Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 900
Filtrar
1.
BMC Plant Biol ; 24(1): 658, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987689

RESUMO

BACKGROUND: The taxonomy of Taxus Linn. remains controversial due to its continuous phenotypic variation and unstable topology, thus adversely affecting the formulation of scientific conservation strategies for this genus. Recently, a new ecotype, known as Qinling type, is mainly distributed in the Qinling Mountains and belongs to a monophyletic group. Here, we employed multiple methods including leaf phenotype comparison (leaf shapes and microstructure), DNA barcoding identification (ITS + trnL-trnF + rbcL), and niche analysis to ascertain the taxonomic status of the Qinling type. RESULTS: Multiple comparisons revealed significant differences in the morphological characters (length, width, and length/width ratio) among the Qinling type and other Taxus species. Leaf anatomical analysis indicated that only the Qinling type and T. cuspidata had no papilla under the midvein or tannins in the epicuticle. Phylogenetic analysis of Taxus indicated that the Qinling type belonged to a monophyletic group. Moreover, the Qinling type had formed a relatively independent niche, it was mainly distributed around the Qinling Mountains, Ta-pa Mountains, and Taihang Mountains, situated at an elevation below 1500 m. CONCLUSIONS: Four characters, namely leaf curvature, margin taper, papillation on midvein, and edges were put forward as primary indexes for distinguishing Taxus species. The ecotype Qingling type represented an independent evolutionary lineage and formed a unique ecological niche. Therefore, we suggested that the Qingling type should be treated as a novel species and named it Taxus qinlingensis Y. F. Wen & X. T. Wu, sp. nov.


Assuntos
Código de Barras de DNA Taxonômico , Filogenia , Folhas de Planta , Taxus , Taxus/genética , Taxus/anatomia & histologia , Taxus/classificação , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , China , DNA de Plantas/genética , Fenótipo
2.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928114

RESUMO

UV-B is an important environmental factor that differentially affects plant growth and secondary metabolites. The effects of supplemental ultraviolet-B (sUV-B) exposure (T1, 1.40 kJ·m-2·day-1; T2, 2.81 kJ·m-2·day-1; and T3, 5.62 kJ·m-2·day-1) on the growth biomass, physiological characteristics, and secondary metabolites were studied. Our results indicated that leaf thickness was significantly (p < 0.05) reduced under T3 relative to the control (natural light exposure, CK); The contents of 6-BA and IAA were significantly reduced (p < 0.05); and the contents of ABA, 10-deacetylbaccatin III, and baccatin III were significantly (p < 0.05) increased under T1 and T2. The paclitaxel content was the highest (0.036 ± 0.0018 mg·g-1) under T3. The cephalomannine content was significantly increased under T1. Hmgr gene expression was upregulated under T1 and T3. The gene expressions of Bapt and Dbtnbt were significantly (p < 0.05) upregulated under sUV-B exposure, and the gene expressions of CoA, Ts, and Dbat were significantly (p < 0.05) downregulated. A correlation analysis showed that the 6-BA content had a significantly (p < 0.05) positive correlation with Dbat gene expression. The IAA content had a significantly (p < 0.05) positive correlation with the gene expression of Hmgr, CoA, Ts, and Dbtnbt. The ABA content had a significantly (p < 0.05) positive correlation with Bapt gene expression. Dbat gene expression had a significantly (p < 0.05) positive correlation with the 10-deacetylbaccatin content. Hmgr gene expression was positively correlated with the contents of baccatin III and cephalomannine. Bapt gene expression had a significantly (p < 0.01) positive correlation with the paclitaxel content. A factor analysis showed that the accumulation of paclitaxel content was promoted under T2, which was helpful in clarifying the accumulation of taxane compounds after sUV-B exposure.


Assuntos
Regulação da Expressão Gênica de Plantas , Taxoides , Taxus , Raios Ultravioleta , Taxus/metabolismo , Taxus/genética , Taxoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Paclitaxel , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/metabolismo , Alcaloides
3.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891943

RESUMO

Taxus × media, belonging to the genus Taxus of the Taxaceae family, is a unique hybrid plant derived from a natural crossbreeding between Taxus cuspidata and Taxus baccata. This distinctive hybrid variety inherits the superior traits of its parental species, exhibiting significant biological and medicinal values. This paper comprehensively analyzes Taxus × media from multiple dimensions, including its cultivation overview, chemical composition, and multifaceted applications in the medical field. In terms of chemical constituents, this study delves into the bioactive components abundant in Taxus × media and their pharmacological activities, highlighting the importance and value of these components, including paclitaxel, as the lead compounds in traditional medicine and modern drug development. Regarding its medicinal value, the article primarily discusses the potential applications of Taxus × media in combating tumors, antibacterial, anti-inflammatory, and antioxidant activities, and treating diabetes. By synthesizing clinical research and experimental data, the paper elucidates the potential and mechanisms of its primary active components in preventing and treating these diseases. In conclusion, Taxus × media demonstrates its unique value in biological research and tremendous potential in drug development.


Assuntos
Taxus , Taxus/química , Humanos , Química Farmacêutica/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Antioxidantes/farmacologia , Antioxidantes/química
4.
Sci Total Environ ; 940: 173663, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823714

RESUMO

In a mixed forest, certain plants can release allelochemicals that exert allelopathic effects on neighboring plants, thereby facilitating interspecific coexistence of two species. Previous studies have demonstrated that allelochemicals released from Ficus carica Linn. roots in mixed forest of F. carica and Taxus cuspidata Sieb. et Zucc. has phase characteristics over time, which can improve the soil physicochemical properties, enzyme activity and microbial diversity, thus promoting the growth of T. cuspidata. Based on the irrigation of exogenous allelochemicals, changes in soil fertility (soil physical and chemical properties, soil enzyme activity and soil microelement content) were observed in response to variations in allelochemicals during five phases of irrigation: initial disturbance phase (0-2 d), physiological compensation phase (2-8 d), screening phase (8-16 d), restore phase (16-32 d) and maturity phase (32-64 d), which was consistent with the response of soil microorganisms. The allelopathic response of growth physiological indexes of T. cuspidata, however, exhibited a slight lag behind the soil fertility, with distinct phase characteristics becoming evident on the 4th day following irrigation of allelochemicals. The findings demonstrated that the allelochemicals released by the root of F. carica induced a synergistic effect on soil fertility and microorganisms, thereby facilitating the growth of T. cuspidata. This study provides a comprehensive elucidation of the phased dynamic response-based allelopathic mechanism employed by F. carica to enhance the growth of T. cuspidata, thus establishing a theoretical basis for optimizing forest cultivation through allelopathic pathways.


Assuntos
Ficus , Feromônios , Raízes de Plantas , Taxus , Taxus/fisiologia , Alelopatia , Solo/química , Microbiologia do Solo , Exsudatos de Plantas
5.
Molecules ; 29(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893462

RESUMO

Baccatin III is a crucial precursor in the biosynthesis pathway of paclitaxel. Its main sources are extraction from Taxus or chemical synthesis using 10-deacetylbaccatin III (10-DAB) as substrate. However, these preparation approaches exhibit serious limitations, including the low content of baccatin III in Taxus and the complicated steps of chemical synthesis. Heterologous expression of 10-deacetylbaccatin III-10-O-acetyltransferase (TcDBAT) in microbial strains for biotransformation of 10-DAB is a promising alternative strategy for baccatin III production. Here, the promotion effects of glycerol supply and slightly acidic conditions with a low-temperature on the catalysis of recombinant TcDBAT strain were clarified using 10-DAB as substrate. Taxus needles is renewable and the content of 10-DAB is relatively high, it can be used as an effective source of the catalytic substrate 10-DAB. Baccatin III was synthesized by integrating the extraction of 10-DAB from renewable Taxus needles and in situ whole-cell catalysis in this study. 40 g/L needles were converted into 20.66 mg/L baccatin III by optimizing and establishing a whole-cell catalytic bioprocess. The method used in this study can shorten the production process of Taxus extraction for baccatin III synthesis and provide a reliable strategy for the efficient production of baccatin III by recombinant strains and the improvement of resource utilization rate of Taxus needles.


Assuntos
Biotransformação , Taxoides , Taxus , Taxus/metabolismo , Taxus/química , Taxoides/metabolismo , Alcaloides/biossíntese , Alcaloides/metabolismo , Alcaloides/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Acetiltransferases/metabolismo , Acetiltransferases/genética
6.
Molecules ; 29(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38792152

RESUMO

Taxus, as a globally prevalent evergreen tree, contains a wealth of bioactive components that play a crucial role in the pharmaceutical field. Taxus extracts, defined as a collection of one or more bioactive compounds extracted from the genus Taxus spp., have become a significant focus of modern cancer treatment research. This review article aims to delve into the scientific background of Taxus extracts and their considerable value in pharmaceutical research. It meticulously sifts through and compares various advanced extraction techniques such as supercritical extraction, ultrasound extraction, microwave-assisted extraction, solid-phase extraction, high-pressure pulsed electric field extraction, and enzymatic extraction, assessing each technology's advantages and limitations across dimensions such as extraction efficiency, extraction purity, economic cost, operational time, and environmental impact, with comprehensive analysis results presented in table form. In the area of drug formulation design, this paper systematically discusses the development strategies for solid, liquid, and semi-solid dosage forms based on the unique physicochemical properties of Taxus extracts, their intended medical uses, and specific release characteristics, delving deeply into the selection of excipients and the critical technical issues in the drug preparation process. Moreover, the article looks forward to the potential directions of Taxus extracts in future research and medical applications, emphasizing the urgency and importance of continuously optimizing extraction methods and formulation design to enhance treatment efficacy, reduce production costs, and decrease environmental burdens. It provides a comprehensive set of preparation techniques and formulation optimization schemes for researchers in cancer treatment and other medical fields, promoting the application and development of Taxus extracts in pharmaceutical sciences.


Assuntos
Extratos Vegetais , Taxus , Taxus/química , Extratos Vegetais/química , Humanos , Composição de Medicamentos/métodos , Extração em Fase Sólida/métodos
7.
BMC Plant Biol ; 24(1): 383, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724888

RESUMO

Taxus chinensis (Taxus cuspidata Sieb. et Zucc.) is a traditional medicinal plant known for its anticancer substance paclitaxel, and its growth age is also an important factor affecting its medicinal value. However, how age affects the physiological and metabolic characteristics and active substances of T. chinensis is still unclear. In this study, carbon and nitrogen accumulation, contents of active substances and changes in primary metabolites in barks and annual leaves of T. chinensis of different diameter classes were investigated by using diameter classes instead of age. The results showed that leaves and barks of small diameter class (D1) had higher content of non-structural carbohydrates and C, which were effective in enhancing defense capacity, while N content was higher in medium (D2) and large diameter classes (D3). Active substances such as paclitaxel, baccatin III and cephalomannine also accumulated significantly in barks of large diameter classes. Moreover, 21 and 25 differential metabolites were identified in leaves and barks of different diameter classes, respectively. The differential metabolites were enhanced the TCA cycle and amino acid biosynthesis, accumulate metabolites such as organic acids, and promote the synthesis and accumulation of active substances such as paclitaxel in the medium and large diameter classes. These results revealed the carbon and nitrogen allocation mechanism of different diameter classes of T. chinensis, and its relationship with medicinal components, providing a guidance for the harvesting and utilization of wild T. chinensis.


Assuntos
Carbono , Metabolômica , Nitrogênio , Folhas de Planta , Taxus , Taxus/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Folhas de Planta/metabolismo , Casca de Planta/metabolismo , Casca de Planta/química
8.
Toxicon ; 246: 107779, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38821319

RESUMO

Taxus is a genus of coniferous shrubs and trees, commonly known as the yews, in the family Taxaceae. All species of yew contain taxine alkaloids, which are ascribed as the toxic principles. Anecdotally, free ranging ruminants such as antelope, deer, elk, and moose have been regarded as tolerant to yew. Herein several cases of intoxication of deer, elk, and moose by yew from the state of Utah in the winter of 2022-2023 are documented. Ingestion of yew was documented by three means among the poisoned cervids; plant fragments consistent with yew were visually observed in the rumen contents, chemical analysis, and subsequent detection of the taxines from rumen and liver contents, and identification of exact sequence variants identified as Taxus species from DNA metabarcoding. Undoubtedly, the record snowfall in Utah during the winter of 2022-2023 contributed to these poisonings.


Assuntos
Cervos , Intoxicação por Plantas , Estações do Ano , Taxus , Animais , Alcaloides , Intoxicação por Plantas/veterinária , Rúmen , Ruminantes , Taxus/intoxicação , Utah
9.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1380-1405, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783804

RESUMO

Paclitaxel, a rare diterpene extracted from the bark of Chinese yew (Taxus chinensis), is renowned for its anti-cancer activity and serves as a primary drug for treating cancers. Due to the exceptionally low content of paclitaxel in the bark, a semi-synthetic method that depletes Chinese yew resources is used in the production of paclitaxel, which, however, fails to meet the escalating clinical demand. In recent years, researchers have achieved significant progress in heterologous biosynthesis and metabolic engineering for the production of paclitaxel. This article comprehensively reviews the advancements in paclitaxel production, encompassing chemical synthesis, heterologous biosynthesis, and cell engineering. It provides an in-depth introduction to the biosynthetic pathway and transcriptional regulation mechanisms of paclitaxel, aiming to provide a valuable reference for further research on paclitaxel biosynthesis.


Assuntos
Paclitaxel , Paclitaxel/biossíntese , Engenharia Metabólica/métodos , Taxus/genética , Taxus/metabolismo , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/farmacologia , Transcrição Gênica , Vias Biossintéticas/genética
11.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612586

RESUMO

BAHD acyltransferases are involved in catalyzing and regulating the secondary metabolism in plants. Despite this, the members of BAHD family and their functions have not been reported in the Taxus species. In this study, a total of 123 TwBAHD acyltransferases from Taxus wallichiana var. mairei genome were identified and divided into six clades based on phylogenetic analysis, of which Clade VI contained a Taxus-specific branch of 52 members potentially involved in taxol biosynthesis. Most TwBAHDs from the same clade shared similar conserved motifs and gene structures. Besides the typical conserved motifs within the BAHD family, the YPLAGR motif was also conserved in multiple clades of T. mairei. Moreover, only one pair of tandem duplicate genes was found on chromosome 1, with a Ka/Ks ratio < 1, indicating that the function of duplicate genes did not differentiate significantly. RNA-seq analysis revealed different expression patterns of TwBAHDs in MeJA induction and tissue-specific expression experiments. Several TwBAHD genes in the Taxus-specific branch were highly expressed in different tissues of T. mairei, suggesting an important role in the taxol pathway. This study provides comprehensive information for the TwBAHD gene family and sets up a basis for its potential functions.


Assuntos
Taxus , Humanos , Filogenia , Taxus/genética , Aciltransferases , Cromossomos Humanos Par 1 , Paclitaxel
12.
Mycorrhiza ; 34(3): 173-180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643436

RESUMO

Taxus, a genus of conifers known for its medicinal significance, faces various conservation challenges with several species classified under different threat categories by the IUCN. The overharvesting of bark and leaves for the well-known chemotherapy drug paclitaxel has resulted in its population decline. Exploring the mycorrhizal relationship in Taxus is of utmost importance, as mycorrhizal fungi play pivotal roles in nutrition, growth, and ecological resilience. Taxus predominantly associates with arbuscular mycorrhizal fungi (AM), and reports suggest ectomycorrhizal (EM) or dual mycorrhizal associations as well. This review consolidates existing literature on mycorrhizal associations in Taxus species, focusing on structural, physiological, and molecular aspects. AM associations are well-documented in Taxus, influencing plant physiology and propagation. Conversely, EM associations remain relatively understudied, with limited evidence suggesting their occurrence. The review highlights the importance of further research to elucidate dual mycorrhizal associations in Taxus, emphasizing the need for detailed structural and physiological examinations to understand their impact on growth and survival.


Assuntos
Micorrizas , Simbiose , Taxus , Micorrizas/fisiologia , Taxus/microbiologia , Raízes de Plantas/microbiologia
13.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543007

RESUMO

Polysaccharides extracted from Taxus media hrough an aqueous method were further refined by removing proteins via the Sevag technique and purified by dialysis. The separation of these polysaccharides was accomplished using a DEAE-cellulose chromatog-raphy column, yielding two distinct fractions, named CPTM-P1 and CPTM-P2. Notably, CPTM-P1 emerged as the primary polysaccharide component within Taxus media. Consequently, a comprehensive analysis focusing exclusively on CPTM-P1 was undertaken. The molecular weight of CPTM-P1 was established through gel permeation chromatography (GPC), and its monosaccharide composition was deciphered using HPLC-MS. The structure was further elucidated through nuclear magnetic resonance (NMR) spectroscopy. The molecular weight of CPTM-P1 was determined to be 968.7 kDa. The monosaccharide composition consisted of galactose (Gal), arabinose (Ara), galacturonic acid (Gal-UA), glucose (Glc), rhamnose (Rha), xylose (Xyl), mannose (Man), fucose (Fuc), glucuronic acid (Glc-UA), and ribose (Rib). The proportional distribution of these components was 30.53%, 22.00%, 5.63%, 11.67%, 11.93%, 1.69%, 8.50%, 1.23%, 5.63%, and 1.17%, respectively. This confirmed CPTM-P1 as an acidic heteropolysaccharide with a glycuronic acid backbone. Moreover, CPTM-P1 showed immunoenhancing properties, effectively augmenting the secretion of nitric oxide and cytokines (TNF-α, IL-1ß, and IL-6). Additionally, it significantly enhances the phagocytic capacity of RAW264.7 cells. These findings underscore the potential application of these polysaccharides in functional foods and pharmaceuticals, providing a solid scientific basis for further exploration and utilization of Taxus media polysaccharides.


Assuntos
Taxus , Humanos , Diálise Renal , Polissacarídeos/farmacologia , Polissacarídeos/química , Monossacarídeos/análise , Citocinas , Glucose
14.
Molecules ; 29(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474640

RESUMO

Taxus mairei (Lemée and H.Lév.) S.Y.Hu, indigenous to the southern regions of China, is an evergreen tree belonging to the genus Taxus of the Taxaceae family. Owing to its content of various bioactive compounds, it exhibits multiple pharmacological activities and has been widely applied in clinical medicine. This article comprehensively discusses the current state of cultivation, chemical constituents, applications in the pharmaceutical field, and the challenges faced by T. mairei. The paper begins by detailing the ecological distribution of T. mairei, aiming to provide an in-depth understanding of its origin and cultivation overview. In terms of chemical composition, the article thoroughly summarizes the extracts and monomeric components of T. mairei, unveiling their pharmacological activities and elucidating the mechanisms of action based on the latest scientific research, as well as their potential as lead compounds in new drug development. The article also addresses the challenges in the T. mairei research, such as the difficulties in extracting and synthesizing active components and the need for sustainable utilization strategies. In summary, T. mairei is a rare species important for biodiversity conservation and demonstrates significant research and application potential in drug development and disease treatment.


Assuntos
Taxaceae , Taxus , Taxus/química , China
15.
Mol Plant ; 17(3): 370-371, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38243592

Assuntos
Paclitaxel , Taxus
16.
J Alzheimers Dis ; 97(2): 727-740, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217605

RESUMO

BACKGROUND: The taxus chinensis fruit (TCF) shows promises in treatment of aging-related diseases such as Alzheimer's disease (AD). However, its related constituents and targets against AD have not been deciphered. OBJECTIVE: This study was to uncover constituents and targets of TCF extracts against AD. METHODS: An integrated approach including ultrasound extractions and constituent identification of TCF by UPLC-QE-MS/MS, target identification of constituents and AD by R data-mining from Pubchem, Drugbank and GEO databases, network construction, molecular docking and the ROC curve analysis was carried out. RESULTS: We identified 250 compounds in TCF extracts, and obtained 3,231 known constituent targets and 5,326 differential expression genes of AD, and 988 intersection genes. Through the network construction and KEGG pathway analysis, 19 chemicals, 31 targets, and 11 biological pathways were obtained as core compounds, targets and pathways of TCF extracts against AD. Among these constituents, luteolin, oleic acid, gallic acid, baicalein, naringenin, lovastatin and rutin had obvious anti-AD effect. Molecular docking results further confirmed above results. The ROC AUC values of about 87% of these core targets of TCF extracts was greater than 0.5 in the two GEO chips of AD, especially 10 targets with ROC AUC values greater than 0.7, such as BCL2, CASP7, NFKBIA, HMOX1, CDK2, LDLR, RELA, and CCL2, which mainly referred to neuron apoptosis, response to oxidative stress and inflammation, fibroblast proliferation, etc.Conclusions:The TCF extracts have diverse active compounds that can act on the diagnostic genes of AD, which deserve further in-depth study.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Taxus , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Frutas , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem
17.
Science ; 383(6683): 622-629, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38271490

RESUMO

Paclitaxel is a well known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (baccatin III) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. In this work, we identified a bifunctional cytochrome P450 enzyme [taxane oxetanase 1 (TOT1)] in Taxus mairei that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, which represents a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9 position (T9αH1). Finally, we artificially reconstituted a biosynthetic pathway for the production of baccatin III in tobacco.


Assuntos
Alcaloides , Sistema Enzimático do Citocromo P-450 , Engenharia Metabólica , Paclitaxel , Proteínas de Plantas , Taxoides , Taxus , Alcaloides/biossíntese , Alcaloides/genética , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Éteres Cíclicos/química , Éteres Cíclicos/metabolismo , Paclitaxel/biossíntese , Taxoides/metabolismo , Taxus/enzimologia , Taxus/genética , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética
18.
Plant Biotechnol J ; 22(1): 233-247, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37772738

RESUMO

Paclitaxel is one of the most effective anticancer drugs ever developed. Although the most sustainable approach to its production is provided by plant cell cultures, the yield is limited by bottleneck enzymes in the taxane biosynthetic pathway: baccatin-aminophenylpropanoyl-13-O-transferase (BAPT) and 3'-N-debenzoyltaxol N-benzoyltransferase (DBTNBT). With the aim of enhancing paclitaxel production by overcoming this bottleneck, we obtained distinct lines of Taxus baccata in vitro roots, each independently overexpressing either of the two flux-limiting genes, BAPT or DBTNBT, through a Rhizobium rhizogenes A4-mediated transformation. Due to the slow growth rate of the transgenic Taxus roots, they were dedifferentiated to obtain callus lines and establish cell suspensions. The transgenic cells were cultured in a two-stage system and stimulated for taxane production by a dual elicitation treatment with 1 µm coronatine plus 50 mm of randomly methylated-ß-cyclodextrins. A high overexpression of BAPT (59.72-fold higher at 48 h) and DBTNBT (61.93-fold higher at 72 h) genes was observed in the transgenic cell cultures, as well as an improved taxane production. Compared to the wild type line (71.01 mg/L), the DBTNBT line produced more than four times higher amounts of paclitaxel (310 mg/L), while the content of this taxane was almost doubled in the BAPT line (135 mg/L). A transcriptional profiling of taxane biosynthetic genes revealed that GGPPS, TXS and DBAT genes were the most reactive to DBTNBT overexpression and the dual elicitation, their expression increasing gradually and constantly. The same genes exhibited a pattern of isolated peaks of expression in the elicited BAPT-overexpressing line.


Assuntos
Paclitaxel , Taxus , Paclitaxel/metabolismo , Taxus/genética , Taxus/metabolismo , Células Cultivadas , Taxoides/farmacologia , Taxoides/metabolismo
19.
J Am Chem Soc ; 146(1): 801-810, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38129385

RESUMO

Taxol is a potent drug used in various cancer treatments. Its complex structure has prompted extensive research into its biosynthesis. However, certain critical steps, such as the formation of the oxetane ring, which is essential for its activity, have remained unclear. Previous proposals suggested that oxetane formation follows the acetylation of taxadien-5α-ol. Here, we proposed that the oxetane ring is formed by cytochrome P450-mediated oxidation events that occur prior to C5 acetylation. To test this hypothesis, we analyzed the genomic and transcriptomic information for Taxus species to identify cytochrome P450 candidates and employed two independent systems, yeast (Saccharomyces cerevisiae) and plant (Nicotiana benthamiana), for their characterization. We revealed that a single enzyme, CYP725A4, catalyzes two successive epoxidation events, leading to the formation of the oxetane ring. We further showed that both taxa-4(5)-11(12)-diene (endotaxadiene) and taxa-4(20)-11(12)-diene (exotaxadiene) are precursors to the key intermediate, taxologenic oxetane, indicating the potential existence of multiple routes in the Taxol pathway. Thus, we unveiled a long-elusive step in Taxol biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Taxus , Sistema Enzimático do Citocromo P-450/metabolismo , Paclitaxel/metabolismo , Éteres Cíclicos , Catálise , Taxus/genética , Taxus/metabolismo
20.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067476

RESUMO

Taxanes are the best-known compounds in Taxus cuspidata owing to their strong anticancer effects. However, the traditional taxanes extraction method is the solid-liquid extraction method, which is limited by a large energy consumption and low yield. Therefore, it is urgent to find an efficient method for taxanes extraction. The ultrasonic microwave synergistic extraction (UME) method integrates the cavitation effect of ultrasound and the intensifying heat transfer (ionic conduction and dipole rotation of molecules) effect of microwave to accelerate the release of intracellular compounds and is used in active ingredient extractions. This study aimed to evaluate the performance of UME in extracting taxanes from T. cuspidata needles (dichloromethane-ethanol as extractant). A single-factor experiment, Plackett-Burman design, and the response surface method showed that the optimal UME parameters for taxanes extraction were an ultrasonic power of 300 W, a microwave power of 215 W, and 130 sieve meshes. Under these conditions, the taxanes yield was 570.32 µg/g, which increased by 13.41% and 41.63% compared with the ultrasound (US) and microwave (MW) treatments, respectively. The reasons for the differences in the taxanes yield were revealed by comparing the physicochemical properties of T. cuspidata residues after the UME, US, and MW treatments. The cell structures were significantly damaged after the UME treatment, and numerous tiny holes were observed on the surface. The absorption peaks of cellulose, hemicellulose, and lignin increased significantly in intensity, and the lowest peak temperature (307.40 °C), with a melting enthalpy of -5.19 J/g, was found after the UME treatment compared with the US and MW treatments. These results demonstrate that UME is an effective method (570.32 µg/g) to extract taxanes from T. cuspidata needles by destroying cellular structures.


Assuntos
Taxoides , Taxus , Taxoides/química , Taxus/química , Ultrassom , Micro-Ondas , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA