Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
J Virol Methods ; 327: 114941, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599248

RESUMO

Emerging infectious diseases are a threat that contributes to the decline of global chelonian species. Herpesviruses are among the most impactful pathogens described in chelonians and are frequently associated with a range of presentations across hosts with the potential for severe morbidity and mortality. Trachemys herpesvirus 1 (TrHV1) has been reported in red-eared and yellow-bellied sliders (Trachemys scripta elegans and Trachemys scripta scripta, respectively) but is largely understudied. Invasive red-eared sliders may serve as a reservoir for transmission to sympatric native species. This study aimed to develop a sensitive and specific quantitative real-time PCR (qPCR) assay for the detection of TrHV1 DNA to aid in the characterization of the epidemiology of this virus in aquatic turtles. Two TaqMan-MGB FAM-dye labeled primer-probe sets were designed and evaluated using plasmid dilutions. The higher performing assay was specific for TrHV1 DNA and had a linear dynamic range of 1.0 × 107 to 1.0 × 101 copies per reaction with an R2 of 0.999, slope of -3.386, and efficiency of 97.39%. The limit of detection was 101 copies per reaction, and there was no loss of reaction efficiency in the presence of TrHV1-negative chelonian oral-cloacal DNA. Overall, the Trachemys herpesvirus 1 assay meets established criteria for acceptable qPCR assays and will be a valuable tool in characterizing the epidemiology of Trachemys herpesvirus 1 in chelonians.


Assuntos
Infecções por Herpesviridae , Herpesviridae , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Tartarugas , Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Tartarugas/virologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/virologia , Herpesviridae/genética , Herpesviridae/isolamento & purificação , Herpesviridae/classificação , DNA Viral/genética , DNA Viral/isolamento & purificação , Primers do DNA/genética
2.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675993

RESUMO

Bellinger River virus (BRV) is a serpentovirus (nidovirus) that was likely responsible for the catastrophic mortality of the Australian freshwater turtle Myuchelys georgesi in February 2015. From November 2015 to November 2020, swabs were collected from turtles during repeated river surveys to estimate the prevalence of BRV RNA, identify risk factors associated with BRV infection, and refine sample collection. BRV RNA prevalence at first capture was significantly higher in M. georgesi (10.8%) than in a coexisting turtle, Emydura macquarii (1.0%). For M. georgesi, various risk factors were identified depending on the analysis method, but a positive BRV result was consistently associated with a larger body size. All turtles were asymptomatic when sampled and conjunctival swabs were inferred to be optimal for ongoing monitoring. Although the absence of disease and recent BRV detections suggests a reduced ongoing threat, the potential for the virus to persist in an endemic focus or resurge in cyclical epidemics cannot be excluded. Therefore, BRV is an ongoing potential threat to the conservation of M. georgesi, and strict adherence to biosecurity principles is essential to minimise the risk of reintroduction or spread of BRV or other pathogens.


Assuntos
Espécies em Perigo de Extinção , Tartarugas , Animais , Tartarugas/virologia , Austrália/epidemiologia , Nidovirales/genética , Nidovirales/isolamento & purificação , Infecções por Nidovirales/epidemiologia , Infecções por Nidovirales/veterinária , Infecções por Nidovirales/virologia , Prevalência , Filogenia , Rios/virologia , RNA Viral/genética , Fatores de Risco
3.
Viruses ; 13(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34835000

RESUMO

Using a broad-range nested PCR assay targeting the DNA-dependent DNA polymerase (pol) gene, we detected adenoviruses in 17 (20.48%) out of 83 fecal samples from small Indian mongooses (Urva auropunctata) on the Caribbean island of St. Kitts. All 17 PCR amplicons were sequenced for the partial pol gene (~300 bp, hereafter referred to as Mon sequences). Fourteen of the 17 Mon sequences shared maximum homology (98.3-99.6% and 97-98.9% nucleotide (nt) and deduced amino acid (aa) sequence identities, respectively) with that of bovine adenovirus-6 (species Bovine atadenovirus E). Mongoose-associated adenovirus Mon-39 was most closely related (absolute nt and deduced aa identities) to an atadenovirus from a tropical screech owl. Mon-66 shared maximum nt and deduced aa identities of 69% and 71.4% with those of atadenoviruses from a spur-thighed tortoise and a brown anole lizard, respectively. Phylogenetically, Mon-39 and Mon-66 clustered within clades that were predominated by atadenoviruses from reptiles, indicating a reptilian origin of these viruses. Only a single mongoose-associated adenovirus, Mon-34, was related to the genus Mastadenovirus. However, phylogenetically, Mon-34 formed an isolated branch, distinct from other mastadenoviruses. Since the fecal samples were collected from apparently healthy mongooses, we could not determine whether the mongoose-associated adenoviruses infected the host. On the other hand, the phylogenetic clustering patterns of the mongoose-associated atadenoviruses pointed more towards a dietary origin of these viruses. Although the present study was based on partial pol sequences (~90 aa), sequence identities and phylogenetic analysis suggested that Mon-34, Mon-39, and Mon-66 might represent novel adenoviruses. To our knowledge, this is the first report on the detection and molecular characterization of adenoviruses from the mongoose.


Assuntos
Adenoviridae/classificação , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Herpestidae/virologia , Infecções por Adenoviridae/veterinária , Infecções por Adenoviridae/virologia , Sequência de Aminoácidos , Animais , Atadenovirus/classificação , Atadenovirus/genética , Atadenovirus/isolamento & purificação , DNA Polimerase Dirigida por DNA , Fezes/virologia , Lagartos/virologia , Mastadenovirus/classificação , Mastadenovirus/genética , Mastadenovirus/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Tartarugas/virologia , Índias Ocidentais
4.
Viruses ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452306

RESUMO

Ranaviruses are an important wildlife pathogen of fish, amphibians, and reptiles. Previous studies have shown that susceptibility and severity of infection can vary with age, host species, virus strain, temperature, population density, and presence of environmental stressors. Experiments are limited with respect to interactions between this pathogen and environmental stressors in reptiles. In this study, we exposed hatchling red-eared slider turtles (Trachemys scripta elegans) to herbicide and ranavirus treatments to examine direct effects and interactions on growth, morbidity, and mortality. Turtles were assigned to one of three herbicide treatments or a control group. Turtles were exposed to atrazine, Roundup ProMax®, or Rodeo® via water bath during the first 3 weeks of the experiment. After 1 week, turtles were exposed to either a control (cell culture medium) or ranavirus-infected cell lysate via injection into the pectoral muscles. Necropsies were performed upon death or upon euthanasia after 5 weeks. Tissues were collected for histopathology and detection of ranavirus DNA via quantitative PCR. Only 57.5% of turtles exposed to ranavirus tested positive for ranaviral DNA at the time of death. Turtles exposed to ranavirus died sooner and lost more mass and carapace length, but not plastron length, than did controls. Exposure to environmentally relevant concentrations of herbicides did not impact infection rate, morbidity, or mortality of hatchling turtles due to ranavirus exposure. We also found no direct effects of herbicide or interactions with ranavirus exposure on growth or survival time. Results of this study should be interpreted in the context of the modest ranavirus infection rate achieved, the general lack of growth, and the unplanned presence of an additional pathogen in our study.


Assuntos
Infecções por Vírus de DNA/veterinária , Herbicidas/toxicidade , Ranavirus , Tartarugas/fisiologia , Tartarugas/virologia , Animais , Atrazina/toxicidade , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/mortalidade , Exposição Ambiental , Glicina/análogos & derivados , Glicina/toxicidade , Tartarugas/crescimento & desenvolvimento , Glifosato
5.
Ecohealth ; 18(2): 229-240, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241724

RESUMO

Fibropapillomatosis (FP) is a tumorigenic panzootic disease of sea turtles, most common in green turtles (Chelonia mydas). FP is linked to the chelonid alphaherpesvirus 5 (ChAHV5) and to degraded habitats and, though benign, large tumours can hinder vital functions, causing death. We analyse 108 green turtles, captured in 2018 and 2019, at key foraging grounds in Guinea-Bissau and Mauritania, West Africa, for the presence of FP, and use real-time PCR to detect ChAHV5 DNA, in 76 individuals. The prevalence of FP was moderate; 33% in Guinea-Bissau (n = 36) and 28% in Mauritania (n = 72), and most turtles were mildly affected, possibly due to low human impact at study locations. Juveniles had higher FP prevalence (35%, n = 82) compared to subadults (5%, n = 21), probably because individuals acquire resistance over time. ChAHV5 DNA was detected in 83% (n = 24) of the tumour biopsies, consistent with its role as aetiological agent of FP and in 26% (n = 27) of the 'normal' skin (not showing lesions) from FP turtles. Notably, 45% of the asymptomatic turtles were positive for ChAHV5, supporting multifactorial disease expression. We report the first baselines of FP and ChAHV5 prevalence for West Africa green turtles, essential to assess evolution of disease and future impacts of anthropogenic activities.


Assuntos
Alphaherpesvirinae/patogenicidade , Infecções por Herpesviridae/veterinária , Neoplasias Cutâneas/veterinária , Tartarugas/virologia , África Ocidental/epidemiologia , Alphaherpesvirinae/isolamento & purificação , Animais , DNA Viral/isolamento & purificação , Infecções por Herpesviridae/epidemiologia , Prevalência , Neoplasias Cutâneas/epidemiologia
6.
Gene ; 800: 145800, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34175400

RESUMO

Emerging infectious diseases are a major threat to biodiversity in the 21st century. Fibropapillomatosis (FP) is an epithelial tumor disease that affects immature and adult marine turtles worldwide, particularly green turtles (Chelonia mydas). We know little about the host factors contributing to FP susceptibility, in part because transcriptomic studies that compare transcript expression in turtles with and without FP are lacking. Here, we performed RNA-Seq on healthy skin tissue from immature C. mydas in the Indian River Lagoon, Florida, USA, comparing turtles (1) with and without FP and (2) with and without leech parasites, a putative vector of FP. We assembled a de novo C. mydas skin transcriptome to identify transcripts with significant differential expression (DE) across FP and leech categories. Significant DE transcripts were found across FP and leech comparisons, including 10 of the same transcripts with DE across both comparisons. Leech-positive individuals significantly upregulated different immune and viral interaction transcripts than did leech-negative individuals, including viral interaction transcripts associated with herpesvirus interactions. This finding strengthens the role of marine leeches as mechanical vectors of Chelonid herpesvirus 5 (ChHV5) which has been implicated as a causative agent of FP. FP-positive turtles upregulated several tumor progression and suppression transcripts relative to FP-negative turtles, which had no significant DE tumor progression transcripts. FP-positive turtles also upregulated significantly more protein interaction transcripts than FP-negative turtles. DE transcripts across leech comparisons showed no functional enrichment, whereas DE transcripts across FP comparisons showed some GO terms were enriched in FP-positive and FP negative turtles. Notably, only FP-negative turtles were enriched for GO terms involved in acquired and inflammatory immune gene regulation. Overall, our DE transcripts included several candidate genes that may play important roles in C. mydas resistance to or recovery from FP, highlighting that transcriptomics provides a promising venue to understand this impactful disease. Continued investigation of C. mydas responses to FP and leech affliction is imperative for species persistence and the conservation of marine ecosystems worldwide due to the essential role of sea turtles in ecosystem function and stability.


Assuntos
Neoplasias Cutâneas/veterinária , Tartarugas/genética , Tartarugas/parasitologia , Animais , Florida , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Sanguessugas/virologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma , Tartarugas/imunologia , Tartarugas/virologia
7.
Commun Biol ; 4(1): 565, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980988

RESUMO

Pathogen-induced cancers account for 15% of human tumors and are a growing concern for endangered wildlife. Fibropapillomatosis is an expanding virally and environmentally co-induced sea turtle tumor epizootic. Chelonid herpesvirus 5 (ChHV5) is implicated as a causative virus, but its transmission method and specific role in oncogenesis and progression is unclear. We applied environmental (e)DNA-based viral monitoring to assess viral shedding as a direct means of transmission, and the relationship between tumor burden, surgical resection and ChHV5 shedding. To elucidate the abundance and transcriptional status of ChHV5 across early, established, regrowth and internal tumors we conducted genomics and transcriptomics. We determined that ChHV5 is shed into the water column, representing a likely transmission route, and revealed novel temporal shedding dynamics and tumor burden correlations. ChHV5 was more abundant in the water column than in marine leeches. We also revealed that ChHV5 is latent in fibropapillomatosis, including early stage, regrowth and internal tumors; higher viral transcription is not indicative of poor patient outcome, and high ChHV5 loads predominantly arise from latent virus. These results expand our knowledge of the cellular and shedding dynamics of ChHV5 and can provide insights into temporal transmission dynamics and viral oncogenesis not readily investigable in tumors of terrestrial species.


Assuntos
DNA Ambiental/análise , Herpesviridae/genética , Tartarugas/virologia , Verrugas/transmissão , Animais , Carcinogênese/genética , DNA/genética , Monitoramento Ambiental/métodos , Genômica/métodos , Herpesviridae/patogenicidade , Sanguessugas/genética , Sanguessugas/patogenicidade , Papiloma/etiologia , Papiloma/virologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/virologia , Tartarugas/genética , Eliminação de Partículas Virais/genética , Verrugas/veterinária , Verrugas/virologia
8.
J Zhejiang Univ Sci B ; 22(4): 295-304, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33835763

RESUMO

Trionyx sinensis Hemorrhagic Syndrome Virus (TSHSV) is an arterivirus newly discovered in Chinese softshell turtles. Little is known about the effect of antibodies against the virus or the distribution of the virus in different organs of infected turtles. In this study, a partial protein of TSHSV-HP4 was produced using a prokaryotic expression system, and its polyclonal antibody was generated. The polyclonal antibody was confirmed by western blot and dot enzyme-linked immunosorbent assay (dot-ELISA). The distribution of TSHSV in different organs of T. sinensis was examined by immunohistochemistry (IHC) and the expression of immune-related genes was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). The results indicated that the recombinant TSHSV-HP4 protein was successfully expressed, and the generated polyclonal antibody showed specific binding to viral particles in the lung tissues of infected turtles. The IHC assay indicated that the virus was highly localized in various cells, including intestinal lymphocytes, enterocytes, kidney epithelial cells, spleen cells, lung macrophages, and cardiomyocytes. The qRT-PCR analysis revealed that TSHSV was detected in all organs tested, including the lungs, liver, kidneys, spleen, and heart. The numbers of viral mRNA copies in lung and heart tissues were significantly higher in the virus-antibody group than in the virus group. The interferon-stimulated genes (ISGs), myxovirus resistance protein 2 (MX2) and radical S-adenosyl methionine domain containing 2 (RSAD2) were highly upregulated in all groups of infected turtles. Antibody-dependent enhancement (ADE) seemed to occur after stimulation by the polyclonal antibody, because significantly greater expression of the two genes was detected in the virus-antibody group than in the virus group. Overall, these results are important in understanding the cell localization of TSHSV and the immune response of infected turtles.


Assuntos
Arterivirus/isolamento & purificação , Tartarugas/virologia , Proteínas do Complexo da Replicase Viral/genética , Animais , Arterivirus/enzimologia , Ensaio de Imunoadsorção Enzimática , Pulmão/patologia , RNA Mensageiro/análise , RNA Viral/análise , Proteínas Recombinantes/análise
9.
J Zoo Wildl Med ; 52(1): 223-231, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827180

RESUMO

Adenoviruses have been regularly detected in squamate reptiles; evidence of infection in chelonians is described much less frequently. The adenoviruses found in turtles and tortoises have been genetically diverse, and have included members of the genus Siadenovirus, a proposed testadenovirus genus, and, in a single case, an Atadenovirus. In this study, samples from 949 chelonians submitted to a diagnostic laboratory were screened for the presence of adenoviruses by polymerase chain reaction (PCR) targeting a portion of the DNA polymerase gene. Adenoviruses were detected in 22 (2.3%) chelonians of different species. Adenovirus-positive species included Hermann's tortoises (Testudo hermanni), spur-thighed tortoises (T. graeca), Horsfield's tortoises (T. horsfieldii), sliders (Trachemys spp.), box turtles (Terrapene spp.) and a black pond turtle (Geochlemys hamiltonii). Sequencing and phylogenetic analyses of the obtained PCR products revealed that the majority of the detected adenoviruses (72.7%) cluster with members of the proposed testadenovirus genus, while the rest (27.3%) cluster with the atadenoviruses. This study significantly expands the known host range of both the proposed testadenoviruses and the atadenoviruses in different chelonian species and families.


Assuntos
Infecções por Adenoviridae/veterinária , Adenoviridae/isolamento & purificação , Tartarugas/virologia , Adenoviridae/genética , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/virologia , Animais , Animais Selvagens , Europa (Continente)/epidemiologia , Filogenia
10.
Front Immunol ; 12: 630988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717164

RESUMO

Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.


Assuntos
Perfilação da Expressão Gênica , Infecções por Herpesviridae/veterinária , Transcriptoma , Infecções Tumorais por Vírus/veterinária , Tartarugas/virologia , Fatores Etários , Animais , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Prevalência , Texas/epidemiologia , Infecções Tumorais por Vírus/virologia
11.
Viruses ; 13(2)2021 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572619

RESUMO

Emerging viral disease is a significant concern, with potential consequences for human, animal and environmental health. Over the past several decades, multiple novel viruses have been found in wildlife species, including reptiles, and often pose a major threat to vulnerable species. However, whilst a large number of viruses have been described in turtles, information on poxvirus in cheloniids remains scarce, with no molecular sequence data available to date. This study characterizes, for the first time, a novel poxvirus, here tentatively designated cheloniid poxvirus 1 (ChePV-1). The affected cutaneous tissue, recovered from a green sea turtle (Chelonia mydas) captured off the Central Queensland coast of Australia, underwent histological examination, transmission electron microscopy (TEM), DNA extraction and genomic sequencing. The novel ChePV-1 was shown to be significantly divergent from other known poxviruses and showed the highest sequence similarity (89.3%) to avipoxviruses (shearwater poxvirus 2 (SWPV2)). This suggests the novel ChePV-1 may have originated from a common ancestor that diverged from an avipoxvirus-like progenitor. The genome contained three predicted unique genes and a further 15 genes being truncated/fragmented compared to SWPV2. This is the first comprehensive study that demonstrates evidence of poxvirus infection in a marine turtle species, as well as a rare example of an avipoxvirus crossing the avian-host barrier. This finding warrants further investigations into poxvirus infections between species in close physical proximity, as well as in vitro and in vivo studies of pathogenesis and disease.


Assuntos
Doenças Transmissíveis Emergentes/veterinária , Infecções por Poxviridae/veterinária , Tartarugas/virologia , Animais , Austrália , Doenças Transmissíveis Emergentes/virologia , Filogenia , Poxviridae/classificação , Poxviridae/genética , Poxviridae/isolamento & purificação , Infecções por Poxviridae/virologia
12.
PLoS One ; 15(10): e0241414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119713

RESUMO

Pathogen-host interactions are important components of epidemiological research, but are scarcely investigated in chelonians. Red-eared sliders (Trachemys scripta elegans), are recognized as a model for frog virus-3 infection (FV3), a ranavirus in the family Iridoviridae that infects multiple classes of ectothermic vertebrates. Previous challenge studies observed differences in disease outcome based on environmental temperature in this species, but the host response was minimally evaluated. We challenged red-eared sliders with an FV3-like ranavirus at both 28°C and 22°C. We monitored several host response variables for 30 days, including: survival (binary outcome and duration), clinical signs, total and differential leukocytes, and select cytokine transcription in the buffy coat (IL-1ß, TNFα, IFYg, IL-10). After 30 days, 17% of challenged turtles survived at 28°C (Median survival time [MST]: 15 days, range: 10-30 days) and 50% survived (MST: 28.5 days, range: 23-30 days) at 22°C (range 23-30 days). The most common clinical signs were injection site swelling, palpebral swelling, and lethargy. The heterophil/lymphocyte ratio at 22°C and interleukin-1 beta (IL1ß) transcription at both 22°C and 28°C were significantly greater on days 9, 16, and 23 in FV3 challenged groups. Tumor necrosis factor alpha and interleukin-10 were transcribed at detectable levels, but did not display significant differences in mean relative transcription quantity over time. Overall, evidence indicates an over-robust immune response leading to death in the challenged turtles. FV3 remains a risk for captive and free-ranging chelonian populations, and insight to host/pathogen interaction through this model helps to elucidate the timing and intensity of the host response that contribute to mortality.


Assuntos
Citocinas/metabolismo , Testes Hematológicos , Interações entre Hospedeiro e Microrganismos , Ranavirus/fisiologia , Temperatura , Tartarugas/sangue , Tartarugas/metabolismo , Animais , Tartarugas/virologia
13.
Ecohealth ; 17(2): 258-263, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32661638

RESUMO

The Chelonid herpesvirus 5 (ChHV5) is the primary etiological agent associated with fibropapillomatosis (FP), a neoplastic disease in marine turtles. In this study, we report for the first time ChHV5 in marine turtles and a leech from Baja California Peninsula. Eighty-seven black, olive or loggerhead turtle species, one FP tumor and five leeches were analyzed. The tumor sample from an olive, a skin sample from a black and a leech resulted positive of ChHV5 for conventional PCR. Two viral variants were identified and grouped within the Eastern Pacific phylogenetic group, suggesting a possible flow of the virus in this region.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae/veterinária , Tartarugas/virologia , Animais , Herpesviridae , Infecções por Herpesviridae/epidemiologia , México/epidemiologia
14.
Parasit Vectors ; 13(1): 201, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32307010

RESUMO

BACKGROUND: Recent reports have demonstrated the presence of Crimean-Congo hemorrhagic fever virus (CCHFV) genomic material in Hyalomma aegyptium ticks feeding primarily on tortoises belonging to the genus Testudo. This raises the question if these ticks and their hosts play a role in the natural transmission dynamics of CCHFV. However, the studies are limited, and assessing the relevance of H. aegyptium in perpetuating the virus in nature, and a potential spillover to humans remains unknown. This study aimed to detect CCHFV in H. aegyptium ticks and their tortoise hosts in the East Thrace region of Turkey, where H. aegyptium is the most common human-biting tick and where a high density of tortoises of the genus Testudo can be found. METHODS: During the study period, 21 blood samples from different tortoises (2 T. hermanni and 19 T. graeca), 106 tick pools (containing 448 males, 152 females, 93 nymphs and 60 larvae) collected from 65 tortoises (5 T. hermanni and 60 T. graeca), 38 adult unfed questing ticks (25 males and 13 females, screened individually) and 14 pools (containing 8 nymphs and 266 larvae) of immature unfed questing ticks collected from the ground were screened for CCHFV genome by nested PCR and partial genomes sequenced. RESULTS: As a result of the screening of these 179 samples, 17 (9.5%) were detected as positive as follows: 2 of 21 blood samples (9.52%), 13 (containing 18 nymphs in 3 pools, and 52 males and 8 females in 10 pools) of 106 tick pools from tortoises (12.26%), and 2 of 38 adult questing ticks (5.26%). No positive result was determined in 14 pools of immature questing ticks. CONCLUSIONS: Previous studies have shown that reptiles can participate in the transmission of arthropod-borne viruses, but they may contribute to different aspects of the disease ecology and evolution of tick-borne viral pathogens. Our results indicate the presence of CCHFV in questing and feeding H. aegyptium ticks as well as tortoise hosts. This may indicate that CCHFV circulates in a cryptic transmission cycle in addition to the primary transmission cycle that could play a role in the natural dynamic of the virus and the transmission to humans.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia/transmissão , Carrapatos/virologia , Tartarugas/virologia , Zoonoses/virologia , Animais , Vetores Aracnídeos/virologia , DNA Viral , Reservatórios de Doenças/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Turquia/epidemiologia , Tartarugas/parasitologia
15.
Virology ; 543: 76-83, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174301

RESUMO

Ranaviruses have been associated with chelonian mortality. In Canada, the first two cases of ranavirus were detected in turtles in 2018 in Ontario, although a subsequent survey of its prevalence failed to detect additional positive cases. To confirm the prevalence of ranavirus in turtles in Ontario, we used a more sensitive method to investigate if lower level persistent infection was present in the population. Here we report results via a combination of qPCR, PCR, Sanger sequencing and genome sequencing from turtles from across Ontario, with no clinical signs of illness. We found 2 positives with high viral load and 5 positives with low viral load. Histopathology found subtle histological changes. DNA sequences identified two types of frog virus 3 (FV3), and genome sequencing identified a ranavirus similar to wild-type FV3. Our results show that the virus has been present in Ontario's turtles as subclinical infections.


Assuntos
Infecções por Vírus de DNA/veterinária , Ranavirus/genética , Tartarugas/virologia , Animais , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/patologia , Água Doce , Ontário , Filogenia , Prevalência , Ranavirus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral/genética , Carga Viral/veterinária
16.
J Med Virol ; 92(6): 595-601, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100877

RESUMO

From the beginning of 2002 and 2012, severe respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) crossed the species barriers to infect humans, causing thousands of infections and hundreds of deaths, respectively. Currently, a novel coronavirus (SARS-CoV-2), which has become the cause of the outbreak of Coronavirus Disease 2019 (COVID-19), was discovered. Until 18 February 2020, there were 72 533 confirmed COVID-19 cases (including 10 644 severe cases) and 1872 deaths in China. SARS-CoV-2 is spreading among the public and causing substantial burden due to its human-to-human transmission. However, the intermediate host of SARS-CoV-2 is still unclear. Finding the possible intermediate host of SARS-CoV-2 is imperative to prevent further spread of the epidemic. In this study, we used systematic comparison and analysis to predict the interaction between the receptor-binding domain (RBD) of coronavirus spike protein and the host receptor, angiotensin-converting enzyme 2 (ACE2). The interaction between the key amino acids of S protein RBD and ACE2 indicated that, other than pangolins and snakes, as previously suggested, turtles (Chrysemys picta bellii, Chelonia mydas, and Pelodiscus sinensis) may act as the potential intermediate hosts transmitting SARS-CoV-2 to humans.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Receptores Virais/química , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/classificação , Betacoronavirus/patogenicidade , Sítios de Ligação , COVID-19 , China/epidemiologia , Quirópteros/virologia , Infecções por Coronavirus/virologia , Eutérios/virologia , Humanos , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Filogenia , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2 , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serpentes/virologia , Glicoproteína da Espícula de Coronavírus/classificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tartarugas/virologia
17.
J Wildl Dis ; 56(3): 679-683, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32053413

RESUMO

Emerging pathogens may pose additional threats to already vulnerable populations of chelonians, such as gopher tortoises (Gopherus polyphemus). In response to a mortality event on a translocation site in northwest Florida, US during 2013-15, 13 gopher tortoises were necropsied and their tissues were screened for 12 pathogens, including Mycoplasma agassizii, Mycoplasma testudineum, and Frog virus 3-like ranavirus (FV3). The DNA of FV3 was detected via quantitative PCR in the gastrointestinal tract of three tortoises. Subsequently, pathogen surveillance was performed on whole blood and oral-cloacal swab samples of live translocated tortoises from two different enclosures within the site (n=68), rehabilitated tortoises from the site (n=18), and tortoises prior to release on site (n=35) during 2015-17. Mycoplasma spp. were present in all groups and years of live tortoises tested. The DNA of FV3 was detected in 15 individuals both with and without clinical signs of disease in 2016. We recaptured 20 tortoises and captured an additional 20 tortoises in 2017 for surveillance, yet FV3 DNA was no longer detected, even in those that had previously tested positive (n=7). The results of this study contribute to the epidemiology of ranavirus in chelonians and suggests that gopher tortoises could be reservoirs for FV3. We recommend that the status of Ranavirus infection should be included for health screens for gopher tortoises in translocation programs.


Assuntos
Infecções por Vírus de DNA/veterinária , Ranavirus/isolamento & purificação , Tartarugas/virologia , Animais , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Florida/epidemiologia , Mycoplasma/isolamento & purificação , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/veterinária , Vigilância da População
18.
Viruses ; 12(2)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991902

RESUMO

The Sonoran Desert tortoise Gopherus morafkai is adapted to the desert, and plays an important ecological role in this environment. There is limited information on the viral diversity associated with tortoises (family Testudinidae), and to date no DNA virus has been identified associated with these animals. This study aimed to assess the diversity of DNA viruses associated with the Sonoran Desert tortoise by sampling their fecal matter. A viral metagenomics approach was used to identify the DNA viruses in fecal samples from wild Sonoran Desert tortoises in Arizona, USA. In total, 156 novel single-stranded DNA viruses were identified from 40 fecal samples. Those belonged to two known viral families, the Genomoviridae (n = 27) and Microviridae (n = 119). In addition, 10 genomes were recovered that belong to the unclassified group of circular-replication associated protein encoding single-stranded (CRESS) DNA virus and five circular molecules encoding viral-like proteins.


Assuntos
Vírus de DNA/isolamento & purificação , Fezes/virologia , Tartarugas/virologia , Animais , Arizona , Vírus de DNA/classificação , Vírus de DNA/genética , DNA Circular , DNA de Cadeia Simples/genética , Genoma Viral , Microviridae/classificação , Microviridae/genética , Microviridae/isolamento & purificação , Microvirus/classificação , Microvirus/genética , Microvirus/isolamento & purificação , Filogenia , Recombinação Genética , Proteínas Virais/genética
19.
J Zoo Wildl Med ; 50(4): 769-777, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31926506

RESUMO

Eastern box turtles (Terrapene carolina carolina) are a native North American species with a declining population trend that may be attributable to habitat fragmentation, vehicle collisions, and disease. Adenoviral infections can cause significant morbidity and mortality in captive reptile populations. Adenoviruses have been documented in box turtles, but their occurrence and impact in wild populations are unknown. A disease survey was performed at The Wildlife Center of Virginia, USA, to assess the prevalence of box turtle adenovirus (BTAdV) in wild eastern box turtles and evaluate potential associations with clinical disease. Swabs from the oral cavity, including the choanal slit, and the cloaca were collected from 106 eastern box turtles from July 2015 through June 2016. The quantitative polymerase chain reaction (qPCR) primer detected both ornate box turtle adenovirus 1 and eastern box turtle adenovirus. The resulting qPCR adenovirus prevalence was 55.7% (n = 59). Most animals (99.3%) that tested positive for BTAdV had fewer than 100 viral copies/ng DNA. This study did not find a statistically significant association between cause of admission, age, sex, outcome, and BTAdV qPCR status. However, the probability of BTAdV detection was 1.5 times higher in rehabilitation turtles compared with wild turtles (P = 0.01). Albumin was significantly lower in qPCR BTAdV-positive turtles (P = 0.007). Hypoalbuminemia is not generally associated with adenovirus infections in other species, and no obvious clinical cause for this abnormality was identified. The results of this study suggest that eastern box turtles may harbor BTAdV infections at low levels and that infection is rarely associated with clinical disease, potentially identifying BTAdV as a host-adapted pathogen. Future studies should focus on this pathogen's ability to induce clinical disease and its potential impact on recovery efforts for this species.


Assuntos
Infecções por Adenoviridae/veterinária , Adenoviridae/classificação , Adenoviridae/isolamento & purificação , Tartarugas/virologia , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/virologia , Animais , Animais Selvagens , DNA Viral/genética , DNA Viral/isolamento & purificação , Feminino , Masculino , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/veterinária , Prevalência , Sensibilidade e Especificidade , Virginia/epidemiologia
20.
PLoS One ; 15(1): e0227268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917785

RESUMO

Fibropapillomatosis (FP) is a marine turtle disease recognised by benign tumours on the skin, eyes, shell, oral cavity and/or viscera. Despite being a globally distributed disease that affects an endangered species, research on FP and its likely causative agent chelonid alphaherpesvirus 5 (ChHV5) in Australia is limited. Here we present improved molecular assays developed for detection of ChHV5, in combination with a robust molecular and phylogenetic analysis of ChHV5 variants. This approach utilised a multi-gene assay to detect ChHV5 in all FP tumors sampled from 62 marine turtles found at six foraging grounds along the Great Barrier Reef. Six distinct variants of ChHV5 were identified and the distribution of these variants was associated with host foraging ground. Conversely, no association between host genetic origin and ChHV5 viral variant was found. Together this evidence supports the hypothesis that marine turtles undergo horizontal transmission of ChHV5 at foraging grounds and are unlikely to be contracting the disease at rookeries, either during mating or vertically from parent to offspring.


Assuntos
Alphaherpesvirinae/patogenicidade , Organismos Aquáticos/virologia , Espécies em Perigo de Extinção , Infecções por Herpesviridae/veterinária , Tartarugas/virologia , Alphaherpesvirinae/genética , Alphaherpesvirinae/isolamento & purificação , Animais , DNA Viral/genética , DNA Viral/isolamento & purificação , Conjuntos de Dados como Assunto , Transferência Genética Horizontal , Infecções por Herpesviridae/transmissão , Infecções por Herpesviridae/virologia , Oceano Pacífico , Filogenia , Reação em Cadeia da Polimerase , Queensland
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA