Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.462
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731829

RESUMO

Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.


Assuntos
Injúria Renal Aguda , Proteínas de Ciclo Celular , Túbulos Renais Proximais , Camundongos Knockout , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Proliferação de Células , Transdução de Sinais , Via de Sinalização Hippo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732005

RESUMO

In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.


Assuntos
Oxalato de Cálcio , Hipercalciúria , Cálculos Renais , Camundongos Knockout , Animais , Hipercalciúria/metabolismo , Hipercalciúria/genética , Concentração de Íons de Hidrogênio , Camundongos , Oxalato de Cálcio/metabolismo , Cálculos Renais/metabolismo , Cálculos Renais/etiologia , Cálculos Renais/patologia , Fosfatos de Cálcio/metabolismo , Nefrolitíase/metabolismo , Nefrolitíase/genética , Nefrolitíase/patologia , Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Acetazolamida/farmacologia
3.
Mol Biol Rep ; 51(1): 620, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709349

RESUMO

BACKGROUND: Recent years of evidence suggest the crucial role of renal tubular cells in developing diabetic kidney disease. Scopoletin (SCOP) is a plant-based coumarin with numerous biological activities. This study aimed to determine the effect of SCOP on renal tubular cells in developing diabetic kidney disease and to elucidate mechanisms. METHODS AND RESULTS: In this study, SCOP was evaluated in vitro using renal proximal tubular (HK-2) cells under hyperglycemic conditions to understand its mechanism of action. In HK-2 cells, SCOP alleviated the high glucose-generated reactive oxygen species (ROS), restored the levels of reduced glutathione, and decreased lipid peroxidation. High glucose-induced alteration in the mitochondrial membrane potential was markedly restored in the SCOP-treated cells. Moreover, SCOP significantly reduced the high glucose-induced apoptotic cell population in the Annexin V-FITC flow cytometry study. Furthermore, high glucose markedly elevated the mRNA expression of fibrotic and extracellular matrix (ECM) components, namely, transforming growth factor (TGF)-ß, alfa-smooth muscle actin (α-SMA), collagen I, and collagen III, in HK-2 cells compared to the untreated cells. SCOP treatment reduced these mRNA expressions compared to the high glucose-treated cells. Collagen I and TGF-ß protein levels were also significantly reduced in the SCOP-treated cells. Further findings in HK-2 cells revealed that SCOP interfered with the epithelial-mesenchymal transition (EMT) in the high glucose-treated HK-2 cells by normalizing E-cadherin and downregulating the vimentin and α-SMA proteins. CONCLUSIONS: In conclusion, SCOP modulates the high glucose-generated renal tubular cell oxidative damage and accumulation of ECM components and may be a promising molecule against diabetic nephropathy.


Assuntos
Nefropatias Diabéticas , Transição Epitelial-Mesenquimal , Glucose , Túbulos Renais Proximais , Estresse Oxidativo , Espécies Reativas de Oxigênio , Escopoletina , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Glucose/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Estresse Oxidativo/efeitos dos fármacos , Escopoletina/farmacologia , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Fibrose , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos
4.
Sci Rep ; 14(1): 9357, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653823

RESUMO

The advent of micro-physiological systems (MPS) in biomedical research has enabled the introduction of more complex and relevant physiological into in vitro models. The recreation of complex morphological features in three-dimensional environments can recapitulate otherwise absent dynamic interactions in conventional models. In this study we developed an advanced in vitro Renal Cell Carcinoma (RCC) that mimics the interplay between healthy and malignant renal tissue. Based on the TissUse Humimic platform our model combines healthy renal proximal tubule epithelial cells (RPTEC) and RCC. Co-culturing reconstructed RPTEC tubules with RCC spheroids in a closed micro-perfused circuit resulted in significant phenotypical changes to the tubules. Expression of immune factors revealed that interleukin-8 (IL-8) and tumor necrosis factor-alfa (TNF-α) were upregulated in the non-malignant cells while neutrophil gelatinase-associated lipocalin (NGAL) was downregulated in both RCC and RPTEC. Metabolic analysis showed that RCC prompted a shift in the energy production of RPTEC tubules, inducing glycolysis, in a metabolic adaptation that likely supports RCC growth and immunogenicity. In contrast, RCC maintained stable metabolic activity, emphasizing their resilience to external factors. RNA-seq and biological process analysis of primary RTPTEC tubules demonstrated that the 3D tubular architecture and MPS conditions reverted cells to a predominant oxidative phosphorylate state, a departure from the glycolytic metabolism observed in 2D culture. This dynamic RCC co-culture model, approximates the physiology of healthy renal tubules to that of RCC, providing new insights into tumor-host interactions. Our approach can show that an RCC-MPS can expand the complexity and scope of pathophysiology and biomarker studies in kidney cancer research.


Assuntos
Carcinoma de Células Renais , Técnicas de Cocultura , Células Epiteliais , Neoplasias Renais , Túbulos Renais Proximais , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Linhagem Celular Tumoral , Lipocalina-2/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
5.
Am J Physiol Renal Physiol ; 326(5): F827-F838, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482555

RESUMO

In the aftermath of acute kidney injury (AKI), surviving proximal tubule epithelia repopulate injured tubules to promote repair. However, a portion of cells fail to repair [termed failed-repair proximal tubule cells (FR-PTCs)] and exert ongoing proinflammatory and profibrotic effects. To better understand the molecular drivers of the FR-PTC state, we reanalyzed a mouse ischemia-reperfusion injury single-nucleus RNA-sequencing (snRNA-seq) atlas to identify Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in FR-PTCs but not in healthy or acutely injured proximal tubules after AKI (2 and 6 wk) in mice. We confirmed expression of Tnik protein in injured mouse and human tissues by immunofluorescence. Then, to determine the functional role of Tnik in FR-PTCs, we depleted TNIK with siRNA in two human renal proximal tubule epithelial cell lines (primary and immortalized hRPTECs) and analyzed each by bulk RNA-sequencing. Pathway analysis revealed significant upregulation of inflammatory signaling pathways, whereas pathways associated with differentiated proximal tubules such as organic acid transport were significantly downregulated. TNIK gene knockdown drove reduced cell viability and increased apoptosis, including differentially expressed poly(ADP-ribose) polymerase (PARP) family members, cleaved PARP-1 fragments, and increased annexin V binding to phosphatidylserine. Together, these results indicate that Tnik upregulation in FR-PTCs acts in a compensatory fashion to suppress inflammation and promote proximal tubule epithelial cell survival after injury. Modulating TNIK activity may represent a prorepair therapeutic strategy after AKI.NEW & NOTEWORTHY The molecular drivers of successful and failed repair in the proximal tubule after acute kidney injury (AKI) are incompletely understood. We identified Traf2 and Nck interacting kinase (Tnik) to be exclusively expressed in failed-repair proximal tubule cells after AKI. We tested the effect of siTNIK depletion in two proximal tubule cell lines followed by bulk RNA-sequencing analysis. Our results indicate that TNIK acts to suppress inflammatory signaling and apoptosis in injured renal proximal tubule epithelial cells to promote cell survival.


Assuntos
Injúria Renal Aguda , Apoptose , Células Epiteliais , Túbulos Renais Proximais , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Animais , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/genética , Transdução de Sinais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular , Inflamação/metabolismo , Inflamação/patologia , Masculino
6.
Ren Fail ; 46(1): 2283587, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38374684

RESUMO

Background: Light-chain proximal tubulopathy (LCPT) is a rare disease characterized by the accumulation of monoclonal light chains within proximal tubular cells. This study aimed to investigate the clinical characteristics of LCPT from a single Chinese nephrology referral center.Methods: Patients with kidney biopsy-proven isolated LCPT between 2016 and 2022 at Peking University First Hospital were retrospectively included. Clinical data, kidney pathological type, treatment, and prognosis were analyzed.Results: Nineteen patients were enrolled, the mean age at diagnosis was 57 ± 11 and the sex ratio was 6/13 (female/male). Mean proteinuria was 2.44 ± 1.89 g/24 hr and the mean estimated glomerular filtration rate (eGFR) at the point of biopsy was 59.640 ± 27.449 ml/min/1.73 m2. κ-restriction (84%) was dominant among LCPTs. An abnormal free light chain ratio was observed in 86% of the patients. Proximal tubulopathy with cytoplasmic inclusions accounted for the majority (53%), followed by tubulopathy associated with interstitial inflammation reaction (26%), proximal tubulopathy without cytoplasmic inclusions (16%), and proximal tubulopathy with lysosomal indigestion/constipation (5%). One patient presented with acute kidney injury and 16 patients presented with chronic kidney disease. Regarding follow-up, patients received bortezomib-based or R-CHOP chemotherapy or supportive treatment only. The mean follow-up time was 22 ± 16 months, and the mean eGFR was 63.098 ± 27.439 ml/min/1.73 m2 at the end of follow-up. These patients showed improved or stable kidney function.Conclusions: This is the first case series report of LCPT in four different pathological types in northern China. Clone-targeted chemotherapy may help preserve the kidney function in these patients.


Assuntos
Nefropatias , Nefrologia , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Estudos Retrospectivos , Túbulos Renais Proximais/patologia , Nefropatias/patologia , Rim/patologia , Insuficiência Renal Crônica/complicações
7.
Apoptosis ; 29(5-6): 620-634, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281282

RESUMO

Maleic acid (MA) induces renal tubular cell dysfunction directed to acute kidney injury (AKI). AKI is an increasing global health burden due to its association with mortality and morbidity. However, targeted therapy for AKI is lacking. Previously, we determined mitochondrial-associated proteins are MA-induced AKI affinity proteins. We hypothesized that mitochondrial dysfunction in tubular epithelial cells plays a critical role in AKI. In vivo and in vitro systems have been used to test this hypothesis. For the in vivo model, C57BL/6 mice were intraperitoneally injected with 400 mg/kg body weight MA. For the in vitro model, HK-2 human proximal tubular epithelial cells were treated with 2 mM or 5 mM MA for 24 h. AKI can be induced by administration of MA. In the mice injected with MA, the levels of blood urea nitrogen (BUN) and creatinine in the sera were significantly increased (p < 0.005). From the pathological analysis, MA-induced AKI aggravated renal tubular injuries, increased kidney injury molecule-1 (KIM-1) expression and caused renal tubular cell apoptosis. At the cellular level, mitochondrial dysfunction was found with increasing mitochondrial reactive oxygen species (ROS) (p < 0.001), uncoupled mitochondrial respiration with decreasing electron transfer system activity (p < 0.001), and decreasing ATP production (p < 0.05). Under transmission electron microscope (TEM) examination, the cristae formation of mitochondria was defective in MA-induced AKI. To unveil the potential target in mitochondria, gene expression analysis revealed a significantly lower level of ATPase6 (p < 0.001). Renal mitochondrial protein levels of ATP subunits 5A1 and 5C1 (p < 0.05) were significantly decreased, as confirmed by protein analysis. Our study demonstrated that dysfunction of mitochondria resulting from altered expression of ATP synthase in renal tubular cells is associated with MA-induced AKI. This finding provides a potential novel target to develop new strategies for better prevention and treatment of MA-induced AKI.


Assuntos
Injúria Renal Aguda , Apoptose , Maleatos , Camundongos Endogâmicos C57BL , Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Camundongos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Maleatos/farmacologia , Apoptose/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Linhagem Celular , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia
8.
Kidney Int ; 105(2): 312-327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977366

RESUMO

Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Identifying the molecular and genetic regulators unique to nephron segments that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. Here, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI and found them upregulated after severe AKI and correlated with chronic injury. Surprisingly, proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to pre-conditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of proximal tubule cells in the S3 segment that displayed features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic pre-conditioning, and female sex. Thus, our results identified a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both the injury response and protection from ischemic AKI.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Fator de Transcrição PAX2 , Fator de Transcrição PAX8 , Insuficiência Renal Crônica , Animais , Feminino , Camundongos , Injúria Renal Aguda/complicações , Injúria Renal Aguda/genética , Isquemia/complicações , Túbulos Renais Proximais/patologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/genética , Traumatismo por Reperfusão/genética , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo
9.
Nat Commun ; 14(1): 8159, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071212

RESUMO

Autosomal Recessive Renal Tubular Dysgenesis (AR-RTD) is a fatal genetic disorder characterized by complete absence or severe depletion of proximal tubules (PT) in patients harboring pathogenic variants in genes involved in the Renin-Angiotensin-Aldosterone System. To uncover the pathomechanism of AR-RTD, differentiation of ACE-/- and AGTR1-/- induced pluripotent stem cells (iPSCs) and AR-RTD patient-derived iPSCs into kidney organoids is leveraged. Comprehensive marker analyses show that both mutant and control organoids generate indistinguishable PT in vitro under normoxic (21% O2) or hypoxic (2% O2) conditions. Fully differentiated (d24) AGTR1-/- and control organoids transplanted under the kidney capsule of immunodeficient mice engraft and mature well, as do renal vesicle stage (d14) control organoids. By contrast, d14 AGTR1-/- organoids fail to engraft due to insufficient pro-angiogenic VEGF-A expression. Notably, growth under hypoxic conditions induces VEGF-A expression and rescues engraftment of AGTR1-/- organoids at d14, as does ectopic expression of VEGF-A. We propose that PT dysgenesis in AR-RTD is primarily a non-autonomous consequence of delayed angiogenesis, starving PT at a critical time in their development.


Assuntos
Angiogênese , Sistema Renina-Angiotensina , Humanos , Animais , Camundongos , Sistema Renina-Angiotensina/genética , Fator A de Crescimento do Endotélio Vascular , Túbulos Renais Proximais/patologia , Organoides
10.
Tissue Cell ; 84: 102188, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567074

RESUMO

Diclofenac, a non-steroidal anti-inflammatory drug, reportedly targets mitochondria and induces nephrotoxicity via reactive oxygen species. However, there are few detailed reports of pathological analyses of mitochondria and the factors that cause acute kidney injury (AKI) as a result of nephrotoxicity. In this study, we investigated mitochondrial damage in the proximal tubule in AKI mice at 6, 12, and 24 h after administration of diclofenac. Statistical analysis of immunohistochemistry results confirmed that expression of p62 and LC3, which is associated with autophagy, reached a maximum level in the degenerated proximal renal tubule 12 h after diclofenac treatment, with high autophagy activity. Electron microscopy images provided clear evidence that confirmed mitochondrial degeneration and injury as well as autophagy (mitophagy) in mitochondria treated with diclofenac. The purpose of this study was to pathologically characterize both mitochondrial damage in the proximal renal tubules induced by diclofenac and the course of mitophagy to remove the damaged mitochondria. This report provides important information regarding mitochondrial damage in the proximal tubules in diclofenac-induced nephropathy.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Camundongos , Animais , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Diclofenaco/toxicidade , Diclofenaco/metabolismo , Injúria Renal Aguda/induzido quimicamente , Mitocôndrias/metabolismo , Autofagia
11.
Kidney Int ; 104(4): 754-768, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37406929

RESUMO

Proteinuria is a prominent feature of chronic kidney disease. Interventions that reduce proteinuria slow the progression of chronic kidney disease and the associated risk of cardiovascular disease. Here, we propose a mechanistic coupling between proteinuria and proprotein convertase subtilisin/kexin type 9 (PCSK9), a regulator of cholesterol and a therapeutic target in cardiovascular disease. PCSK9 undergoes glomerular filtration and is captured by megalin, the receptor responsible for driving protein reabsorption in the proximal tubule. Accordingly, megalin-deficient mice and patients carrying megalin pathogenic variants (Donnai Barrow syndrome) were characterized by elevated urinary PCSK9 excretion. Interestingly, PCSK9 knockout mice displayed increased kidney megalin while PCSK9 overexpression resulted in its reduction. Furthermore, PCSK9 promoted trafficking of megalin to lysosomes in cultured proximal tubule cells, suggesting that PCSK9 is a negative regulator of megalin. This effect can be accelerated under disease conditions since either genetic destruction of the glomerular filtration barrier in podocin knockout mice or minimal change disease (a common cause of nephrotic syndrome) in patients resulted in enhanced tubular PCSK9 uptake and urinary PCSK9 excretion. Pharmacological PCSK9 inhibition increased kidney megalin while reducing urinary albumin excretion in nephrotic mice. Thus, glomerular damage increases filtration of PCSK9 and concomitantly megalin degradation, resulting in escalated proteinuria.


Assuntos
Doenças Cardiovasculares , Síndrome Nefrótica , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Síndrome Nefrótica/patologia , Pró-Proteína Convertase 9/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Doenças Cardiovasculares/metabolismo , Proteinúria/genética , Túbulos Renais Proximais/patologia , Insuficiência Renal Crônica/patologia , Camundongos Knockout , Subtilisinas/metabolismo
12.
BMC Nephrol ; 24(1): 180, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337149

RESUMO

Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus and a leading cause of kidney failure worldwide. Despite its prevalence, the mechanisms underlying early kidney damage in DKD remain poorly understood. In this study, we used single nucleus RNA-seq to construct gene regulatory networks (GRNs) in the kidney cortex of patients with early DKD. By comparing these networks with those of healthy controls, we identify cell type-specific changes in genetic regulation associated with diabetic status. The regulon activities of FXR (NR1H4) and CREB5 were found to be upregulated in kidney proximal convoluted tubule epithelial cells (PCTs), which were validated using immunofluorescence staining in kidney biopsies from DKD patients. In vitro experiments using cultured HK2 cells showed that FXR and CREB5 protected cells from apoptosis and epithelial-mesenchymal transition. Our findings suggest that FXR and CREB5 may be promising targets for early intervention in patients with DKD.


Assuntos
Proteína A de Ligação a Elemento de Resposta do AMP Cíclico , Diabetes Mellitus , Nefropatias Diabéticas , Receptores Citoplasmáticos e Nucleares , Humanos , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/genética , Diabetes Mellitus/genética , Nefropatias Diabéticas/patologia , Regulação da Expressão Gênica , Rim/patologia , Túbulos Renais Proximais/patologia , Regulon , Receptores Citoplasmáticos e Nucleares/genética
13.
Sci Rep ; 13(1): 4025, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899130

RESUMO

Acute kidney injury (AKI) relates to an abrupt reduction in renal function resulting from numerous conditions. Morbidity, mortality, and treatment costs related to AKI are relatively high. This condition is strongly associated with damage to proximal tubule cells (PTCs), generating distinct patterns of transcriptional and epigenetic alterations that result in structural changes in the nuclei of this epithelium. To this date, AKI-related nuclear chromatin redistribution in PTCs is poorly understood, and it is unclear whether changes in PTC chromatin patterns can be detected using conventional microscopy during mild AKI, which can progress to more debilitating forms of injury. In recent years, gray level co-occurrence matrix (GLCM) analysis and discrete wavelet transform (DWT) have emerged as potentially valuable methods for identifying discrete structural changes in nuclear chromatin architecture that are not visible during the conventional histopathological exam. Here we present findings indicating that GLCM and DWT methods can be successfully used in nephrology to detect subtle nuclear morphological alterations associated with mild tissue injury demonstrated in rodents by inducing a mild form of AKI through ischemia-reperfusion injury. Our results show that mild ischemic AKI is associated with the reduction of local textural homogeneity of PTC nuclei quantified by GLCM and the increase of nuclear structural heterogeneity indirectly assessed with DWT energy coefficients. This rodent model allowed us to show that mild ischemic AKI is associated with the significant reduction of textural homogeneity of PTC nuclei, indirectly assessed by GLCM indicators and DWT energy coefficients.


Assuntos
Injúria Renal Aguda , Núcleo Celular , Túbulos Renais Proximais , Injúria Renal Aguda/patologia , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Análise de Ondaletas , Túbulos Renais Proximais/patologia , Núcleo Celular/patologia
14.
J Pathol ; 259(2): 149-162, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373978

RESUMO

Scattered tubular cells (STCs) are a phenotypically distinct cell population in the proximal tubule that increase in number after acute kidney injury. We aimed to characterize the human STC population. Three-dimensional human tissue analysis revealed that STCs are preferentially located within inner bends of the tubule and are barely present in young kidney tissue (<2 years), and their number increases with age. Increased STC numbers were associated with acute tubular injury (kidney injury molecule 1) and interstitial fibrosis (alpha smooth muscle actin). Isolated CD13+ CD24- CD133- proximal tubule epithelial cells (PTECs) and CD13+ CD24+ and CD13+ CD133+ STCs were analyzed using RNA sequencing. Transcriptome analysis revealed an upregulation of nuclear factor κB, tumor necrosis factor alpha, and inflammatory pathways in STCs, whereas metabolism, especially the tricarboxylic acid cycle and oxidative phosphorylation, was downregulated, without showing signs of cellular senescence. Using immunostaining and a publicly available single-cell sequencing database of human kidneys, we demonstrate that STCs represent a heterogeneous population in a transient state. In conclusion, STCs are dedifferentiated PTECs showing a metabolic shift toward glycolysis, which could facilitate cellular survival after kidney injury. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Humanos , Túbulos Renais Proximais/patologia , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Células Epiteliais , Glicólise
15.
Cells ; 11(24)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36552750

RESUMO

Although recent studies have reported that long non-coding RNA (lncRNA) is involved in the development of ischemic acute kidney injury (AKI), the exact function and regulatory mechanism of lncRNAs in ischemic AKI remain largely unknown. Herein, we found that ischemic injury promoted the expression of lncRNA 148400 in mouse proximal tubule-derived cell line (BUMPT) and C57BL/6J mice. Furthermore, the lncRNA148400 mediates ischemic injury-induced apoptosis of BUMPT cells. Mechanistically, lncRNA 148400 sponged miR-10b-3p to promote apoptosis via GRK4 upregulation. Finally, knockdown of lncRNA 148400 alleviated the I/R-induced deterioration of renal function, renal tubular injury, and cell apoptosis. In addition, cleaved caspase-3 is increased via targeting the miR-10b-3p/GRK4 axis. Collectively, these results showed that lncRNA 148400/miR-10b-3p/GRK4 axis mediated the development of ischemic AKI.


Assuntos
Injúria Renal Aguda , Células Epiteliais , Túbulos Renais Proximais , RNA Longo não Codificante , Animais , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Apoptose/genética , Apoptose/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Túbulos Renais Proximais/irrigação sanguínea , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Isquemia/genética , Isquemia/metabolismo
16.
Semin Nephrol ; 42(3): 151286, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36402654

RESUMO

Acute kidney injury (AKI) is a highly prevalent, heterogeneous syndrome, associated with increased short- and long-term mortality. A multitude of different factors cause AKI including ischemia, sepsis, nephrotoxic drugs, and urinary tract obstruction. Upon injury, the kidney initiates an intrinsic repair program that can result in adaptive repair with regeneration of damaged nephrons and functional recovery of epithelial activity, or maladaptive repair and persistence of damaged epithelial cells with a characteristic proinflammatory, profibrotic molecular signature. Maladaptive repair is linked to disease progression from AKI to chronic kidney disease. Despite extensive efforts, no therapeutic strategies provide consistent benefit to AKI patients. Since kidney biopsies are rarely performed in the acute injury phase in humans, most of our understanding of AKI pathophysiology is derived from preclinical AKI models. This raises the question of how well experimental models of AKI reflect the molecular and cellular mechanisms underlying human AKI? Here, we provide a brief overview of available AKI models, discuss their strengths and limitations, and consider important aspects of the AKI response in mice and humans, with a particular focus on the role of proximal tubule cells in adaptive and maladaptive repair.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Injúria Renal Aguda/etiologia , Rim/patologia , Insuficiência Renal Crônica/complicações , Túbulos Renais Proximais/patologia , Néfrons/patologia
17.
Front Immunol ; 13: 979983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059468

RESUMO

Background: Patients after kidney transplantation need to take long-term immunosuppressive and other drugs. Some of these drug side effects are easily confused with the symptoms of Fanconi syndrome, resulting in misdiagnosis and missed diagnosis, and causing serious consequences to patients. Therefore, improving awareness, early diagnosis and treatment of Fanconi syndrome after kidney transplantation is critical. Methods: This retrospective study analyzed 1728 cases of allogeneic kidney transplant patients admitted to the Second Xiangya Hospital of Central South University from July 2016 to January 2021. Two patients with Fanconi syndrome secondary to drugs, adefovir dipivoxil (ADV) and tacrolimus, were screened. We summarized the diagnostic process, clinical data, and prognosis. Results: The onset of Fanconi syndrome secondary to ADV after renal transplantation was insidious, and the condition developed after long-term medication (>10 years). It mainly manifested as bone pain, osteomalacia, and scoliosis in the late stage and was accompanied by obvious proximal renal tubular damage (severe hypophosphatemia, hypokalemia, hypocalcemia, hypouricemia, glycosuria, protein urine, acidosis, etc.) and renal function damage (increased creatinine and azotemia). The pathological findings included mitochondrial swelling and deformity in renal tubular epithelial cells. The above symptoms and signs were relieved after drug withdrawal, but the scoliosis was difficult to rectify. Fanconi syndrome secondary to tacrolimus has a single manifestation, increased creatinine, which can be easily confused with tacrolimus nephrotoxicity. However, it is often ineffective to reduce the dose of tacrolomus, and proximal renal failure can be found in the later stage of disease development. There was no abnormality in the bone metabolism index and imageological examination findings. The creatinine level decreased rapidly, the proximal renal tubule function returned to normal, and no severe electrolyte imbalance or urinary component loss occurred when the immunosuppression was changed from tacrolimus to cyclosporine A. Conclusions: For the first time, drug-induced Fanconi syndrome after kidney transplantation was reported. These results confirmed that the long-term use of ADV or tacrolimus after kidney transplantation may have serious consequences, some of which are irreversible. Greater understanding of Fanconi syndrome after kidney transplantation is necessary in order to avoid incorrect and missed diagnosis.


Assuntos
Anemia de Fanconi , Síndrome de Fanconi , Transplante de Rim , Insuficiência Renal , Escoliose , Aloenxertos , Antivirais/efeitos adversos , Creatinina , Anemia de Fanconi/patologia , Síndrome de Fanconi/induzido quimicamente , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/terapia , Humanos , Transplante de Rim/efeitos adversos , Túbulos Renais Proximais/patologia , Estudos Retrospectivos , Escoliose/induzido quimicamente , Escoliose/patologia , Tacrolimo/efeitos adversos
18.
Kidney Int ; 102(1): 12-13, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738826

RESUMO

Regenerative repair following injury to proximal tubular epithelial cells (PTECs) is essential to restore the kidney to normal function in acute kidney injury. Failure to accomplish this leads to chronic kidney disease. Expression of the paired-box transcription factor Pax2 in PTECs is required for their regenerative proliferation and repair. However, a loss-of-function study now shows that the absence of Pax2 not only impacts PTEC proliferation but also causes myofibroblast recruitment leading to excessive tubulointerstitial fibrosis.


Assuntos
Injúria Renal Aguda , Fator de Transcrição PAX2 , Injúria Renal Aguda/patologia , Animais , Células Epiteliais/metabolismo , Fibrose , Rim/metabolismo , Túbulos Renais Proximais/patologia , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo
19.
Front Immunol ; 13: 857025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603220

RESUMO

Background: Understanding the acute kidney injury (AKI) microenvironment changes and the complex cellular interaction is essential to elucidate the mechanisms and develop new targeted therapies for AKI. Methods: We employed unbiased single-cell RNA sequencing to systematically resolve the cellular atlas of kidney tissue samples from mice at 1, 2 and 3 days after ischemia-reperfusion AKI and healthy control. The single-cell transcriptome findings were validated using multiplex immunostaining, western blotting, and functional experiments. Results: We constructed a systematic single-cell transcriptome atlas covering different AKI timepoints with immune cell infiltration increasing with AKI progression. Three new proximal tubule cells (PTCs) subtypes (PTC-S1-new/PTC-S2-new/PTC-S3-new) were identified, with upregulation of injury and repair-regulated signatures such as Sox9, Vcam1, Egr1, and Klf6 while with downregulation of metabolism. PTC-S1-new exhibited pro-inflammatory and pro-fibrotic signature compared to normal PTC, and trajectory analysis revealed that proliferating PTCs were the precursor cell of PTC-S1-new, and part of PTC-S1-new cells may turn into PTC-injured and then become fibrotic. Cellular interaction analysis revealed that PTC-S1-new and PTC-injured interacted closely with infiltrating immune cells through CXCL and TNF signaling pathways. Immunostaining validated that injured PTCs expressed a high level of TNFRSF1A and Kim-1, and functional experiments revealed that the exogenous addition of TNF-α promoted kidney inflammation, dramatic injury, and specific depletion of TNFRSF1A would abrogate the injury. Conclusions: The single-cell profiling of AKI microenvironment provides new insight for the deep understanding of molecular changes of AKI, and elucidates the mechanisms and developing new targeted therapies for AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/metabolismo , Animais , Células Epiteliais/metabolismo , Fibrose , Túbulos Renais Proximais/patologia , Camundongos , Traumatismo por Reperfusão/patologia
20.
Nephron ; 146(5): 494-502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35272287

RESUMO

BACKGROUND: In 2004, the term acute kidney injury (AKI) was introduced with the intention of broadening our understanding of rapid declines in renal function and to replace the historical terms of acute renal failure and acute tubular necrosis (ATN). Despite this evolution in terminology, the mechanisms of AKI have stayed largely elusive with the pathophysiological concepts of ATN remaining the mainstay in our understanding of AKI. SUMMARY: The proximal tubule (PT), having the highest mitochondrial content in the kidney and relying heavily on oxidative phosphorylation to generate ATP, is vulnerable to ischaemic insults and mitochondrial dysfunction. Histologically, pathological changes in the PT are more consistent than changes to the glomeruli or the loop of Henle in AKI. Physiologically, activation of tubuloglomerular feedback due to PT dysfunction leads to an increase in preglomerular afferent arteriole resistance and a reduction in glomerular filtration. Pharmacologically, frusemide - a drug commonly used in the setting of oliguric AKI - is actively secreted by the PT and its diuretic effect is compromised by its failure to be secreted into the urine and thus be delivered to its site of action at the loop of Henle in AKI. Increases in the urinary, but not plasma biomarkers, of PT injury within 1 h of shock suggest that the PT as the initiation pathogenic target of AKI. KEY MESSAGE: Therapeutic agents targeting specifically the PT epithelial cells, in particular its mitochondria - including amino acid ergothioneine and superoxide scavenger MitoTEMPO - show great promises in ameliorating AKI.


Assuntos
Injúria Renal Aguda , Necrose Tubular Aguda , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Humanos , Rim/patologia , Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA