Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.575
Filtrar
1.
Sci Rep ; 14(1): 14862, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937562

RESUMO

Tactile Imagery (TI) remains a fairly understudied phenomenon despite growing attention to this topic in recent years. Here, we investigated the effects of TI on corticospinal excitability by measuring motor evoked potentials (MEPs) induced by single-pulse transcranial magnetic stimulation (TMS). The effects of TI were compared with those of tactile stimulation (TS) and kinesthetic motor imagery (kMI). Twenty-two participants performed three tasks in randomly assigned order: imagine finger tapping (kMI); experience vibratory sensations in the middle finger (TS); and mentally reproduce the sensation of vibration (TI). MEPs increased during both kMI and TI, with a stronger increase for kMI. No statistically significant change in MEP was observed during TS. The demonstrated differential effects of kMI, TI and TS on corticospinal excitability have practical implications for devising the imagery-based and TS-based brain-computer interfaces (BCIs), particularly the ones intended to improve neurorehabilitation by evoking plasticity changes in sensorimotor circuitry.


Assuntos
Potencial Evocado Motor , Imaginação , Tato , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Potencial Evocado Motor/fisiologia , Adulto , Imaginação/fisiologia , Adulto Jovem , Tato/fisiologia , Tratos Piramidais/fisiologia , Dedos/fisiologia , Córtex Motor/fisiologia , Vibração , Interfaces Cérebro-Computador
2.
Sci Rep ; 14(1): 14600, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918449

RESUMO

Spontaneous touches of one's face (sFST) were suggested to serve cognitive-emotional regulation processes. During the pandemic, refraining from face-touching was recommended, yet, accompanying effects and the influence of personal attributes remain unclear. Ninety participants (45 female, 45 male) filled out a questionnaire concerning personality, anxiety screening and ADHD screening. Subsequently, they performed a delayed verbal memory recall task four times. After two times, sixty participants were instructed to refrain from face-touching (experimental group). Thirty participants did not receive behavioral instructions (control group). To identify face-touches and conduct further analysis, Video, EMG, and EEG data were recorded. Two samples were formed, depending on the adherence to completely refrain from face-touching (adherent, non-adherent sample) and compared to each other and the control group. EEG analyses uncovered that refraining from face-touching is accompanied by increased beta-power at sensorimotor sites and, exclusively in the non-adherent sample, at frontal sites. Decreased memory performance was found exclusively in subsamples, who non-adherently touched their face while retaining words. In terms of questionnaire results, lower Conscientiousness and higher ADHD screening scores were revealed by the non-adherent compared to the adherent sample. No differences were found among the subsamples. The presented results indicate that refraining from face-touching is related to personal attributes, accompanied by neurophysiological shifts and for a portion of humans by lower memory performance, supporting the notion that sFST serve processes beyond sensorimotor.


Assuntos
Eletroencefalografia , Personalidade , Humanos , Feminino , Masculino , Personalidade/fisiologia , Adulto , Adulto Jovem , Memória/fisiologia , Face/fisiologia , Tato/fisiologia , Inquéritos e Questionários
3.
Artigo em Inglês | MEDLINE | ID: mdl-38885098

RESUMO

The loss of sensitivity of the upper limb due to neurological injuries severely limits the ability to manipulate objects, hindering personal independence. Non-invasive augmented sensory feedback techniques are used to promote neural plasticity hence to restore the grasping function. This work presents a wearable device for restoring sensorimotor hand functions based on Discrete Event-driven Sensory Control policy. It consists of an instrumented glove that, relying on piezoelectric sensors, delivers short-lasting vibrotactile stimuli synchronously with the relevant mechanical events (i.e., contact and release) of the manipulation. We first performed a feasibility study on healthy participants (20) that showed overall good performances of the device, with touch-event detection accuracy of 96.2% and a response delay of 22 ms. Later, we pilot tested it on two participants with limited sensorimotor functions. When using the device, they improved their hand motor coordination while performing tests for hand motor coordination assessment (i.e., pick and place test, pick and lift test). In particular, they exhibited more coordinated temporal correlations between grip force and load force profiles and enhanced performances when transferring objects, quantitatively proving the effectiveness of the device.


Assuntos
Estudos de Viabilidade , Retroalimentação Sensorial , Força da Mão , Mãos , Voluntários Saudáveis , Dispositivos Eletrônicos Vestíveis , Humanos , Retroalimentação Sensorial/fisiologia , Masculino , Mãos/fisiologia , Força da Mão/fisiologia , Adulto , Feminino , Adulto Jovem , Desempenho Psicomotor/fisiologia , Tato/fisiologia , Vibração , Desenho de Equipamento , Projetos Piloto
4.
Artigo em Inglês | MEDLINE | ID: mdl-38885096

RESUMO

Peripheral nerve stimulation (PNS) is an effective means to elicit sensation for rehabilitation of people with loss of a limb or limb function. While most current PNS paradigms deliver current through single electrode contacts to elicit each tactile percept, multi-contact extraneural electrodes offer the opportunity to deliver PNS with groups of contacts individually or simultaneously. Multi-contact PNS strategies could be advantageous in developing biomimetic PNS paradigms to recreate the natural neural activity during touch, because they may be able to selectively recruit multiple distinct neural populations. We used computational models and optimization approaches to develop a novel biomimetic PNS paradigm that uses interleaved multi-contact (IMC) PNS to approximate the critical neural coding properties underlying touch. The IMC paradigm combines field shaping, in which two contacts are active simultaneously, with pulse-by-pulse contact and parameter variations throughout the touch stimulus. We show in simulation that IMC PNS results in better neural code mimicry than single contact PNS created with the same optimization techniques, and that field steering via two-contact IMC PNS results in better neural code mimicry than one-contact IMC PNS. We also show that IMC PNS results in better neural code mimicry than existing PNS paradigms, including prior biomimetic PNS. Future clinical studies will determine if the IMC paradigm can improve the naturalness and usefulness of sensory feedback for those with neurological disorders.


Assuntos
Simulação por Computador , Nervos Periféricos , Tato , Humanos , Tato/fisiologia , Nervos Periféricos/fisiologia , Modelos Neurológicos , Biomimética , Algoritmos , Eletrodos , Estimulação Elétrica Nervosa Transcutânea/métodos , Percepção do Tato/fisiologia
5.
Nature ; 630(8018): 926-934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898273

RESUMO

Krause corpuscles, which were discovered in the 1850s, are specialized sensory structures found within the genitalia and other mucocutaneous tissues1-4. The physiological properties and functions of Krause corpuscles have remained unclear since their discovery. Here we report the anatomical and physiological properties of Krause corpuscles of the mouse clitoris and penis and their roles in sexual behaviour. We observed a high density of Krause corpuscles in the clitoris compared with the penis. Using mouse genetic tools, we identified two distinct somatosensory neuron subtypes that innervate Krause corpuscles of both the clitoris and penis and project to a unique sensory terminal region of the spinal cord. In vivo electrophysiology and calcium imaging experiments showed that both Krause corpuscle afferent types are A-fibre rapid-adapting low-threshold mechanoreceptors, optimally tuned to dynamic, light-touch and mechanical vibrations (40-80 Hz) applied to the clitoris or penis. Functionally, selective optogenetic activation of Krause corpuscle afferent terminals evoked penile erection in male mice and vaginal contraction in female mice, while genetic ablation of Krause corpuscles impaired intromission and ejaculation of males and reduced sexual receptivity of females. Thus, Krause corpuscles of the clitoris and penis are highly sensitive mechanical vibration detectors that mediate sexually dimorphic mating behaviours.


Assuntos
Clitóris , Mecanorreceptores , Optogenética , Ereção Peniana , Pênis , Comportamento Sexual Animal , Vibração , Animais , Feminino , Masculino , Camundongos , Clitóris/inervação , Clitóris/fisiologia , Pênis/inervação , Pênis/fisiologia , Mecanorreceptores/fisiologia , Ereção Peniana/fisiologia , Comportamento Sexual Animal/fisiologia , Copulação/fisiologia , Ejaculação/fisiologia , Medula Espinal/fisiologia , Medula Espinal/citologia , Vagina/citologia , Vagina/fisiologia , Tato/fisiologia
6.
PLoS One ; 19(6): e0304417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865322

RESUMO

Touch offers important non-verbal possibilities for socioaffective communication. Yet most digital communications lack capabilities regarding exchanging affective tactile messages (tactile emoticons). Additionally, previous studies on tactile emoticons have not capitalised on knowledge about the affective effects of certain mechanoreceptors in the human skin, e.g., the C-Tactile (CT) system. Here, we examined whether gentle manual stroking delivered in velocities known to optimally activate the CT system (defined as 'tactile emoticons'), during lab-simulated social media communications could convey increased feelings of social support and other prosocial intentions compared to (1) either stroking touch at CT sub-optimal velocities, or (2) standard visual emoticons. Participants (N = 36) felt more social intent with CT-optimal compared to sub-optimal velocities, or visual emoticons. In a second, preregistered study (N = 52), we investigated whether combining visual emoticons with tactile emoticons, this time delivered at CT-optimal velocities by a soft robotic device, could enhance the perception of prosocial intentions and affect participants' physiological measures (e.g., skin conductance rate) in comparison to visual emoticons alone. Visuotactile emoticons conveyed more social intent overall and in anxious participants affected physiological measures more than visual emoticons. The results suggest that emotional social media communications can be meaningfully enhanced by tactile emoticons.


Assuntos
Emoções , Robótica , Mídias Sociais , Tato , Humanos , Masculino , Feminino , Emoções/fisiologia , Adulto , Tato/fisiologia , Adulto Jovem , Intenção , Percepção do Tato/fisiologia , Comunicação
8.
Sci Rep ; 14(1): 13690, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871744

RESUMO

Touch plays a crucial role for humans. Despite its centrality in sensory experiences, the field of haptic aesthetics is underexplored. So far, existing research has revealed that preferences in the haptic domain are related to stimulus properties and the Gestalt laws of grouping. Additionally, haptic aesthetics is influenced by top-down processes, e.g., stimulus familiarity, and is likely to be modulated by personality and expertise. To further our understanding of these influences on haptic aesthetic appraisal, the current study investigated the imagined haptic aesthetic appeal of visually presented material surfaces, considering the role of haptic expertise, Need for touch, personality traits. The results revealed a positive influence of familiarity, simplicity, smoothness, warmth, lightness, dryness, slipperiness and a negative influence of complexity on individuals' aesthetic responses. While the study failed to support the predicted influence of Need for touch and haptic expertise on aesthetic responses, results did reveal an influence of openness to experience, conscientiousness and neuroticism. Despite the limitations related to the indirect stimuli presentation (vision only), the findings contribute to the relatively unexplored role of bottom-up and top-down features in haptic aesthetics that might be incorporated into the design of consumers' products to better meet their preferences.


Assuntos
Estética , Humanos , Feminino , Masculino , Adulto , Estética/psicologia , Adulto Jovem , Individualidade , Tato/fisiologia , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa , Personalidade , Adolescente
9.
PLoS One ; 19(6): e0288670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870182

RESUMO

Through our respiratory system, many viruses and diseases frequently spread and pass from one person to another. Covid-19 served as an example of how crucial it is to track down and cut back on contacts to stop its spread. There is a clear gap in finding automatic methods that can detect hand-to-face contact in complex urban scenes or indoors. In this paper, we introduce a computer vision framework, called FaceTouch, based on deep learning. It comprises deep sub-models to detect humans and analyse their actions. FaceTouch seeks to detect hand-to-face touches in the wild, such as through video chats, bus footage, or CCTV feeds. Despite partial occlusion of faces, the introduced system learns to detect face touches from the RGB representation of a given scene by utilising the representation of the body gestures such as arm movement. This has been demonstrated to be useful in complex urban scenarios beyond simply identifying hand movement and its closeness to faces. Relying on Supervised Contrastive Learning, the introduced model is trained on our collected dataset, given the absence of other benchmark datasets. The framework shows a strong validation in unseen datasets which opens the door for potential deployment.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/isolamento & purificação , Tato/fisiologia , Aprendizado Profundo , Mãos/fisiologia , Busca de Comunicante/métodos , Aprendizado de Máquina Supervisionado , Gestos , Face
10.
J Neuroeng Rehabil ; 21(1): 99, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851741

RESUMO

PURPOSE: Accurate perception of tactile stimuli is essential for performing and learning activities of daily living. Through this scoping review, we sought to summarize existing examination approaches for identifying tactile deficits at the upper extremity in individuals with stroke. The goal was to identify current limitations and future research needs for designing more comprehensive examination tools. METHODS: A scoping review was conducted in accordance with the Joanna Briggs Institute methodological framework and the PRISMA for Scoping Reviews (PRISMA-ScR) guidelines. A database search for tactile examination approaches at the upper extremity of individuals with stroke was conducted using Medline (Ovid), The Cochrane Library (Wiley), CINAHL Plus with Full Text (Ebsco), Scopus (Elsevier), PsycInfo (Ebsco), and Proquest Dissertations and Theses Global. Original research and review articles that involved adults (18 years or older) with stroke, and performed tactile examinations at the upper extremity were eligible for inclusion. Data items extracted from the selected articles included: if the examination was behavioral in nature and involved neuroimaging, the extent to which the arm participated during the examination, the number of possible outcomes of the examination, the type(s) of tactile stimulation equipment used, the location(s) along the arm examined, the peripheral nerves targeted for examination, and if any comparison was made with the non-paretic arm or with the arms of individuals who are neurotypical. RESULTS: Twenty-two articles met the inclusion criteria and were accepted in this review. Most examination approaches were behavioral in nature and involved self-reporting of whether a tactile stimulus was felt while the arm remained passive (i.e., no volitional muscle activity). Typically, the number of possible outcomes with these behavioral approaches were limited (2-3), whereas the neuroimaging approaches had many more possible outcomes ( > 15 ). Tactile examinations were conducted mostly at the distal locations along the arm (finger or hand) without targeting any specific peripheral nerve. Although a majority of articles compared paretic and non-paretic arms, most did not compare outcomes to a control group of individuals who are neurotypical. DISCUSSION: Our findings noted that most upper extremity tactile examinations are behavioral approaches, which are subjective in nature, lack adequate resolution, and are insufficient to identify the underlying neural mechanisms of tactile deficits. Also, most examinations are administered at distal locations of the upper extremity when the examinee's arm is relaxed (passive). Further research is needed to develop better tactile examination tools that combine behavioral responses and neurophysiological outcomes, and allow volitional tactile exploration. Approaches that include testing of multiple body locations/nerves along the upper extremity, provide higher resolution of outcomes, and consider normative comparisons with individuals who are neurotypical may provide a more comprehensive understanding of the tactile deficits occurring following a stroke.


Assuntos
Acidente Vascular Cerebral , Extremidade Superior , Humanos , Extremidade Superior/fisiopatologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/diagnóstico , Percepção do Tato/fisiologia , Tato/fisiologia
11.
Nat Commun ; 15(1): 5337, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914540

RESUMO

Neuromuscular control of bionic arms has constantly improved over the past years, however, restoration of sensation remains elusive. Previous approaches to reestablish sensory feedback include tactile, electrical, and peripheral nerve stimulation, however, they cannot recreate natural, intuitive sensations. Here, we establish an experimental biological sensorimotor interface and demonstrate its potential use in neuroprosthetics. We transfer a mixed nerve to a skeletal muscle combined with glabrous dermal skin transplantation, thus forming a bi-directional communication unit in a rat model. Morphological analyses indicate reinnervation of the skin, mechanoreceptors, NMJs, and muscle spindles. Furthermore, sequential retrograde labeling reveals specific sensory reinnervation at the level of the dorsal root ganglia. Electrophysiological recordings show reproducible afferent signals upon tactile stimulation and tendon manipulation. The results demonstrate the possibility of surgically creating an interface for both decoding efferent motor control, as well as encoding afferent tactile and proprioceptive feedback, and may indicate the way forward regarding clinical translation of biological communication pathways for neuroprosthetic applications.


Assuntos
Biônica , Músculo Esquelético , Animais , Ratos , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Retroalimentação Sensorial/fisiologia , Propriocepção/fisiologia , Gânglios Espinais/fisiologia , Mecanorreceptores/fisiologia , Fusos Musculares/fisiologia , Masculino , Feminino , Tato/fisiologia , Pele/inervação
12.
PLoS One ; 19(6): e0302564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865320

RESUMO

We investigated the effect of tactile guided slow deep breathing compared with that of spontaneous breathing on blood oxygen saturation (SpO2), alertness, and hypoxia symptoms during acute hypobaric hypoxia. We also evaluated the usability of this tactile breathing guidance. Twelve male military pilots were exposed to a simulated altitude of 4,572 m (15,000 ft) in a repeated measures study while breathing spontaneously and during tactile guided slow deep breathing. Under both breathing conditions, measurements were performed at rest and during the performance of a cognitive task. The Stanford Sleepiness Scale was used to rate alertness, and hypoxia symptoms were reported using a list of general hypoxia symptoms. Usability was evaluated in a questionnaire. Tactile guidance of slow deep breathing significantly increased (p <.001) the SpO2 - 88% (95% confidence interval (CI) [84%, 91%]) at rest and 85% (95% CI [81%, 88%]) during the cognitive task - compared with spontaneous breathing - 78% (95% CI [75%, 81%]) at rest and 78% (95% CI [76%, 80%]) during the cognitive task. This increase in SpO2 had no effect on the level of alertness and number of hypoxia symptoms. Pilots were positive about the intensity and sensation of the vibration signal, but had difficulty following the vibration pattern during the cognitive task. Pre-training may improve slow deep breathing technique during performance of cognitive tasks.


Assuntos
Hipóxia , Saturação de Oxigênio , Respiração , Humanos , Masculino , Hipóxia/fisiopatologia , Adulto , Saturação de Oxigênio/fisiologia , Militares , Tato/fisiologia , Cognição/fisiologia , Adulto Jovem , Pilotos , Altitude
13.
Sci Robot ; 9(91): eadk3925, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865475

RESUMO

Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.


Assuntos
Elastômeros , Condutividade Elétrica , Psicofísica , Tato , Humanos , Tato/fisiologia , Adulto , Feminino , Masculino , Desenho de Equipamento , Estimulação Elétrica , Adulto Jovem , Polímeros , Eletrodos , Calibragem , Percepção do Tato/fisiologia
14.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768347

RESUMO

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Assuntos
Tato , Realidade Virtual , Tecnologia sem Fio , Humanos , Tecnologia sem Fio/instrumentação , Tato/fisiologia , Pele , Robótica/instrumentação , Robótica/métodos
15.
Plant Signal Behav ; 19(1): 2360296, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38808631

RESUMO

Rainfall, wind and touch, as mechanical forces, were mimicked on 6-week-old soil-grown tomato and potato under controlled conditions. Expression level changes of xyloglucan endotransglucosylase/hydrolase genes (XTHs) of tomato (Solanum lycopersicum L. cv. Micro Tom; SlXTHs) and potato (Solanum tuberosum L. cv. Desirée; StXTHs) were analyzed in response to these mechanical forces. Transcription intensity of every SlXTHs of tomato was altered in response to rainfall, while the expression intensity of 72% and 64% of SlXTHs was modified by wind and touch, respectively. Ninety-one percent of StXTHs (32 out of 35) in potato responded to the rainfall, while 49% and 66% of the StXTHs were responsive to the wind and touch treatments, respectively. As previously demonstrated, all StXTHs were responsive to ultrasound treatment, and all were sensitive to one or more of the environmental mechanical factors examined in the current study. To our best knowledge, this is the first study to demonstrate that these ubiquitous mechanical environmental cues, such as rainfall, wind and touch, influence the transcription of most XTHs examined in both species.


Assuntos
Regulação da Expressão Gênica de Plantas , Chuva , Solanum lycopersicum , Solanum tuberosum , Vento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Tato/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas
16.
Curr Biol ; 34(12): 2739-2747.e3, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38815578

RESUMO

Somatosensation is essential for animals to perceive the external world through touch, allowing them to detect physical contact, temperature, pain, and body position. Studies on rodent vibrissae have highlighted the organization and processing in mammalian somatosensory pathways.1,2 Comparative research across vertebrates is vital for understanding evolutionary influences and ecological specialization on somatosensory systems. Birds, with their diverse morphologies, sensory abilities, and behaviors, serve as ideal models for investigating the evolution of somatosensation. Prior studies have uncovered tactile-responsive areas within the avian telencephalon, particularly in pigeons,3,4,5,6 parrots,7 and finches,8 but variations in somatosensory maps and responses across avian species are not fully understood. This study aims to explore somatotopic organization and neural coding in the telencephalon of Anna's hummingbirds (Calypte anna) and zebra finches (Taeniopygia guttata) by using in vivo extracellular electrophysiology to record activity in response to controlled tactile stimuli on various body regions. These findings reveal unique representations of body regions across distinct forebrain somatosensory nuclei, indicating significant differences in the extent of areas dedicated to certain body surfaces, which may correlate with their behavioral importance.


Assuntos
Tentilhões , Prosencéfalo , Animais , Tentilhões/fisiologia , Prosencéfalo/fisiologia , Tato/fisiologia , Aves/fisiologia , Masculino , Percepção do Tato/fisiologia , Feminino
17.
Clin Neurophysiol ; 163: 255-262, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704307

RESUMO

One hundred years ago, Erlanger and Gasser demonstrated that conduction velocity is correlated with the diameter of a peripheral nerve axon. Later, they also demonstrated that the functional role of the axon is related to its diameter: touch is signalled by large-diameter axons, whereas pain and temperature are signalled by small-diameter axons. Certain discoveries in recent decades prompt a modification of this canonical classification. Here, we review the evidence for unmyelinated (C) fibres signalling touch at a slow conduction velocity and likely contributing to affective aspects of tactile information. We also review the evidence for large-diameter Aß afferents signalling pain at ultrafast conduction velocity and likely contributing to the rapid nociceptive withdrawal reflex. These discoveries imply that conduction velocity is not as clear-cut an indication of the functional role of the axon as previously thought. We finally suggest that a future taxonomy of the peripheral afferent nervous system might be based on the combination of the axons molecular expression and electrophysiological response properties.


Assuntos
Condução Nervosa , Nervos Periféricos , Humanos , Animais , Nervos Periféricos/fisiopatologia , Nervos Periféricos/fisiologia , Condução Nervosa/fisiologia , Tato/fisiologia , Dor/fisiopatologia , Dor/classificação , Fibras Nervosas Amielínicas/fisiologia , Axônios/fisiologia
18.
Multisens Res ; 37(3): 185-216, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38714316

RESUMO

The influence of landmarks, that is, nearby non-target stimuli, on spatial perception has been shown in multiple ways. These include altered target localization variability near landmarks and systematic spatial distortions of target localizations. Previous studies have mostly been conducted in the visual modality using temporary, artificial landmarks or the tactile modality with persistent landmarks on the body. Thus, it is unclear whether both landmark types produce the same spatial distortions as they were never investigated in the same modality. Addressing this, we used a novel tactile setup to present temporary, artificial landmarks on the forearm and systematically manipulated their location to either be close to a persistent landmark (wrist or elbow) or in between both persistent landmarks at the middle of the forearm. Initial data (Exp. 1 and Exp. 2) suggested systematic differences of temporary landmarks based on their distance from the persistent landmark, possibly indicating different distortions of temporary and persistent landmarks. Subsequent control studies (Exp. 3 and Exp. 4) showed this effect was driven by the relative landmark location within the target distribution. Specifically, landmarks in the middle of the target distribution led to systematic distortions of target localizations toward the landmark, whereas landmarks at the side led to distortions away from the landmark for nearby targets, and toward the landmark with wider distances. Our results indicate that experimental results with temporary landmarks can be generalized to more natural settings with persistent landmarks, and further reveal that the relative landmark location leads to different effects of the pattern of spatial distortions.


Assuntos
Percepção Espacial , Percepção do Tato , Humanos , Percepção Espacial/fisiologia , Feminino , Percepção do Tato/fisiologia , Masculino , Adulto Jovem , Adulto , Tato/fisiologia , Estimulação Física , Antebraço/fisiologia
19.
ACS Appl Mater Interfaces ; 16(19): 25404-25414, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38692284

RESUMO

Liquid crystal elastomers (LCEs), as a classical two-way shape-memory material, are good candidates for developing artificial muscles that mimic the contraction, expansion, or rotational behavior of natural muscles. However, biomimicry is currently focused more on the actuation functions of natural muscles dominated by muscle fibers, whereas the tactile sensing functions that are dominated by neuronal receptors and synapses have not been well captured. Very few studies have reported the sensing concept for LCEs, but the signals were still donated by macroscopic actuation, that is, variations in angle or length. Herein, we develop a conductive porous LCE (CPLCE) using a solvent (dimethyl sulfoxide (DMSO))-templated photo-cross-linking strategy, followed by carbon nanotube (CNT) incorporation. The CPLCE has excellent reversible contraction/elongation behavior in a manner similar to the actuation functions of skeletal muscles. Moreover, the CPLCE shows excellent pressure-sensing performance by providing real-time electrical signals and is capable of microtouch sensing, which is very similar to natural tactile sensing. Furthermore, macroscopic actuation and tactile sensation can be integrated into a single system. Proof-of-concept studies reveal that the CPLCE-based artificial muscle is sensitive to external touch while maintaining its excellent actuation performance. The CPLCE with tactile sensation beyond reversible actuation is expected to benefit the development of versatile artificial muscles and intelligent robots.


Assuntos
Elastômeros , Cristais Líquidos , Nanotubos de Carbono , Cristais Líquidos/química , Elastômeros/química , Nanotubos de Carbono/química , Porosidade , Solventes/química , Tato/fisiologia , Órgãos Artificiais , Músculo Esquelético/fisiologia , Músculo Esquelético/química , Humanos
20.
Sensors (Basel) ; 24(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38733054

RESUMO

The problem of supporting visually impaired and blind people in meaningful interactions with objects is often neglected. To address this issue, we adapted a tactile belt for enhanced spatial navigation into a bracelet worn on the wrist that allows visually impaired people to grasp target objects. Participants' performance in locating and grasping target items when guided using the bracelet, which provides direction commands via vibrotactile signals, was compared to their performance when receiving auditory instructions. While participants were faster with the auditory commands, they also performed well with the bracelet, encouraging future development of this system and similar systems.


Assuntos
Força da Mão , Tato , Pessoas com Deficiência Visual , Humanos , Masculino , Tato/fisiologia , Feminino , Força da Mão/fisiologia , Adulto , Cegueira/fisiopatologia , Cegueira/reabilitação , Movimento/fisiologia , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA