Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Sci Rep ; 14(1): 13899, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886354

RESUMO

The current investigation aims to study the embryonic dermis formed in the early stages of development and identify the initial interstitial components of the dermis that serve as biological and structural scaffolds for the development of the dermal tissue. To investigate the dermal structure, the current study used morphological and immunological techniques. TCs identified by TEM. They had a cell body and unique podomeres and podoms. They formed a 3D network spread throughout the dermis. Homocellular contact established between them, as well as heterocellular contacts with other cells. Immunohistochemical techniques using specific markers for TCss CD34, CD117, and VEGF confirmed TC identification. TCs represent the major interstitial component in the dermal tissue. They established a 3D network, enclosing other cells and structures. Expression of VEGF by TC promotes angiogenesis. TCs establish cellular contact with sprouting endothelial cells. At the site of cell junction with TCs, cytoskeletal filaments identified and observed to form the pseudopodium core that projects from endothelial cells. TCs had proteolytic properties that expressed MMP-9, CD68, and CD21. Proteolytic activity aids in the removal of components of the extracellular matrix and the phagocytosis of degraded remnants to create spaces to facilitate the development of new dermal structures. In conclusion, TCs organized the scaffold for the development of future dermal structures, including fibrous components and skin appendages. Studying dermal TCs would be interested in the possibility of developing therapeutic strategies for treating different skin disorders and diseases.


Assuntos
Derme , Imuno-Histoquímica , Telócitos , Telócitos/metabolismo , Telócitos/citologia , Derme/metabolismo , Derme/citologia , Humanos , Antígenos CD34/metabolismo , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos CD/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Molécula CD68
2.
Sci Rep ; 14(1): 14904, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942924

RESUMO

Telocytes are closely associated with the regulation of tissue smooth muscle dynamics in digestive system disorders. They are widely distributed in the biliary system and exert their influence on biliary motility through mechanisms such as the regulation of CCK and their electrophysiological effects on smooth muscle cells. To investigate the relationship between telocytes and benign biliary diseases,such as gallbladder stone disease and biliary dilation syndrome, we conducted histopathological analysis on tissues affected by these conditions. Additionally, we performed immunohistochemistry and immunofluorescence double staining experiments for telocytes. The results indicate that the quantity of telocytes in the gallbladder and bile duct is significantly lower in pathological conditions compared to the control group. This reveals a close association between the decrease in telocyte quantity and impaired gallbladder motility and biliary fibrosis. Furthermore, further investigations have shown a correlation between telocytes in cholesterol gallstones and cholecystokinin-A receptor (CCK-AR), suggesting that elevated cholesterol levels may impair telocytes, leading to a reduction in the quantity of CCK-AR and ultimately resulting in impaired gallbladder motility.Therefore, we hypothesize that telocytes may play a crucial role in maintaining biliary homeostasis, and their deficiency may be associated with the development of benign biliary diseases, including gallstone disease and biliary dilation.


Assuntos
Colelitíase , Vesícula Biliar , Telócitos , Telócitos/metabolismo , Telócitos/patologia , Colelitíase/patologia , Colelitíase/metabolismo , Humanos , Vesícula Biliar/patologia , Vesícula Biliar/metabolismo , Feminino , Masculino , Ductos Biliares/patologia , Ductos Biliares/metabolismo , Pessoa de Meia-Idade , Idoso , Dilatação Patológica
3.
Sci Rep ; 14(1): 12034, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802438

RESUMO

Telocytes are a unique interstitial cell type that functions in adulthood and embryogenesis. They have characteristic immunohistochemical phenotypes while acquiring different immunohistochemical properties related to the organ microenvironment. The present study aims to investigate the immunohistochemical features of embryonic telocytes during myogenesis and describe their morphology using light microscopy and TEM. Telocytes represent a major cellular constituent in the interstitial elements. They had distinguished telopodes and podoms and formed a 3D interstitial network in the developing muscles. They formed heterocellular contact with myoblasts and nascent myotubes. Telocytes also had distinctive secretory activity. Telocytes identified by CD34. They also express CD68 and MMP-9 to facilitate the development of new tissues. Expression of CD21 by telocytes may reveal their function in immune defense. They also express VEGF, which regulates angiogenesis. In conclusion, the distribution and immunological properties of telocytes in the myogenic tissue indicate that telocytes provide biological and structural support in the development of the myogenic tissue architecture and organization.


Assuntos
Imuno-Histoquímica , Desenvolvimento Muscular , Telócitos , Telócitos/metabolismo , Telócitos/citologia , Animais , Camundongos , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Microambiente Celular , Metaloproteinase 9 da Matriz/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Mioblastos/metabolismo , Mioblastos/citologia
4.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767703

RESUMO

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Assuntos
Exossomos , Integrina beta1 , MicroRNAs , Telócitos , Proteínas rac1 de Ligação ao GTP , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Exossomos/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Camundongos , Telócitos/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Camundongos Endogâmicos C57BL , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/genética , Hipóxia/complicações , Proliferação de Células/genética , Movimento Celular/genética , Humanos , Remodelação Vascular/genética , Neuropeptídeos
5.
DNA Cell Biol ; 43(7): 341-352, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634821

RESUMO

Telocytes have some cytoplasmic extensions called telopodes, which are thought to play a role in mitochondrial transfer in intercellular communication. Besides, it is hypothesized that telocytes establish cell membrane-mediated connections with breast cancer cells in coculture and may contribute to the survival of neoplastic cell clusters together with other stromal cells. The aim of this study is to investigate the contribution of telocytes and telocyte-derived mitochondria, which have also been identified in breast tumors, to the tumor development of breast cancer stem cells (CSCs) via miR-146a-5p. The isolation/characterization of telocytes from bone marrow mononuclear cells and the isolation of mitochondria from these cells were performed, respectively. In the next step, CSCs were isolated from the MDA-MB-231 cell line and were characterized. Then, miR-146a-5p expressions of CSCs were inhibited by anti-miR-146a-5p. The epithelial-mesenchymal transition (EMT) was determined by evaluating changes in vimentin protein levels and was evaluated by analyzing BRCA1, P53, SOX2, E-cadherin, and N-cadherin gene expression changes. Our results showed that miR-146a promoted stemness and oncogenic properties in CSCs. EMT (N-cadherin, vimentin, E-cadherin) and tumorigenic markers (BRCA1, P53, SOX2) of CSCs decreased after miR-146a inhibition. Bone marrow-derived telocytes and mitochondria derived from telocytes favored the reduction of CSC aggressiveness following this inhibition.


Assuntos
Neoplasias da Mama , Técnicas de Cocultura , MicroRNAs , Mitocôndrias , Células-Tronco Neoplásicas , Telócitos , Humanos , Telócitos/metabolismo , Telócitos/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Linhagem Celular Tumoral , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Carcinogênese/patologia , Carcinogênese/genética , Carcinogênese/metabolismo
6.
Cell Mol Gastroenterol Hepatol ; 18(2): 101347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670488

RESUMO

BACKGROUND & AIM: Telocytes, a recently identified type of subepithelial interstitial cell, have garnered attention for their potential roles in tissue homeostasis and repair. However, their contribution to gastric metaplasia remains unexplored. This study elucidates the role of telocytes in the development of metaplasia within the gastric environment. METHODS: To investigate the presence and behavior of telocytes during metaplastic transitions, we used drug-induced acute injury models (using DMP-777 or L635) and a genetically engineered mouse model (Mist1-Kras). Lineage tracing via the Foxl1-CreERT2;R26R-tdTomato mouse model was used to track telocyte migratory dynamics. Immunofluorescence staining was used to identify telocyte markers and evaluate their correlation with metaplasia-related changes. RESULTS: We confirmed the existence of FOXL1+/PDGFRα+ double-positive telocytes in the stomach's isthmus region. As metaplasia developed, we observed a marked increase in the telocyte population. The distribution of telocytes expanded beyond the isthmus to encompass the entire gland and closely reflected the expansion of the proliferative cell zone. Rather than a general response to mucosal damage, the shift in telocyte distribution was associated with the establishment of a metaplastic cell niche at the gland base. Furthermore, lineage-tracing experiments highlighted the active recruitment of telocytes to the emerging metaplastic cell niche, and we observed expression of Wnt5a, Bmp4, and Bmp7 in PDGFRα+ telocytes. CONCLUSIONS: These results suggest that telocytes contribute to the evolution of a gastric metaplasia niche. The dynamic behavior of these stromal cells, their responsiveness to metaplastic changes, and potential association with Wnt5a, Bmp4, and Bmp7 signaling emphasize the significance of telocytes in tissue adaptation and repair.


Assuntos
Proteína Morfogenética Óssea 4 , Mucosa Gástrica , Metaplasia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Telócitos , Proteína Wnt-5a , Animais , Metaplasia/patologia , Camundongos , Telócitos/metabolismo , Telócitos/patologia , Proteína Wnt-5a/metabolismo , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Estômago/patologia , Proteína Morfogenética Óssea 7/metabolismo , Movimento Celular , Camundongos Transgênicos , Modelos Animais de Doenças , Fatores de Transcrição Forkhead
7.
Cell Tissue Res ; 396(2): 141-155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38539007

RESUMO

Telocytes (TCs) are CD34-positive interstitial cells that have long cytoplasmic projections, called telopodes; they have been identified in several organs and in various species. These cells establish a complex communication network between different stromal and epithelial cell types, and there is growing evidence that they play a key role in physiology and pathology. In many tissues, TC network impairment has been implicated in the onset and progression of pathological conditions, which makes the study of TCs of great interest for the development of novel therapies. In this review, we summarise the main methods involved in the characterisation of these cells as well as their inherent difficulties and then discuss the functional assays that are used to uncover the role of TCs in normal and pathological conditions, from the most traditional to the most recent. Furthermore, we provide future perspectives in the study of TCs, especially regarding the establishment of more precise markers, commercial lineages and means for drug delivery and genetic editing that directly target TCs.


Assuntos
Telócitos , Telócitos/citologia , Telócitos/metabolismo , Humanos , Animais
8.
Cell Mol Gastroenterol Hepatol ; 17(5): 697-701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342300

RESUMO

Telocytes are unique mesenchymal cells characterized by multiple remarkably long cytoplasmic extensions that extend hundreds of micron away from the cell body. Through these extensions, telocytes establish a 3-dimensional network by connecting with other telocytes and various cell types within the tissue. In the intestine, telocytes have emerged as an essential component of the stem cell niche, providing Wnt proteins that are critical for the proliferation of stem and progenitor cells. However, the analysis of single-cell RNA sequencing has revealed other stromal populations and mechanisms for niche organization, raising questions about the role of telocytes as a component of the stem cell niche. This review explores the current state-of-the-art, existing controversies, and potential future directions related to telocytes in the luminal gastrointestinal tract.


Assuntos
Células-Tronco Mesenquimais , Telócitos , Telócitos/metabolismo , Intestinos , Células-Tronco/metabolismo , Trato Gastrointestinal
9.
Cardiovasc Pathol ; 70: 107617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309490

RESUMO

The telocyte (TC) is a new interstitial cell type described in a wide variety of organs and loose connective tissues around small vessels, but its presence in large arteries remains unexplored. TCs have small cell bodies and remarkably thin, long, moniliform processes called telopods (Tps). Using transmission electron microscopy and immunofluorescence, we identified TCs in normal human thoracic aortas and in those with aneurysm or acute dissection (TAAD). In normal aortas the TCs were distributed throughout the connective tissue of the adventitial layer, in its innermost portion and at the zone of transition with the medial layer, with their long axes oriented parallel to the external elastic lamellae, forming a three-dimensional network, without prevalence in the media layer. In contrast, TAAD TCs were present in the medial layer and in regions of neovascularization. The most important feature of the adventitia of diseased aortas was the presence of numerous contacts between TCs and stem cells, including vascular progenitor cells. Although the biologically functional correlations need to be elucidated, the morphological observations presented here provide strong evidence of the involvement of TCs in maintaining vascular homeostasis in pathological situations of tissue injury.


Assuntos
Aorta Torácica , Dissecção Aórtica , Homeostase , Microscopia Eletrônica de Transmissão , Telócitos , Humanos , Telócitos/patologia , Telócitos/metabolismo , Telócitos/ultraestrutura , Dissecção Aórtica/patologia , Dissecção Aórtica/fisiopatologia , Dissecção Aórtica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/metabolismo , Masculino , Pessoa de Meia-Idade , Idoso , Túnica Adventícia/patologia , Túnica Adventícia/metabolismo , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/fisiopatologia , Feminino , Telopódios/patologia , Telopódios/metabolismo , Adulto , Imunofluorescência , Estudos de Casos e Controles
10.
Cell Biol Int ; 48(5): 647-664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353345

RESUMO

Intrauterine adhesions (IUA), the main cause of secondary infertility in women, result from irreversible fibrotic repair of the endometrium due to inflammation or human factors, accompanied by disruptions in the repair function of endometrial stem cells. This significantly impacts the physical and mental health of women in their childbearing years. Telocytes (TCs), a distinctive type of interstitial cells found in various tissues and organs, play diverse repair functions due to their unique spatial structure. In this study, we conduct the inaugural exploration of the changes in TCs in IUA disease and their potential impact on the function of stem cells. Our results show that in vivo, through double immunofluorescence staining (CD34+/Vimentin+; CD34+/CD31-), as endometrial fibrosis deepens, the number of TCs gradually decreases, telopodes shorten, and the three-dimensional structure becomes disrupted in the mouse IUA mode. In vitro, TCs can promote the proliferation and cycle of bone mesenchymal stem cells (BMSCs) by promoting the Wnt/ß-catenin signaling pathway, which were inhibited using XAV939. TCs can promote the migrated ability of BMSCs and contribute to the repair of stem cells during endometrial injury. In addition, TCs can inhibit the apoptosis of BMSCs through the Bcl-2/Bax pathway. In conclusion, our study demonstrates, for the first time, the resistance role of TCs in IUA disease, shedding light on their potential involvement in endometrial repair through the modulation of stem cell function.


Assuntos
Células-Tronco Mesenquimais , Telócitos , Doenças Uterinas , Humanos , Camundongos , Feminino , Animais , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Endométrio/patologia , Células-Tronco Mesenquimais/metabolismo , Telócitos/metabolismo , Via de Sinalização Wnt , Modelos Animais de Doenças
11.
BMC Vet Res ; 20(1): 73, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402164

RESUMO

BACKGROUND: Telocytes are modified interstitial cells that communicate with other types of cells, including stem cells. Stemness properties render them more susceptible to environmental conditions. The current morphological investigation examined the reactions of telocytes to salt stress in relation to stem cells and myoblasts. The common carp are subjected to salinity levels of 0.2, 6, and 10 ppt. The gill samples were preserved and prepared for TEM. RESULTS: The present study observed that telocytes undergo morphological change and exhibit enhanced secretory activities in response to changes in salinity. TEM can identify typical telocytes. This research gives evidence for the communication of telocytes with stem cells, myoblasts, and skeletal muscles. Telocytes surround stem cells. Telopodes made planar contact with the cell membrane of the stem cell. Telocytes and their telopodes surrounded the skeletal myoblast. These findings show that telocytes may act as nurse cells for skeletal stem cells and myoblasts, which undergo fibrillogenesis. Not only telocytes undergo morphological alternations, but also skeletal muscles become hypertrophied, which receive telocyte secretory vesicles in intercellular compartments. CONCLUSION: In conclusion, the activation of telocytes is what causes stress adaptation. They might act as important players in intercellular communication between cells. It is also possible that reciprocal interaction occurs between telocytes and other cells to adapt to changing environmental conditions.


Assuntos
Carpas , Telócitos , Animais , Salinidade , Telócitos/metabolismo , Microscopia Eletrônica de Transmissão/veterinária , Músculo Esquelético , Células-Tronco , Mioblastos
12.
Planta Med ; 90(2): 84-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37714195

RESUMO

A brand-new class of interstitial cells, called telocytes, has been detected in the heart. Telocytes can connect and transmit signals to almost all cardiomyocytes; this is highly interrelated with the occurrence and development of heart diseases. Modern studies have shown that berberine has a therapeutic effect on cardiovascular health. However, berberine's mechanism of action on the cardiovascular system through cardiac telocytes is unclear. Interestingly, 5 µm of berberine remarkably decreased the concentration of intracellular calcium and membrane depolarization in cultured telocytes, upregulated the expression of CX43 and ß-catenin, and downregulated the expressions of TRPV4 and TRPV1. Here, telocytes were identified in the vascular adventitia and intima, endocardium, myocardium, adventitia, and heart valves. Moreover, telocytes were broadly dispersed around cardiac vessels and interacted directly through gap junctions and indirectly through extracellular vesicles. Together, cardiac telocytes interact with berberine and then deliver drug information to the heart. Telocytes may be an essential cellular target for drug therapy of the cardiovascular system.


Assuntos
Berberina , Telócitos , Animais , Coelhos , Berberina/farmacologia , Miocárdio/metabolismo , Telócitos/metabolismo , Endocárdio/metabolismo , Miócitos Cardíacos
13.
Microsc Microanal ; 29(6): 2204-2217, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992277

RESUMO

Telocytes and keratocytes are important cells that maintain the structure and function of the cornea. The buffalo cornea, known for its resilience in harsh conditions, has not been extensively studied regarding the presence and role of telocytes and keratocytes. We used light microscopy, transmission electron microscopy (TEM), and immunofluorescence assays with platelet-derived growth factor receptor alpha (PDGFRα), CD34, and Vimentin markers to investigate their expression and localization in the cornea. TEM analysis confirmed the presence of spindle-shaped keratocytes with intercellular connections, while telocytes exhibited small spindle-shaped bodies with long, thin branches connecting to corneal keratocytes. Immunofluorescence findings showed that CD34 was more abundant near the endothelium, Vimentin was prominently expressed near the epithelium, and PDGFRα was uniformly distributed throughout the corneal stroma. Co-expression of CD34 and Vimentin, PDGFRα and Vimentin, as well as CD34 and PDGFRα, was observed in keratocytes and telocytes within the stroma, indicating the potential presence of mesenchymal cells. These results suggest the involvement of telocytes and keratocytes in corneal wound healing, transparency maintenance, and homeostasis. The co-expression of these markers highlights the critical role of telocytes and keratocytes in regulating corneal physiological functions, further enhancing our understanding of corneal biology in the buffalo model.


Assuntos
Substância Própria , Telócitos , Substância Própria/metabolismo , Vimentina , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Telócitos/metabolismo , Microscopia Eletrônica de Transmissão , Imunofluorescência
14.
Cell Transplant ; 32: 9636897231212746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38006220

RESUMO

Intrauterine adhesions (IUAs) often occurred after common obstetrical and gynecological procedures or infections in women of reproductive age. It was characterized by the formation of endometrial fibrosis and prevention of endometrial regeneration, usually with devastating fertility consequences and poor treatment outcomes so far. Telocytes (TCs), as a novel interstitial cell type, present in female uterus with in vitro therapeutic potential in decidualization-defective gynecologic diseases. This study aims to further investigate the role of TC-derived Wnt ligands carried by exosomes (Exo) in reversal of fibrosis and enhancement of regeneration repair in endometrium. IUA cellular and animal models were established from endometrial stromal cells (ESCs) and mice, followed with treatment of TC-conditioned medium (TCM) or TC-derived Exo. In cellular model, fibrosis markers (collagen type 1 alpha 1 [COL1A1], fibronectin [FN], and α-smooth muscle actin [α-SMA]), angiogenesis (vascular endothelial growth factor [VEGF]), and pathway protein (ß-catenin) were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting (WB), and immunofluorescence. Results showed that, TCs (either TCM or TC-derived Exo) provide a source of Wnts that inhibit cellular fibrosis, as evidenced by significantly elevated VEGF and ß-catenin with decreased fibrotic markers, whereas TCs lost salvage on fibrosis after being blocked with Wnt/ß-catenin inhibitors (XAV939 or ETC-159). Further in mouse model, regeneration repair (endometrial thickness, number of glands, and fibrosis area ratio), fibrosis markers (fibronectin [FN]), mesenchymal-epithelial transition (MET) (E-cadherin, N-cadherin), and angiogenesis (VEGF, microvessel density [MVD]) were studied by hematoxylin-eosin (HE), Masson staining, and immunohistochemistry. Results demonstrated that TC-Exo treatment effectively promotes regeneration repair of endometrium by relieving fibrosis, enhancing MET, and angiogenesis. These results confirmed new evidence for therapeutic perspective of TC-derived Exo in IUAs.


Assuntos
Exossomos , Telócitos , Doenças Uterinas , Humanos , Feminino , Camundongos , Animais , beta Catenina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fibronectinas/metabolismo , Exossomos/metabolismo , Endométrio/metabolismo , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Doenças Uterinas/terapia , Fibrose , Telócitos/metabolismo
15.
World J Gastroenterol ; 29(38): 5374-5382, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37900582

RESUMO

BACKGROUND: Many studies have shown that interstitial Cajal-like cell (ICLC) abnormalities are closely related to a variety of dynamic gastrointestinal disorders. ICLCs are pacemaker cells for gastrointestinal movement and are involved in the transmission of nerve impulses. AIM: To elucidate the expression profile and significance of cholecystokinin-A (CCK-A) receptors in ICLCs in the common bile duct (CBD), as well as the role of CCK in regulating CBD motility through CCK-A receptors on CBD ICLCs. METHODS: The levels of tyrosine kinase receptor (c-kit) and CCK-A receptors in CBD tissues and isolated CBD cells were quantified using the double immunofluorescence labeling technique. The CCK-mediated enhancement of the movement of CBD muscle strips through CBD ICLCs was observed by a muscle strip contraction test. RESULTS: Immunofluorescence showed co-expression of c-kit and CCK-A receptors in the CBD muscularis layer. Observations of isolated CBD cells showed that c-kit was expressed on the surface of ICLCs, the cell body and synapse were colored and polygonal, and some cells presented protrusions and formed networks adjacent to the CBD while others formed filaments at the synaptic terminals of local cells. CCK-A receptors were also expressed on CBD ICLCs. At concentrations ranging from 10-6 mol/L to 10-10 mol/L, CCK promoted CBD smooth muscle contractility in a dose-dependent manner. In contrast, after ICLC removal, the contractility mediated by CCK in CBD smooth muscle decreased. CONCLUSION: CCK-A receptors are highly expressed on CBD ICLCs, and CCK may regulate CBD motility through the CCK-A receptors on ICLCs.


Assuntos
Vesícula Biliar , Telócitos , Cobaias , Animais , Receptor de Colecistocinina A/metabolismo , Ducto Colédoco , Telócitos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Colecistocinina/metabolismo
16.
J Cell Mol Med ; 27(24): 3980-3994, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855260

RESUMO

Co-transplantation of mesenchymal stem cells (MSCs) with telocytes (TCs) was found to have therapeutic effects, although the mechanism of intercellular communication is still unknown. Our current studies aim at exploring the potential molecular mechanisms of TCs interaction and communication with MSCs with a focus on integrin beta1 (ITGB1) in TCs. We found that the co-culture of MSCs with ITGB1-deleted TCs (TCITGB1-ko ) changed the proliferation, differentiation and growth dynamics ability of MSC in responses to LPS or PI3K inhibitor. Changes of MSC proliferation and apoptosis were accompanied with the dysregulation of cytokine mRNA expression in MSCs co-cultured with TCITGB1-ko during the exposure of PI3Kα/δ/ß inhibitor, of which IL-1ß, IL-6 and TNF-α increased, while IFN-γ, IL-4 and IL-10 decreased. The responses of PI3K p85, PI3K p110 and pAKT of MSCs co-cultured with TCITGB1-ko to LPS or PI3K inhibitor were opposite to those with ITGB1-presented TCs. The intraperitoneal injection of TCITGB1-ko , TCvector or MSCs alone, as well as the combination of MSCs with TCITGB1-ko or TCvector exhibited therapeutic effects on LPS-induced acute lung injury. Thus, our data indicate that telocyte ITGB1 contributes to the interaction and intercellular communication between MSCs and TCs, responsible for influencing other cell phenomes and functions.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Telócitos , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/metabolismo , Telócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células , Pulmão/metabolismo
17.
Acta Histochem ; 125(8): 152099, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813067

RESUMO

PURPOSE: Telocytes (TCs), a novel type of stromal cells found in tissues, induce macrophage differentiation into classically activated macrophages (M1) types and enhance their phagocytic function. The purpose of this study was to investigate the inhibitory effects of TC-induced M1 macrophages on endometriosis (EMs). METHODS: mouse uterine primary TCs and endometrial stromal cells (ESCs) were isolated and identified using double immunofluorescence staining. For the in vitro study, ESCs were treated with TC-induced M1 macrophages, and the vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and nuclear factor kappa B (NF-κb) genes were identified by quantitative real-time PCR (qRT-PCR) or western blotting (WB). For the in vivo study, an EMs mouse model received TC-conditioned medium (TCM) via abdominal administration, and characterized the inhibitory effects on growth (lesion weight, volume, and pathology), tissue-resident macrophages differentiation by immunostaining, angiogenic capacity (CD31 and VEGF), invasive capacity (MMP9), and NF-κb expression within EMs lesions. RESULTS: immunofluorescent staining showed that uterine TCs expressed CD34+ and vimentin+, whereas ESCs expressed vimentin+ and cytokeratin-. At the cellular level, TC-induced M1 macrophages can significantly inhibit the expression of VEGF and MMP9 in ESCs through WB or qRT-PCR, possibly by suppressing the NF-κb pathway. The in vivo study showed that macrophages switch from the alternatively activated macrophages (M2) in untreated EMs lesions to the M1 subtype after TCM exposure. Thereby, TC-induced M1 macrophages contributed to the inhibition of EMs lesions. More importantly, this effect may be achieved by suppressing the expression of NF-κb to inhibit angiogenesis (CD31 and VEGF) and invasion (MMP9) in the tissue. CONCLUSION: TC-induced M1 macrophages play a prevailing role in suppressing EMs by inhibiting angiogenic and invasive capacity through the NF-κb pathway, which provides a promising therapeutic approach for EMs.


Assuntos
Endometriose , Telócitos , Camundongos , Animais , Feminino , Humanos , NF-kappa B/metabolismo , Endometriose/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Metaloproteinase 9 da Matriz/genética , Vimentina/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Telócitos/metabolismo
18.
Ultrastruct Pathol ; 47(6): 484-494, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37840262

RESUMO

Thin endometrium, defined as an endometrial thickness of less than 7 mm during the late follicular phase, is a common cause of frequent cancelation of embryo transfers or recurrent implantation failure during assisted reproductive treatment. Small proteoglycans regulate intracellular signaling cascades by bridging other matrix molecules and tissue elements, affecting cell proliferation, adhesion, migration, and cytokine concentration. The aim of the study is to investigate the role of small leucine-rich proteoglycans in the pathogenesis of thin and thick human endometrium and their differences from normal endometrium in terms of fine structure properties. Normal, thin, and thick endometrial samples were collected, and small leucine-rich proteoglycans (SLRPs), decorin, lumican, biglycan, and fibromodulin immunoreactivities were comparatively analyzed immunohistochemically. The data were compared statistically. Moreover, ultrastructural differences among the groups were evaluated by transmission electron microscopy. The immunoreactivities of decorin, lumican, and biglycan were higher in the thin endometrial glandular epithelium and stroma compared to the normal and thick endometrium (p < .001). Fibromodulin immunoreactivity was also higher in the thin endometrial glandular epithelium than in the normal and thick endometrium (p < .001). However, there was no statistical difference in the stroma among the groups. Ultrastructural features were not profoundly different among cases. Telocytes, however, were not seen in the thin endometrium in contrast to normal and thin endometrial tissues. These findings suggest a possible role of changes in proteoglycan levels in the pathogenesis of thin endometrium.


Assuntos
Proteoglicanos Pequenos Ricos em Leucina , Telócitos , Feminino , Humanos , Biglicano/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Lumicana/metabolismo , Decorina/metabolismo , Fibromodulina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Endométrio , Telócitos/metabolismo
19.
Int. j. morphol ; 41(5): 1394-1399, oct. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1521051

RESUMO

SUMMARY: Telocytes are a cell population described in 2011 with a multitude of functions such as tissue support, regulation of stem cell niches or intercellular signal transmission. However, there are no studies about their embryonic origin, their function in development, or their moment of appearance. The objective of this work is to try to answer these questions through histological and immunofluorescence studies with samples from the embryological collection of the Department of Anatomy of the University of Granada. In the results obtained, as demonstrated by immunofluorescence for CD34, the presence of these cells can be seen in the fourth week of embryonic development in the perinotochordal region. Its presence is evident from the sixth week of development in a multitude of organs such as the heart, skeletal muscle tissue and supporting tissue of various organs such as the kidney, brain or pericardium. Its function seems to be when the embryonic histological images are analyzed in an evolutionary way, to act as a scaffold or scaffold for the subsequent population by mature tissue elements. In conclusion, telocytes appear at a very early stage of embryonic development and would have a fundamental role in it as scaffolding and directors of organ and tissue growth.


Los telocitos son una población celular descrita en 2011 con multitud de funciones como el sostén tisular, la regulación de los nichos de células madre o la transmisión de señales intercelulares. Sin embargo, no existen estudios acerca del origen embrionario de los mismos, su función en el desarrollo ni su momento de aparición. El objetivo de este trabajo es tratar de responder a estos interrogantes mediante estudios histológicos y por inmunofluorescencia con muestras de la colección embriológica del Departamento de Anatomía de la Universidad de Granada. En los resultados se puede observar como se demuestra mediante inmunofluorescencia para CD34, la presencia de estas células en la cuarta semana del desarrollo embrionario en la región perinotocordal. Su presencia se evidencia a partir de la sexta semana del desarrollo en multitud de órganos como corazón, tejidos músculo esqueléticos y tejidos de sostén de diversos órganos como riñón, encéfalo o pericardio. Su función parece ser al ser analizadas las imágenes histológicas embrionarias de forma evolutiva, la de actuar como un andamiaje o scafold para el posterior poblamiento por elementos tisulares maduros. Como conclusión, los telocitos aparecen en un momento muy precoz del desarrollo embrionario y presentarían una función fundamental en el mismo como andamiajes y directores del crecimiento de los órganos y tejidos.


Assuntos
Humanos , Telócitos/metabolismo , Telócitos/ultraestrutura , Imunofluorescência , Antígenos CD34
20.
Clin Exp Pharmacol Physiol ; 50(12): 964-972, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37715611

RESUMO

Pulmonary fibrosis (PF) is one of the common manifestations of end-stage lung disease. Chronic lung failure after lung transplantation is mainly caused by bronchiolitis obliterans syndrome (BOS) and is mainly characterized by lung tissue fibrosis. Pulmonary epithelial-mesenchymal transformation (EMT) is crucial for pulmonary fibrosis. Telocytes (TCs), a new type of mesenchymal cells, play a protective role in various acute injuries. For exploring the anti-pulmonary fibrosis effect of TCs in the BOS model in vitro and the related mechanism, rat tracheal epithelial (RTE) cells were treated with transforming growth factor-ß (TGF-ß) to simulate lung tissue fibrosis in vitro. The RTE cells were then co-cultured with TCs primarily extracted from rat lung tissue. Western blot, Seahorse XF Analysers and enzyme-linked immunosorbent assay were used to detect the level of EMT and aerobic respiration of RTE cells. Furthermore, anti-hepatocyte growth factor (anti-HGF) antibody was exogenously added to the cultured cells to explore further mechanisms. Moreover, hexokinase 2 (HK2) in RTE cells was knocked down to assess whether it influences the blocking effect of the anti-HGF antibody. TGF-ß could induce lung tissue fibrosis in RTE cells in vitro. Nevertheless, TCs co-culture decreased the level of EMT, glucose metabolic indicators (lactate and ATP) and oxygen levels. Furthermore, TCs released hepatocyte growth factor (HGF). Therefore, the exogenous addition of anti-HGF antibody in the co-culture system blocked the anti-lung tissue fibrosis effect. However, HK2 knockdown attenuated the blocking effect of the anti-HGF antibody. In conclusion, TCs can protect against lung tissue fibrosis by releasing HGF, a process dependent on HK2.


Assuntos
Fibrose Pulmonar , Telócitos , Animais , Ratos , Fibrose , Fator de Crescimento de Hepatócito/metabolismo , Hexoquinase , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Telócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA