Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.790
Filtrar
2.
Cell Death Dis ; 15(5): 333, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740758

RESUMO

Precise polyamine metabolism regulation is vital for cells and organisms. Mutations in spermine synthase (SMS) cause Snyder-Robinson intellectual disability syndrome (SRS), characterized by significant spermidine accumulation and autophagy blockage in the nervous system. Emerging evidence connects polyamine metabolism with other autophagy-related diseases, such as Tauopathy, however, the functional intersection between polyamine metabolism and autophagy in the context of these diseases remains unclear. Here, we altered SMS expression level to investigate the regulation of autophagy by modulated polyamine metabolism in Tauopathy in Drosophila and human cellular models. Interestingly, while complete loss of Drosophila spermine synthase (dSms) impairs lysosomal function and blocks autophagic flux recapitulating SRS disease phenotype, partial loss of dSms enhanced autophagic flux, reduced Tau protein accumulation, and led to extended lifespan and improved climbing performance in Tauopathy flies. Measurement of polyamine levels detected a mild elevation of spermidine in flies with partial loss of dSms. Similarly, in human neuronal or glial cells, partial loss of SMS by siRNA-mediated knockdown upregulated autophagic flux and reduced Tau protein accumulation. Importantly, proteomics analysis of postmortem brain tissue from Alzheimer's disease (AD) patients showed a significant albeit modest elevation of SMS level. Taken together, our study uncovers a functional correlation between polyamine metabolism and autophagy in AD: SMS reduction upregulates autophagy, suppresses Tau accumulation, and ameliorates neurodegeneration and cell death. These findings provide a new potential therapeutic target for AD.


Assuntos
Autofagia , Espermina Sintase , Proteínas tau , Animais , Proteínas tau/metabolismo , Humanos , Espermina Sintase/metabolismo , Espermina Sintase/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Espermidina/metabolismo , Modelos Animais de Doenças , Lisossomos/metabolismo , Drosophila/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X
3.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657185

RESUMO

BACKGROUND AND OBJECTIVES: Anti-IgLON5 disease is an autoimmune neurodegenerative disorder characterized by various phenotypes, notably sleep and movement disorders and tau pathology. Although the disease is known to be associated with the neuronal cell adhesion protein IgLON5, the physiologic function of IgLON5 remains elusive. There are conflicting views on whether autoantibodies cause loss of function, activation of IgLON5, or inflammation-associated neuronal damage, ultimately leading to the disease. We generated IgLON5 knockout (-/-) mice to investigate the functions of IgLON5 and elucidate the pathomechanism of anti-IgLON5 disease. METHODS: IgLON5 knockout (-/-) mice underwent behavioral tests investigating motor function, psychiatric function (notably anxiety and depression), social and exploratory behaviors, spatial learning and memory, and sensory perception. Histologic analysis was conducted to investigate tau aggregation in mice with tauopathy. RESULTS: IgLON5-/- mice had poorer performance in the wire hang and rotarod tests (which are tests for motor function) than wild-type mice. Moreover, IgLON5-/- mice exhibited decreased anxiety-like behavior and/or hyperactivity in behavior tests, including light/dark transition test and open field test. IgLON5-/- mice also exhibited poorer remote memory in the contextual fear conditioning test. However, neither sleeping disabilities assessed by EEG nor tau aggregation was detected in the knockout mice. DISCUSSION: These results suggest that IgLON5 is associated with activity, anxiety, motor ability, and contextual fear memory. Comparing the various phenotypes of anti-IgLON5 disease, anti-IgLON5 disease might partially be associated with loss of function of IgLON5; however, other phenotypes, such as sleep disorders and tau aggregation, can be caused by gain of function of IgLON5 and/or neuronal damage due to inflammation. Further studies are needed to elucidate the role of IgLON5 in the pathogenesis of anti-IgLON5 diseases.


Assuntos
Moléculas de Adesão Celular Neuronais , Camundongos Knockout , Fenótipo , Animais , Masculino , Camundongos , Ansiedade/imunologia , Autoanticorpos/sangue , Comportamento Animal/fisiologia , Moléculas de Adesão Celular Neuronais/deficiência , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Tauopatias/fisiopatologia , Tauopatias/imunologia , Humanos
4.
Alzheimers Dement ; 20(5): 3606-3628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556838

RESUMO

INTRODUCTION: Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS: A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS: While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION: In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS: MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.


Assuntos
Doença de Alzheimer , Encéfalo , Isoformas de Proteínas , Proteínas tau , Humanos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Tauopatias/genética , Tauopatias/metabolismo , Processamento Alternativo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Animais , Demência/genética , Demência/metabolismo
6.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612875

RESUMO

Neuropathological assessment was conducted on 1630 subjects, representing 5% of all the deceased that had been sent to the morgue of Uppsala University Hospital during a 15-year-long period. Among the 1630 subjects, 1610 were ≥41 years of age (range 41 to 102 years). Overall, hyperphosphorylated (HP) τ was observed in the brains of 98% of the 1610 subjects, and amyloid ß-protein (Aß) in the brains of 64%. The most common alteration observed was Alzheimer disease neuropathologic change (ADNC) (56%), followed by primary age-related tauopathy (PART) in 26% of the subjects. In 16% of the subjects, HPτ was limited to the locus coeruleus. In 14 subjects (<1%), no altered proteins were observed. In 3 subjects, only Aß was observed, and in 17, HPτ was observed in a distribution other than that seen in ADNC/PART. The transactive DNA-binding protein 43 (TDP43) associated with limbic-predominant age-related TDP encephalopathy (LATE) was observed in 565 (35%) subjects and α-synuclein (αS) pathology, i.e., Lewy body disease (LBD) or multi system atrophy (MSA) was observed in the brains of 21% of the subjects. A total of 39% of subjects with ADNC, 59% of subjects with PART, and 81% of subjects with HPτ limited to the locus coeruleus lacked concomitant pathologies, i.e., LATE-NC or LBD-NC. Of the 293 (18% of the 1610 subjects) subjects with dementia, 81% exhibited a high or intermediate level of ADNC. In 84% of all individuals with dementia, various degrees of concomitant alterations were observed; i.e., MIXED-NC was a common cause of dementia. A high or intermediate level of PART was observed in 10 subjects with dementia (3%), i.e., tangle-predominant dementia. No subjects exhibited only vascular NC (VNC), but in 17 subjects, severe VNC might have contributed to cognitive decline. Age-related tau astrogliopathy (ARTAG) was observed in 37% of the 1610 subjects and in 53% of those with dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença por Corpos de Lewy , Encefalite Límbica , Sinucleinopatias , Tauopatias , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides , Disfunção Cognitiva/etiologia , Envelhecimento , Encéfalo , Produtos Finais de Glicação Avançada
8.
Proc Natl Acad Sci U S A ; 121(15): e2320456121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568974

RESUMO

Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high ß-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting ß-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.


Assuntos
Príons , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/metabolismo , Isoformas de Proteínas/metabolismo , Príons/metabolismo , Peptídeos , Aminoácidos
9.
Alzheimers Res Ther ; 16(1): 70, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575959

RESUMO

BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. METHODS: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model of a disease (Krabbe A) characterized by pronounced lysosomal dysfunction. Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. RESULTS: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatD-KO mice were found to develop prominent tauopathy by just ∼ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology present in aged JNPL3 mice. CatD-KO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (∼ 1250%) are present in CatD-KO mice but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. CONCLUSIONS: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, the CatD-KO mouse line is the only model to develop detectable Aß accumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.


Assuntos
Doença de Alzheimer , Tauopatias , Idoso , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Catepsina D , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
10.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607082

RESUMO

Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer's disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study, we ask whether this negative interaction can also be mimicked in experimental tau models of AD and whether the underlying mechanism can be understood. From a previous age profiling study, 6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholinergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and relative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase (AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nucleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis) by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau aggregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain and its projection targets.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Camundongos , Animais , Lactente , Rivastigmina/farmacologia , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Neuroproteção , Neurônios Colinérgicos/metabolismo , Tauopatias/tratamento farmacológico , Colinérgicos , Camundongos Transgênicos
12.
Acta Neuropathol Commun ; 12(1): 66, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654316

RESUMO

The elderly frequently present impaired blood-brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway. Moreover, MSA-activated microglia triggered remarkable tau phosphorylation at multiple sites through NLRP3 inflammasome pathway. Intracerebroventricular injection of MSA into the brains of C57BL/6J mice to a similar concentration as in patient brains induced neuronal apoptosis, neuroinflammation, increased tau phosphorylation, and decreased the spatial learning and memory abilities, while Elovl1 knockdown significantly prevented the deleterious effect of MSA. Overall, our study here revealed that MSA induced tau phosphorylation and neuron apoptosis based on MSA-activated microglia and astrocytes, respectively, showing the critical roles of MSA in initiating the occurrence of tauopathies and cognitive decline, and providing potential therapeutic targets for MSA-induced neuropathology in multiple neurodegenerative disorders.


Assuntos
Apoptose , Camundongos Endogâmicos C57BL , Neurônios , Albumina Sérica , Tauopatias , Animais , Humanos , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/efeitos dos fármacos , Elongases de Ácidos Graxos/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Albumina Sérica/metabolismo , Albumina Sérica/farmacologia , Proteínas tau/metabolismo , Tauopatias/patologia , Tauopatias/metabolismo
13.
Acta Neuropathol Commun ; 12(1): 52, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576010

RESUMO

The transcellular propagation of the aberrantly modified protein tau along the functional brain network is a key hallmark of Alzheimer's disease and related tauopathies. Inoculation-based tau propagation models can recapitulate the stereotypical spread of tau and reproduce various types of tau inclusions linked to specific tauopathy, albeit with varying degrees of fidelity. With this systematic review, we underscore the significance of judicious selection and meticulous functional, biochemical, and biophysical characterization of various tau inocula. Furthermore, we highlight the necessity of choosing suitable animal models and inoculation sites, along with the critical need for validation of fibrillary pathology using confirmatory staining, to accurately recapitulate disease-specific inclusions. As a practical guide, we put forth a framework for establishing a benchmark of inoculation-based tau propagation models that holds promise for use in preclinical testing of disease-modifying drugs.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Doença de Alzheimer/patologia , Emaranhados Neurofibrilares/patologia , Modelos Animais de Doenças , Tauopatias/patologia , Proteínas tau/metabolismo , Encéfalo/patologia
14.
Brain Nerve ; 76(4): 343-351, 2024 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-38589279

RESUMO

A definite diagnosis of neurodegenerative diseases is required for neuropathological examination during an autopsy. Each neurodegenerative disease has specific vulnerable regions and affected systems (system degeneration), and is typified by an accumulation of abnormal protein with the formation of characteristic morphological aggregates in the nerve and glial cells, called proteinopathy. The most common neurodegenerative diseases are tauopathy, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD); α-synucleinopathy, including multiple system atrophy (MSA); and TAR DNA-binding protein of 43 kDa (TDP-43) proteinopathy, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). PSP and CBD show characteristic tau-positive astrocytic inclusions known as tufted astrocytes and astrocytic plaques, respectively. PiD shows tau-positive neuronal inclusions termed Pick bodies. MSA is characterized by α-synuclein-positive oligodendroglial inclusions, called glial cytoplasmic inclusions. ALS- and FTLD-TDP show TDP-43-positive neuronal inclusions, such as skein-like and round inclusions. Huntington's disease shows polyglutamine-positive neuronal inclusions, and Creutzfeldt-Jakob disease shows diffuse deposition of granular prions in the neuropil. The atypical proteins in these diseases have abnormal conformational properties. A comprehensive comparison of the clinical findings and neuropathological observations, including neuroanatomy and images acquired during life, is important to improve the sensitivity of clinical diagnosis.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Atrofia de Múltiplos Sistemas , Doença de Pick , Tauopatias , Humanos , Proteínas tau/metabolismo , Esclerose Lateral Amiotrófica/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Doença de Pick/metabolismo , Doença de Pick/patologia , Proteínas de Ligação a DNA/metabolismo
15.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38582079

RESUMO

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Tauopatias , Proteínas tau , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/genética , Diferenciação Celular , Mutação , Autofagia
16.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631765

RESUMO

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Assuntos
Doença de Pick , Tauopatias , Masculino , Humanos , Feminino , Proteínas tau/metabolismo , Doença de Pick/genética , Haplótipos , Estudos de Associação Genética
17.
Acta Neuropathol ; 147(1): 55, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472475

RESUMO

Inclusions comprised of microtubule-associated protein tau (tau) are implicated in a group of neurodegenerative diseases, collectively known as tauopathies, that include Alzheimer's disease (AD). The spreading of misfolded tau "seeds" along neuronal networks is thought to play a crucial role in the progression of tau pathology. Consequently, restricting the release or uptake of tau seeds may inhibit the spread of tau pathology and potentially halt the advancement of the disease. Previous studies have demonstrated that the Mammalian Suppressor of Tauopathy 2 (MSUT2), an RNA binding protein, modulates tau pathogenesis in a transgenic mouse model. In this study, we investigated the impact of MSUT2 on tau pathogenesis using tau seeding models. Our findings indicate that the loss of MSUT2 mitigates human tau seed-induced pathology in neuron cultures and mouse models. In addition, MSUT2 regulates many gene transcripts, including the Adenosine Receptor 1 (A1AR), and we show that down regulation or inhibition of A1AR modulates the activity of the "ArfGAP with SH3 Domain, Ankyrin Repeat, and PH Domain 1 protein" (ASAP1), thereby influencing the internalization of pathogenic tau seeds into neurons resulting in reduction of tau pathology.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Encéfalo/patologia , Proteínas tau/metabolismo , Tauopatias/patologia , Doença de Alzheimer/patologia , Neurônios/patologia , Camundongos Transgênicos , Mamíferos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
18.
Bull Math Biol ; 86(5): 46, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528167

RESUMO

Alzheimer's disease (AD) is believed to occur when abnormal amounts of the proteins amyloid beta and tau aggregate in the brain, resulting in a progressive loss of neuronal function. Hippocampal neurons in transgenic mice with amyloidopathy or tauopathy exhibit altered intrinsic excitability properties. We used deep hybrid modeling (DeepHM), a recently developed parameter inference technique that combines deep learning with biophysical modeling, to map experimental data recorded from hippocampal CA1 neurons in transgenic AD mice and age-matched wildtype littermate controls to the parameter space of a conductance-based CA1 model. Although mechanistic modeling and machine learning methods are by themselves powerful tools for approximating biological systems and making accurate predictions from data, when used in isolation these approaches suffer from distinct shortcomings: model and parameter uncertainty limit mechanistic modeling, whereas machine learning methods disregard the underlying biophysical mechanisms. DeepHM addresses these shortcomings by using conditional generative adversarial networks to provide an inverse mapping of data to mechanistic models that identifies the distributions of mechanistic modeling parameters coherent to the data. Here, we demonstrated that DeepHM accurately infers parameter distributions of the conductance-based model on several test cases using synthetic data generated with complex underlying parameter structures. We then used DeepHM to estimate parameter distributions corresponding to the experimental data and infer which ion channels are altered in the Alzheimer's mouse models compared to their wildtype controls at 12 and 24 months. We found that the conductances most disrupted by tauopathy, amyloidopathy, and aging are delayed rectifier potassium, transient sodium, and hyperpolarization-activated potassium, respectively.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Tauopatias , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Conceitos Matemáticos , Modelos Biológicos , Células Piramidais/fisiologia , Camundongos Transgênicos , Potássio , Modelos Animais de Doenças
19.
Methods Mol Biol ; 2754: 3-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512658

RESUMO

The microtubule-associated protein, Tau, is an intrinsically disordered protein that plays a crucial role in neurodegenerative diseases like Alzheimer's disease. The posttranslational modifications across the Tau protein domains are involved in regulating Tau protein's function and disease onset. Of the various posttranslational modifications at Ser, Thr, and Tyr sites, O-GlcNAcylation and phosphorylation are the most critical ones, playing a vital role in Tau aggregation and tauopathies. To understand the function, it is essential to characterize the structural changes associated with Tau modification. Previous experimental studies have focused on high-resolution nuclear magnetic resonance techniques to structurally characterize the effect of phosphorylation, O-GlcNAcylation, and combination of both PTMs on Tau conformation in small peptides centered on the PHF-1 epitope from amino acid 392 to 411. The structural characterization using atomistic molecular dynamics simulation of such disordered peptides requires long simulation time, proper sampling method, and utilization of appropriate force fields for accurate determination of conformational ensembles, resembling the experimental data. This chapter details the protocol for the structural characterization of modified Tau peptides using the CHARMM36m force field and enhanced sampling methods like Gaussian accelerated molecular dynamics (GaMD) simulation. We have focused on a detailed explanation of the GaMD method and analyses of molecular dynamics trajectories to explain the relationship between two modifications, phospho- and glyco-, at C-terminus of Tau protein and its stable conformation over the longer simulation timeframes. The analyses involve energetics reweighting, clustering of simulation trajectories, and characterization of secondary structure using circular dichroism data from the simulation. The reader can utilize this protocol to investigate the structures of complex proteins, especially the disordered ones.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Doença de Alzheimer/metabolismo , Fosforilação
20.
Methods Mol Biol ; 2754: 93-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512662

RESUMO

Aggregation of tau protein is a pathological hallmark of Alzheimer's disease and other neurodegenerative tauopathies. Inhibition of tau aggregation may provide a method for treatment of these disorders. Methods to identify tau aggregation inhibitors (TAIs) in vitro are useful and here we describe assays for TAIs using purified recombinant tau protein fragments in a cell-free immunoassay format and in a stably transfected cell model to create a more physiological environment.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/metabolismo , Imunoensaio , Bioensaio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA