphorylated PXR interacted with this complex, retaining HNF4α on and dissociating RORα from the enhancer as a phosphorylated PXR complex. Therefore, in response to low glucose, phosphorylated PXR transduced a low glucose signal to repress the SULT1E1 gene in cells. Hepatic Sult1e1 mRNA was induced in PXR wild type (WT) male mice in response to fasting, whereas this induction was synergistically increased in phosphorylation-blocking PXR Ser347Ala (Ser350 in human) KI males over that observed in PXR WT males. As phosphorylated PXR repressed the Sult1e1 gene, it increased its binding to the Sult1e1 promoter in WT males. The absence of phosphorylated PXR resulted in the synergistic activation of the Sult1e1 gene in PXR KI males. Apparently, phosphorylated PXR functioned as a transcriptional repressor to the SULT1E1/Sult1e1 gene in human liver cells and mouse livers.


Assuntos
Jejum/metabolismo , Glucose/administração & dosagem , Fígado/metabolismo , Receptor de Pregnano X/metabolismo , Serina/metabolismo , Sulfotransferases/biossíntese , Animais , Células COS , Chlorocebus aethiops , Feminino , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/fisiologia , Receptor de Pregnano X/química , Receptor de Pregnano X/genética , Estrutura Secundária de Proteína , Serina/genética , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/genética
8.
J Enzyme Inhib Med Chem ; 35(1): 1503-1512, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32657203

RESUMO

Metachromatic leukodystrophy (MLD) is a rare genetic disease characterised by a dysfunction of the enzyme arylsulphatase A leading to the lysosomal accumulation of cerebroside sulphate (sulphatide) causing subsequent demyelination in patients. The enzyme galactosylceramide (cerebroside) sulphotransferase (CST) catalyses the transfer of a sulphate group from 3'-phosphoadenosine-5'-phosphosulphate (PAPS) to cerebrosides producing sulphatides. Substrate reduction therapy for arylsulphatase A by inhibition of CST was proposed as a promising therapeutic approach. To identify competitive CST inhibitors, we synthesised and investigated analogues of the substrate galactosylceramide with variations at the anomeric position, the acyl substituent and the carbohydrate moiety, and investigated their structure-activity relationships. While most of the compounds behaved as substrates, α-galactosylceramide 16 was identified as the first competitive CST inhibitor. Compound 16 can serve as a new lead structure for the development of drugs for the treatment of this devastating disease, MLD, for which small molecule therapeutics are currently not available.


Assuntos
Cerebrosídeos/farmacologia , Descoberta de Drogas , Leucodistrofia Metacromática/tratamento farmacológico , Sulfotransferases/antagonistas & inibidores , Cerebrosídeos/síntese química , Cerebrosídeos/química , Relação Dose-Resposta a Droga , Humanos , Leucodistrofia Metacromática/enzimologia , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato/efeitos dos fármacos , Sulfotransferases/genética , Sulfotransferases/metabolismo
9.
J Am Soc Nephrol ; 31(7): 1496-1508, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424001

RESUMO

BACKGROUND: Studies have suggested that estrogens may protect mice from AKI. Estrogen sulfotransferase (SULT1E1, or EST) plays an important role in estrogen homeostasis by sulfonating and deactivating estrogens, but studies on the role of SULT1E1 in AKI are lacking. METHODS: We used the renal ischemia-reperfusion model to investigate the role of SULT1E1 in AKI. We subjected wild-type mice, Sult1e1 knockout mice, and Sult1e1 knockout mice with liver-specific reconstitution of SULT1E1 expression to bilateral renal ischemia-reperfusion or sham surgery, either in the absence or presence of gonadectomy. We assessed relevant biochemical, histologic, and gene expression markers of kidney injury. We also used wild-type mice treated with the SULT1E1 inhibitor triclosan to determine the effect of pharmacologic inhibition of SULT1E1 on AKI. RESULTS: AKI induced the expression of Sult1e1 in a tissue-specific and sex-specific manner. It induced expression of Sult1e1 in the liver in both male and female mice, but Sult1e1 induction in the kidney occurred only in male mice. Genetic knockout or pharmacologic inhibition of Sult1e1 protected mice of both sexes from AKI, independent of the presence of sex hormones. Instead, a gene profiling analysis indicated that the renoprotective effect was associated with increased vitamin D receptor signaling. Liver-specific transgenic reconstitution of SULT1E1 in Sult1e1 knockout mice abolished the protection in male mice but not in female mice, indicating that Sult1e1's effect on AKI was also tissue-specific and sex-specific. CONCLUSIONS: SULT1E1 appears to have a novel function in the pathogenesis of AKI. Our findings suggest that inhibitors of SULT1E1 might have therapeutic utility in the clinical management of AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Fígado/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Injúria Renal Aguda/etiologia , Animais , Calcitriol/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Orquiectomia , Ovariectomia , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Traumatismo por Reperfusão/complicações , Fatores Sexuais , Transdução de Sinais , Sulfotransferases/antagonistas & inibidores , Triclosan/farmacologia
10.
J Am Chem Soc ; 142(11): 5282-5292, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32083852

RESUMO

Human endo-O-sulfatases (Sulf-1 and Sulf-2) are extracellular heparan sulfate proteoglycan (HSPG)-specific 6-O-endosulfatases, which regulate a multitude of cell-signaling events through heparan sulfate (HS)-protein interactions and are associated with the onset of osteoarthritis. These endo-O-sulfatases are transported onto the cell surface to liberate the 6-sulfate groups from the internal d-glucosamine residues in the highly sulfated subdomains of HSPGs. In this study, a variety of HS oligosaccharides with different chain lengths and N- and O-sulfation patterns via chemical synthesis were systematically studied about the substrate specificity of human Sulf-1 employing the fluorogenic substrate 4-methylumbelliferyl sulfate (4-MUS) in a competition assay. The trisaccharide sulfate IdoA2S-GlcNS6S-IdoA2S was found to be the minimal-size substrate for Sulf-1, and substitution of the sulfate group at the 6-O position of the d-glucosamine unit with the sulfonamide motif effectively inhibited the Sulf-1 activity with IC50 = 0.53 µM, Ki = 0.36 µM, and KD = 12 nM.


Assuntos
Inibidores Enzimáticos/química , Sulfatases/antagonistas & inibidores , Sulfonamidas/química , Sulfotransferases/antagonistas & inibidores , Trissacarídeos/química , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Heparitina Sulfato/química , Humanos , Cinética , Especificidade por Substrato , Sulfatases/química , Sulfonamidas/síntese química , Sulfotransferases/química , Trissacarídeos/síntese química
11.
Lipids Health Dis ; 18(1): 203, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757214

RESUMO

BACKGROUND: A healthy gastric mucosal epithelium exhibits tumor-suppressive properties. Gastric epithelial cell dysfunction contributes to gastric cancer development. Oxysterols provided from food or cholesterol oxidation in the gastric epithelium may be further sulfated by hydroxysteroid sulfotransferase 2B1 (SULT2B1), which is highly abundant in the gastric epithelium. However, the effects of SULT2B1 on gastric epithelial function and gastric carcinogenesis are unclear. METHODS: A mouse gastric tumor model was established using carcinogenic agent 3-methylcholanthrene (3-MCA). A SULT2B1 deletion (SULT2B1-/-) human gastric epithelial line GES-1 was constructed by CRISPR/CAS9 genome editing system. RESULTS: The gastric tumor incidence was higher in the SULT2B1-/- mice than in the wild-type (WT) mice. In gastric epithelial cells, adenovirus-mediated SULT2B1b overexpression reduced the levels of oxysterols, such as 24(R/S),25-epoxycholesterol (24(R/S),25-EC) and 27-hydroxycholesterol (27HC). This condition also increased PI3K/AKT signaling to promote gastric epithelial cell proliferation, epithelization, and epithelial development. However, SULT2B1 deletion or SULT2B1 knockdown suppressed PI3K/AKT signaling, epithelial cell epithelization, and wound healing and induced gastric epithelial cell malignant transition upon 3-MCA induction. CONCLUSIONS: The abundant SULT2B1 expression in normal gastric epithelium might maintain epithelial function via the PI3K/AKT signaling pathway and suppress gastric carcinogenesis induced by a carcinogenic agent.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Gástricas/genética , Sulfotransferases/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/análogos & derivados , Colesterol/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/enzimologia , Mucosa Gástrica/patologia , Edição de Genes , Humanos , Hidroxicolesteróis/metabolismo , Metilcolantreno/administração & dosagem , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/mortalidade , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/deficiência , Análise de Sobrevida
12.
Chem Res Toxicol ; 32(6): 1281-1288, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31046239

RESUMO

Aloe-emodin (AE) is a major anthraquinone ingredient of numerous traditional Chinese medicines with a variety of beneficial biological activities in vitro. Previous studies suggested that AE possessed cytotoxicity and genotoxicity. Nevertheless, the mechanisms of the toxic action of AE have not yet been fully clarified. The present study aimed at characterization of metabolic pathways of AE to better understand the mechanisms of AE-induced cytotoxicity. An AE-derived glutathione conjugate (AE-GSH) was observed in rat liver cytosol incubations containing AE and GSH, along with 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Similar incubation fortified with N-acetylcysteine (NAC) in place of GSH offered an AE-NAC conjugate corresponding to the GSH conjugate. The formation of the two conjugates was found to require PAPS. The two conjugates were respectively detected in bile and urine of rats given AE. Sulfotransferase (SULT) inhibitor pentachlorophenol (PCP) suppressed the production of the observed AE-GSH/NAC conjugates in vivo, which suggested that SULTs participated in the process of the metabolic activation of AE. The presence of PCP attenuated cell susceptibility to AE-induced cytotoxicity. The present study illustrated potential association of sulfation-mediated bioactivation of AE with its cytotoxicity.


Assuntos
Antraquinonas/farmacologia , Sulfotransferases/metabolismo , Ativação Metabólica/efeitos dos fármacos , Animais , Antraquinonas/química , Antraquinonas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citosol/química , Citosol/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Fígado/química , Fígado/metabolismo , Masculino , Estrutura Molecular , Pentaclorofenol/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfotransferases/antagonistas & inibidores
13.
Ecotoxicol Environ Saf ; 180: 146-151, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31082578

RESUMO

Thyroid hormones (THs) are essential to proper growth and development of human bodies. Inhibiting the sulfation metabolism of THs has been demonstrated to be an important way for some environmental pollutants, such as halogenated phenolic compounds, to interfere THs homeostasis, thereby causing health problems. However, the important property characteristics that govern the sulfation inhibition of these chemicals are not well understood, and the experimental data on inhibition potential is limited. In this work, an in silico approach was developed to investigate the structure-activity relationship for their sulfotransferases (SULTs) inhibition. A series of quantum chemical descriptors that quantify the electronic and energy properties of 22 halogenated phenolic compounds have been calculated to establish a predictive model and analyzed their corresponding contributions to SULTs inhibition. Density functional theory (DFT) B3LYP/6-31G** has been employed to optimize molecular geometries to obtain a total of 15 descriptors for every compound. The implementation of linear regression shows three descriptors that represent molecular mass, positive charges on hydrogen atoms, and energy of frontier orbitals strongly correlate with SULTs inhibition potential. This indicates molecular size, hydrogen-bond strength, and nucleophilic-electrophilic reactivity may play important roles in SULTs inhibition. The derived regression model has good statistical performance (r2 = 0.84, rms = 0.35), and different validation strategies indicate it can serve as an efficient predictive tool for other chemicals in application domain but with no experimental data, consequently assisting in their THs sulfation inhibition and health risk assessment.


Assuntos
Poluentes Ambientais/farmacologia , Fenóis/farmacologia , Sulfotransferases/antagonistas & inibidores , Hormônios Tireóideos/metabolismo , Simulação por Computador , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Halogenação , Humanos , Modelos Moleculares , Fenóis/química , Fenóis/metabolismo , Relação Estrutura-Atividade , Sulfotransferases/metabolismo
14.
J Appl Toxicol ; 39(4): 650-657, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30874336

RESUMO

Sulfotransferase 1A (SULT1A) expression is lower in the liver of humans than that of rodents. Therefore, species differences should be taken into consideration when assessing the risk of rodent hepatocarcinogens metabolically activated by SULT1A in humans. Although some renal carcinogens require SULT1A-mediated activation, it is unclear how SULT1A activity in the liver affects renal carcinogens. To explore the effects of SULT1A activity in the liver on genotoxicity induced by SULT1A-activated renal carcinogens, B6C3F1 mice or gpt delta mice of the same strain background were given lucidin-3-O-primeveroside (LuP), a hepatic and renal carcinogen of rodents, for 4 or 13 weeks, respectively, and pentachlorophenol (PCP) as a liver-specific SULT inhibitor, was given from 1 week before LuP treatment to the end of the experiment. A 4 week exposure of LuP induced lucidin-specific DNA adduct formation. The suppression of Sult1a expression was observed only in the liver but not in the kidneys of PCP-treated mice, but co-administration of PCP suppressed LuP-induced DNA adduct formation in both organs. Thirteen-week exposure of LuP increased mutation frequencies and cotreatment with PCP suppressed these increases in both organs. Given that intact levels of SULT activity in the liver were much higher than in the kidneys of rodents, SULT1A may predominantly activate LuP in the liver, consequently leading to genotoxicity not only in the liver but also in the kidney. Thus, species differences should be considered in human risk assessment of renal carcinogens activated by SULT1A as in the case of the corresponding liver carcinogens.


Assuntos
Antraquinonas/toxicidade , Dissacarídeos/toxicidade , Corantes de Alimentos/toxicidade , Rim/efeitos dos fármacos , Fígado/enzimologia , Sulfotransferases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/farmacologia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Pentaclorofenol/farmacologia , Sulfotransferases/genética
15.
J Pharmacol Exp Ther ; 369(3): 389-405, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30918069

RESUMO

Lithocholic acid (LCA) is a bile acid associated with adverse effects, including cholestasis, and it exists in vivo mainly as conjugates known as glyco-LCA (GLCA) and tauro-LCA (TLCA). Tamoxifen has been linked to the development of cholestasis, and it inhibits sulfotransferase 2A1 (SULT2A1)-catalyzed dehydroepiandrosterone (DHEA) sulfonation. The present study was done to characterize the sulfonation of LCA, GLCA, and TLCA and to investigate whether triphenylethylene (clomifene, tamoxifen, toremifene, ospemifene, droloxifene), benzothiophene (raloxifene, arzoxifene), tetrahydronaphthalene (lasofoxifene, nafoxidine), indole (bazedoxifene), and benzopyran (acolbifene) classes of selective estrogen receptor modulator (SERM) inhibit LCA, GLCA, and TLCA sulfonation. Human recombinant SULT2A1, but not SULT2B1b or SULT1E1, catalyzed LCA, GLCA, and TLCA sulfonation, whereas each of these enzymes catalyzed DHEA sulfonation. LCA, GLCA, and TLCA sulfonation is catalyzed by human liver cytosol, and SULT2A1 followed the substrate inhibition model with comparable apparent K m values (≤1 µM). Each of the SERMs inhibited LCA, GLCA, and TLCA sulfonation with varying potency and mode of enzyme inhibition. The potency and extent of inhibition of LCA sulfonation were attenuated or increased by structural modifications to toremifene, bazedoxifene, and lasofoxifene. The inhibitory effect of raloxifene, bazedoxifene, and acolbifene on LCA sulfonation was also observed in HepG2 human hepatocellular carcinoma cells. Overall, among the SERMs investigated, bazedoxifene and raloxifene were the most effective inhibitors of LCA, GLCA, and TLCA sulfonation. These findings provide insight into the structural features of specific SERMs that contribute to their inhibition of SULT2A1-catalyzed LCA sulfonation. Inhibition of LCA, GLCA, and TLCA detoxification by a SERM may provide a biochemical basis for adverse effects associated with a SERM.


Assuntos
Biocatálise/efeitos dos fármacos , Ácido Litocólico/análogos & derivados , Moduladores Seletivos de Receptor Estrogênico/química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Ácidos Sulfônicos/metabolismo , Sulfotransferases/metabolismo , Ácido Taurolitocólico/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Células Hep G2 , Humanos , Cinética , Ácido Litocólico/metabolismo , Fígado/citologia , Oxirredução , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Sulfotransferases/antagonistas & inibidores
16.
Biochim Biophys Acta Gen Subj ; 1863(5): 839-848, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794825

RESUMO

One of the main feature of chronic kidney disease is the development of renal fibrosis. Heparan Sulfate (HS) is involved in disease development by modifying the function of growth factors and cytokines and creating chemokine gradients. In this context, we aimed to understand the function of HS sulfation in renal fibrosis. Using a mouse model of renal fibrosis, we found that total HS 2-O-sulfation was increased in damaged kidneys, whilst, tubular staining of HS 3-O-sulfation was decreased. The expression of HS modifying enzymes significantly correlated with the development of fibrosis with HS3ST1 demonstrating the strongest correlation. The pro-fibrotic factors TGFß1 and TGFß2/IL1ß significantly downregulated HS3ST1 expression in both renal epithelial cells and renal fibroblasts. To determine the implication of HS3ST1 in growth factor binding and signalling, we generated an in vitro model of renal epithelial cells overexpressing HS3ST1 (HKC8-HS3ST1). Heparin Binding EGF like growth factor (HB-EGF) induced rapid, transient STAT3 phosphorylation in control HKC8 cells. In contrast, a prolonged response was demonstrated in HKC8-HS3ST1 cells. Finally, we showed that both HS 3-O-sulfation and HB-EGF tubular staining were decreased with the development of fibrosis. Taken together, these data suggest that HS 3-O-sulfation is modified in fibrosis and highlight HS3ST1 as an attractive biomarker of fibrosis progression with a potential role in HB-EGF signalling.


Assuntos
Rim Fundido/tratamento farmacológico , Heparitina Sulfato/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Sulfotransferases/antagonistas & inibidores , Animais , Células Cultivadas , Rim Fundido/metabolismo , Rim Fundido/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Sulfotransferases/genética , Sulfotransferases/metabolismo
17.
Crit Rev Food Sci Nutr ; 59(14): 2308-2320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29517920

RESUMO

Migraine is a common multifactorial and polygenic neurological disabling disorder characterized by a genetic background and associated to environmental, hormonal and food stimulations. A large series of evidence suggest a strong correlation between nutrition and migraine and indicates several commonly foods, food additives and beverages that may be involved in the mechanisms triggering the headache attack in migraine-susceptible persons. There are foods and drinks, or ingredients of the same, that can trigger the migraine crisis as well as some foods play a protective function depending on the specific genetic sensitivity of the subject. The recent biotechnological advances have enhanced the identification of some genetic factors involved in onset diseases and the identification of sequence variants of genes responsible for the individual sensitivity to migraine trigger-foods. Therefore many studies are aimed at the analysis of polymorphisms of genes coding for the enzymes involved in the metabolism of food factors in order to clarify the different ways in which people respond to foods based on their genetic constitution. This review discusses the latest knowledge and scientific evidence of the role of gene variants and nutrients, food additives and nutraceuticals interactions in migraine.


Assuntos
Bebidas/efeitos adversos , Aditivos Alimentares/efeitos adversos , Alimentos/efeitos adversos , Transtornos de Enxaqueca/etiologia , Transtornos de Enxaqueca/genética , Nutrigenômica/métodos , Álcool Desidrogenase/genética , Suplementos Nutricionais/efeitos adversos , Histamina/genética , Histamina/metabolismo , Humanos , Transtornos de Enxaqueca/prevenção & controle , Fenóis/farmacologia , Sulfotransferases/antagonistas & inibidores
18.
Biochem Pharmacol ; 159: 25-31, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423313

RESUMO

The activities of hundreds, perhaps thousands, of metabolites are regulated by human cytosolic sulfotransferases (SULTs) - a 13-member family of disease relevant enzymes that catalyze transfer of the sulfuryl moiety (-SO3) from PAPS (3'-phosphoadenosine 5'-phosphosulfonate) to the hydroxyls and amines of acceptors. SULTs harbor two independent allosteric sites, one of which, the focus of this work, binds non-steroidal anti-inflammatory drugs (NSAIDs). The structure of the first NSAID-binding site - that of SULT1A1 - was elucidated recently and homology modeling suggest that variants of the site are present in all SULT isoforms. The objective of the current study was to assess whether the NSAID-binding site can be used to regulate sulfuryl transfer in humans in an isoform specific manner. Mefenamic acid (Mef) is a potent (Ki 27 nM) NSAID-inhibitor of SULT1A1 - the predominant SULT isoform in small intestine and liver. Acetaminophen (APAP), a SULT1A1 specific substrate, is extensively sulfonated in humans. Dehydroepiandrosterone (DHEA) is specific for SULT2A1, which we show here is insensitive to Mef inhibition. APAP and DHEA sulfonates are readily quantified in urine and thus the effects of Mef on APAP and DHEA sulfonation could be studied non-invasively. Compounds were given orally in a single therapeutic dose to a healthy, adult male human with a typical APAP-metabolite profile. Mef profoundly decreased APAP sulfonation during first pass metabolism and substantially decreased systemic APAP sulfonation without influencing DHEA sulfonation; thus, it appears the NSAID site can be used to control sulfonation in humans in a SULT-isoform specific manner.


Assuntos
Acetaminofen/farmacocinética , Arilsulfotransferase/metabolismo , Ácido Mefenâmico/farmacocinética , Sulfotransferases/metabolismo , Acetaminofen/metabolismo , Acetaminofen/urina , Sítio Alostérico , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacocinética , Arilsulfotransferase/antagonistas & inibidores , Arilsulfotransferase/química , Sítios de Ligação , Desidroepiandrosterona/administração & dosagem , Desidroepiandrosterona/metabolismo , Desidroepiandrosterona/urina , Interações Medicamentosas , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Espectroscopia de Ressonância Magnética , Ácido Mefenâmico/metabolismo , Ácido Mefenâmico/urina , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/química
19.
Nat Commun ; 9(1): 5152, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514845

RESUMO

Insulin and insulin-like signaling regulates a broad spectrum of growth and metabolic responses to a variety of internal and environmental stimuli. For example, the inhibition of insulin-like signaling in C. elegans mediates its response to both osmotic stress and starvation. We report that in response to osmotic stress the cytosolic sulfotransferase SSU-1 antagonizes insulin-like signaling and promotes developmental arrest. Both SSU-1 and the DAF-16 FOXO transcription factor, which is activated when insulin signaling is low, are needed to drive specific responses to reduced insulin-like signaling. We demonstrate that SSU-1 functions in a single pair of sensory neurons to control intercellular signaling via the nuclear hormone receptor NHR-1 and promote both the specific transcriptional response to osmotic stress and altered lysophosphatidylcholine metabolism. Our results show the requirement of a sulfotransferase-nuclear hormone receptor neurohormonal signaling pathway for some but not all consequences of reduced insulin-like signaling.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas do Tecido Nervoso/efeitos dos fármacos , Neurotransmissores/metabolismo , Receptor de Insulina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfotransferases/antagonistas & inibidores , Animais , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonagem Molecular , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Insulina/metabolismo , Lisofosfatidilcolinas/metabolismo , Mutagênese , Pressão Osmótica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor de Insulina/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Inanição , Estresse Fisiológico , Sulfotransferases/genética , Sulfotransferases/metabolismo
20.
Dermatol Ther ; 31(6): e12741, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30226287

RESUMO

Topical minoxidil is the only US FDA approved OTC drug for the treatment of androgenetic alopecia (AGA). Minoxidil is a pro-drug converted into its active form, minoxidil sulfate, by the sulfotransferase enzymes in the outer root sheath of hair follicles. Previously, we demonstrated that sulfotransferase activity in hair follicles predicts response to topical minoxidil in the treatment of AGA. In the human liver, sulfotransferase activity is significantly inhibited by salicylic acid. Low-dose OTC aspirin (75-81 mg), a derivative of salicylic acid, is used by millions of people daily for the prevention of coronary heart disease and cancer. It is not known whether oral aspirin inhibits sulfotransferase activity in hair follicles, potentially affecting minoxidil response in AGA patients. In the present study, we determined the follicular sulfotransferase enzymatic activity following 14 days of oral aspirin administration. In our cohort of 24 subjects, 50% were initially predicted to be responders to minoxidil. However, following 14 days of aspirin administration, only 27% of the subjects were predicted to respond to topical minoxidil. To the best of our knowledge, this is the first study to report the effect of low-dose daily aspirin use on the efficacy of topical minoxidil.


Assuntos
Alopecia/tratamento farmacológico , Aspirina/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Folículo Piloso/efeitos dos fármacos , Minoxidil/administração & dosagem , Pró-Fármacos/administração & dosagem , Sulfotransferases/antagonistas & inibidores , Administração Cutânea , Adulto , Alopecia/diagnóstico , Alopecia/fisiopatologia , Aspirina/efeitos adversos , Interações Medicamentosas , Inibidores Enzimáticos/efeitos adversos , Folículo Piloso/enzimologia , Folículo Piloso/crescimento & desenvolvimento , Humanos , Masculino , Minoxidil/análogos & derivados , Minoxidil/metabolismo , Pró-Fármacos/metabolismo , Medição de Risco , Sulfotransferases/metabolismo , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA