Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 303(Pt 1): 135009, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35597459

RESUMO

Benzene poisoning is a common adverse blood outcome in occupational workers, manifested by hematopoietic dysfunction. However, the specific phenotype and its mechanisms of early hematopoietic toxicity caused by benzene remain unclear. After 15 days of exposure, the WBC levels were not significantly altered in benzene-exposed mice. However, the level of red blood cells (RBC) showed a significant decrease, and it was significantly and negatively correlated with urinary S-phenylmercapturic acid (SPMA). Notably, 5 mg/kg benzene exposure significantly inhibited the renewal capacity and the number of colony formation of hematopoietic stem progenitor cells in mice, especially erythrocyte differentiation. These results suggested that the early hematopoietic toxicity phenotype caused by benzene was dominated by inhibition of erythroid differentiation rather than WBC-related inflammation. To further understand the underlying mechanisms of benzene-induced early hematopoietic toxicity, 16 S rRNA sequencing and plasma metabolites analysis were conducted to investigate the impact of benzene exposure for 15 days on microbial composition and metabolic profile of mice. We found that short-term benzene exposure induced disturbances in gut microbiota and metabolism. The relative abundance of Mollicutes_RF39 at order levels was significantly reduced in benzene-exposed mice and was strongly correlated with hematopoietic indicators and urinary benzene markers. Interestingly, Mollicutes_RF39 might disturb the levels of eight metabolites, whereas Citrulline was highly linked to Mollicutes_RF39 (r = 0.862, P = 0.000). Consequently, Mollicutes_RF39-derived Citrulline might be the key regulator of early hematopoietic injury induced by benzene exposure. These findings promote the understanding of early hematotoxicity phenotypes and provide new perspectives on the underlying mechanisms of benzene-induced hematotoxicity.


Assuntos
Exposição Ocupacional , Tenericutes , Animais , Benzeno/metabolismo , Citrulina/metabolismo , Eritrócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Tenericutes/metabolismo
2.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980678

RESUMO

Marine invertebrate microbiomes play important roles in diverse host and ecological processes. However, a mechanistic understanding of host-microbe interactions is currently available for a small number of model organisms. Here, an integrated taxonomic and functional analysis of the microbiome of the eastern oyster, Crassostrea virginica, was performed using 16S rRNA gene-based amplicon profiling, shotgun metagenomics, and genome-scale metabolic reconstruction. Relatively high variability of the microbiome was observed across individual oysters and among different tissue types. Specifically, a significantly higher alpha diversity was observed in the inner shell than in the gut, gill, mantle, and pallial fluid samples, and a distinct microbiome composition was revealed in the gut compared to other tissues examined in this study. Targeted metagenomic sequencing of the gut microbiota led to further characterization of a dominant bacterial taxon, the class Mollicutes, which was captured by the reconstruction of a metagenome-assembled genome (MAG). Genome-scale metabolic reconstruction of the oyster Mollicutes MAG revealed a reduced set of metabolic functions and a high reliance on the uptake of host-derived nutrients. A chitin degradation and an arginine deiminase pathway were unique to the MAG compared to closely related genomes of Mollicutes isolates, indicating distinct mechanisms of carbon and energy acquisition by the oyster-associated Mollicutes A systematic reanalysis of public eastern oyster-derived microbiome data revealed a high prevalence of the Mollicutes among adult oyster guts and a significantly lower relative abundance of the Mollicutes in oyster larvae and adult oyster biodeposits.IMPORTANCE Despite their biological and ecological significance, a mechanistic characterization of microbiome function is frequently missing from many nonmodel marine invertebrates. As an initial step toward filling this gap for the eastern oyster, Crassostrea virginica, this study provides an integrated taxonomic and functional analysis of the oyster microbiome using samples from a coastal salt pond in August 2017. The study identified high variability of the microbiome across tissue types and among individual oysters, with some dominant taxa showing higher relative abundance in specific tissues. A high prevalence of Mollicutes in the adult oyster gut was revealed by comparative analysis of the gut, biodeposit, and larva microbiomes. Phylogenomic analysis and metabolic reconstruction suggested the oyster-associated Mollicutes is closely related but functionally distinct from Mollicutes isolated from other marine invertebrates. To the best of our knowledge, this study represents the first metagenomics-derived functional inference of Mollicutes in the eastern oyster microbiome.


Assuntos
Bactérias/classificação , Bactérias/genética , Crassostrea/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma , Tenericutes/genética , Animais , Microbioma Gastrointestinal/fisiologia , Metagenômica , Filogenia , RNA Ribossômico 16S/genética , Tenericutes/classificação , Tenericutes/metabolismo
3.
RNA Biol ; 18(12): 2278-2289, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33685366

RESUMO

Dihydrouridine (D) is a tRNA-modified base conserved throughout all kingdoms of life and assuming an important structural role. The conserved dihydrouridine synthases (Dus) carries out D-synthesis. DusA, DusB and DusC are bacterial members, and their substrate specificity has been determined in Escherichia coli. DusA synthesizes D20/D20a while DusB and DusC are responsible for the synthesis of D17 and D16, respectively. Here, we characterize the function of the unique dus gene encoding a DusB detected in Mollicutes, which are bacteria that evolved from a common Firmicute ancestor via massive genome reduction. Using in vitro activity tests as well as in vivo E. coli complementation assays with the enzyme from Mycoplasma capricolum (DusBMCap), a model organism for the study of these parasitic bacteria, we show that, as expected for a DusB homolog, DusBMCap modifies U17 to D17 but also synthetizes D20/D20a combining therefore both E. coli DusA and DusB activities. Hence, this is the first case of a Dus enzyme able to modify up to three different sites as well as the first example of a tRNA-modifying enzyme that can modify bases present on the two opposite sides of an RNA-loop structure. Comparative analysis of the distribution of DusB homologs in Firmicutes revealed the existence of three DusB subgroups namely DusB1, DusB2 and DusB3. The first two subgroups were likely present in the Firmicute ancestor, and Mollicutes have retained DusB1 and lost DusB2. Altogether, our results suggest that the multisite specificity of the M. capricolum DusB enzyme could be an ancestral property.


Assuntos
Oxirredutases/metabolismo , RNA de Transferência/química , Tenericutes/genética , Uridina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/genética , Evolução Molecular , Modelos Moleculares , Conformação de Ácido Nucleico , Oxirredutases/genética , RNA Bacteriano/química , Especificidade por Substrato , Tenericutes/metabolismo
4.
Microbiologyopen ; 9(9): e1095, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666685

RESUMO

Animals in captivity undergo a range of environmental changes from wild animals. An increasing number of studies show that captivity significantly affects the abundance and community structure of gut microbiota. The northern grass lizard (Takydromus septentrionalis) is an extensively studied lacertid lizard and has a distributional range covering the central and southeastern parts of China. Nonetheless, little is known about the gut microbiota of this species, which may play a certain role in nutrient and energy metabolism as well as immune homeostasis. Here, we examined the differences in the gut microbiota between two groups (wild and captive) of lizards through 16S rRNA sequencing using the Illumina HiSeq platform. The results demonstrated that the dominant microbial components in both groups consisted of Proteobacteria, Firmicutes, and Tenericutes. The two groups did not differ in the abundance of these three phyla. Citrobacter was the most dominant genus in wild lizards, while Morganella was the most dominant genus in captive lizards. Moreover, gene function predictions showed that genes at the KEGG pathway levels2 were more abundant in wild lizards than in captive lizards but, at the KEGG pathway levels1, the differences in gene abundances between wild and captive lizards were not significant. In summary, captivity exerted a significant impact on the gut microbial community structure and diversity in T. septentrionalis, and future work could usefully investigate the causes of these changes using a comparative approach.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Microbioma Gastrointestinal/fisiologia , Lagartos/microbiologia , Animais , Animais Selvagens/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , China , Fezes/microbiologia , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Intestinos/microbiologia , Redes e Vias Metabólicas/genética , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/metabolismo , Tenericutes/classificação , Tenericutes/genética , Tenericutes/isolamento & purificação , Tenericutes/metabolismo
5.
BMC Genomics ; 21(1): 408, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552739

RESUMO

BACKGROUND: The metabolic capacity, stress response and evolution of uncultured environmental Tenericutes have remained elusive, since previous studies have been largely focused on pathogenic species. In this study, we expanded analyses on Tenericutes lineages that inhabit various environments using a collection of 840 genomes. RESULTS: Several environmental lineages were discovered inhabiting the human gut, ground water, bioreactors and hypersaline lake and spanning the Haloplasmatales and Mycoplasmatales orders. A phylogenomics analysis of Bacilli and Tenericutes genomes revealed that some uncultured Tenericutes are affiliated with novel clades in Bacilli, such as RF39, RFN20 and ML615. Erysipelotrichales and two major gut lineages, RF39 and RFN20, were found to be neighboring clades of Mycoplasmatales. We detected habitat-specific functional patterns between the pathogenic, gut and the environmental Tenericutes, where genes involved in carbohydrate storage, carbon fixation, mutation repair, environmental response and amino acid cleavage are overrepresented in the genomes of environmental lineages, perhaps as a result of environmental adaptation. We hypothesize that the two major gut lineages, namely RF39 and RFN20, are probably acetate and hydrogen producers. Furthermore, deteriorating capacity of bactoprenol synthesis for cell wall peptidoglycan precursors secretion is a potential adaptive strategy employed by these lineages in response to the gut environment. CONCLUSIONS: This study uncovers the characteristic functions of environmental Tenericutes and their relationships with Bacilli, which sheds new light onto the pathogenicity and evolutionary processes of Mycoplasmatales.


Assuntos
Bacillus/classificação , Tenericutes/classificação , Tenericutes/patogenicidade , Acetatos/metabolismo , Adaptação Fisiológica , Bacillus/genética , Bacillus/metabolismo , Reatores Biológicos/microbiologia , DNA Bacteriano/genética , Microbioma Gastrointestinal , Água Subterrânea/microbiologia , Humanos , Hidrogênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Tenericutes/genética , Tenericutes/metabolismo
6.
Biomolecules ; 10(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290235

RESUMO

The C5-methylation of uracil to form 5-methyluracil (m5U) is a ubiquitous base modification of nucleic acids. Four enzyme families have converged to catalyze this methylation using different chemical solutions. Here, we investigate the evolution of 5-methyluracil synthase families in Mollicutes, a class of bacteria that has undergone extensive genome erosion. Many mollicutes have lost some of the m5U methyltransferases present in their common ancestor. Cases of duplication and subsequent shift of function are also described. For example, most members of the Spiroplasma subgroup use the ancestral tetrahydrofolate-dependent TrmFO enzyme to catalyze the formation of m5U54 in tRNA, while a TrmFO paralog (termed RlmFO) is responsible for m5U1939 formation in 23S rRNA. RlmFO has replaced the S-adenosyl-L-methionine (SAM)-enzyme RlmD that adds the same modification in the ancestor and which is still present in mollicutes from the Hominis subgroup. Another paralog of this family, the TrmFO-like protein, has a yet unidentified function that differs from the TrmFO and RlmFO homologs. Despite having evolved towards minimal genomes, the mollicutes possess a repertoire of m5U-modifying enzymes that is highly dynamic and has undergone horizontal transfer.


Assuntos
Evolução Molecular , Ácidos Nucleicos/metabolismo , Tenericutes/metabolismo , Uracila/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Dinitrocresóis/metabolismo , Ácido Fólico/metabolismo , Metilação , Metiltransferases/metabolismo , Modelos Moleculares , RNA Ribossômico 23S/metabolismo , RNA de Transferência/metabolismo , Tenericutes/genética
7.
Biomed Res Int ; 2020: 1482109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190648

RESUMO

The human gut microbiota is affected by genetic and environmental factors. It remains unclear how host genetic and environmental factors affect the composition and function of gut microbiota in populations living at high altitudes. We used a metagenome-wide analysis to investigate the gut microbiota composition in 15 native Tibetans and 12 Hans living on the Tibetan Plateau. The composition of gut microbiota differed significantly between these two groups (P < 0.05). The Planctomycetes was the most abundant phyla both in native Tibetans and in Hans. Furthermore, the most relatively abundant phyla for native Tibetans were Bacteroidetes (15.66%), Firmicutes (11.10%), Proteobacteria (1.32%), Actinobacteria (1.10%), and Tenericutes (0.35%), while the most relatively abundant phyla for Hans were Bacteroidetes (16.28%), Firmicutes (8.41%), Proteobacteria (2.93%), Actinobacteria (0.49%), and Cyanobacteria (0.21%). The abundance of the majority of genera was significantly higher in Tibetans than in Hans (P < 0.01). The number of microbial genes was 4.9 times higher in Tibetans than in Hans. The metabolic pathways and clusters of orthologous groups differed significantly between the two populations (P < 0.05). The abundance of carbohydrate-active enzyme modules and antibiotic resistance genes was significantly lower in Tibetans compared to Hans (P < 0.05). Our results suggest that different genetic factors (race) and environmental factors (diets and consumption of antibiotics) may play important roles in shaping the composition and function of gut microbiota in populations living at high altitudes.


Assuntos
Altitude , Microbioma Gastrointestinal , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Adulto , Antibacterianos/administração & dosagem , Povo Asiático , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Índice de Massa Corporal , China , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Dieta , Farmacorresistência Bacteriana Múltipla/genética , Fezes/microbiologia , Feminino , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Metagenoma , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Análise de Sequência de DNA , Tenericutes/genética , Tenericutes/isolamento & purificação , Tenericutes/metabolismo , Tibet
8.
Can J Microbiol ; 65(8): 596-612, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31018106

RESUMO

Ureaplasma diversum is a member of the Mollicutes class responsible for urogenital tract infection in cattle and small ruminants. Studies indicate that the process of horizontal gene transfer, the exchange of genetic material among different species, has a crucial role in mollicute evolution, affecting the group's characteristic genomic reduction process and simplification of metabolic pathways. Using bioinformatics tools and the STRING database of known and predicted protein interactions, we constructed the protein-protein interaction network of U. diversum and compared it with the networks of other members of the Mollicutes class. We also investigated horizontal gene transfer events in subnetworks of interest involved in purine and pyrimidine metabolism and urease function, chosen because of their intrinsic importance for host colonization and virulence. We identified horizontal gene transfer events among Mollicutes and from Ureaplasma to Staphylococcus aureus and Corynebacterium, bacterial groups that colonize the urogenital niche. The overall tendency of genome reduction and simplification in the Mollicutes is echoed in their protein interaction networks, which tend to be more generalized and less selective. Our data suggest that the process was permitted (or enabled) by an increase in host dependence and the available gene repertoire in the urogenital tract shared via horizontal gene transfer.


Assuntos
Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Genoma Bacteriano , Mapas de Interação de Proteínas , Tenericutes/genética , Ureaplasma/genética , Animais , Proteínas de Bactérias/genética , Bovinos , Corynebacterium/genética , Evolução Molecular , Tamanho do Genoma , Genômica , Redes e Vias Metabólicas , Purinas/metabolismo , Pirimidinas/metabolismo , Staphylococcus aureus/genética , Tenericutes/classificação , Tenericutes/metabolismo , Ureaplasma/classificação , Ureaplasma/metabolismo , Virulência
9.
Appl Microbiol Biotechnol ; 102(23): 10285-10297, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30276715

RESUMO

Knowledge of connections between operational conditions, process stability, and microbial community dynamics is essential to enhance anaerobic digestion (AD) process efficiency and management. In this study, the detailed temporal effects of a sudden glycerol-based organic overloading on the AD microbial community and process imbalance were investigated in two replicate anaerobic digesters by a time-intensive sampling scheme. The microbial community time response to the overloading event was shorter than the shifts of reactor performance parameters. An increase in bacterial community dynamics and in the abundances of several microbial taxa, mainly within the Firmicutes, Tenericutes, and Chloroflexi phyla and Methanoculleus genera, could be detected prior to any shift on the reactor operational parameters. Reactor acidification already started within the first 24 h of the shock and headed the AD process to total inhibition in 72 h alongside with the largest shifts on microbiome, mostly the increase of Anaerosinus sp. and hydrogenotrophic methanogenic Archaea. In sum, this work proved that AD microbial community reacts very quickly to an organic overloading and some shifts occur prior to alterations on the performance parameters. The latter is very interesting as it can be used to improve AD process management protocols.


Assuntos
Biomassa , Reatores Biológicos/microbiologia , Microbiota , Anaerobiose , Archaea/classificação , Archaea/isolamento & purificação , Chloroflexi/classificação , Chloroflexi/metabolismo , Biologia Computacional , DNA Bacteriano/genética , Firmicutes/classificação , Firmicutes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Microbiologia Industrial , Methanomicrobiaceae/classificação , Methanomicrobiaceae/metabolismo , Tenericutes/classificação , Tenericutes/metabolismo
10.
BMC Microbiol ; 17(1): 26, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143392

RESUMO

BACKGROUND: Bacteria of the class Mollicutes underwent extreme reduction of genomes and gene expression control systems. Only a few regulators are known to date. In this work, we describe a novel group of transcriptional regulators that are distributed within different Mollicutes and control the expression of restriction-modification systems (RM-systems). RESULTS: We performed cross-species search of putative regulators of RM-systems (C-proteins) and respective binding sites in Mollicutes. We identified a set of novel putative C-protein binding motifs distributed within Mollicutes. We studied the most frequent motif and respective C-protein on the model of Mycoplasma gallisepticum S6. We confirmed our prediction and identified key nucleotides important for C-protein binding. Further we identified novel target promoters of C-protein in M. gallisepticum. CONCLUSIONS: We found that C-protein of M. gallisepticum binds predicted conserved direct repeats of the (GTGTTAN5)2 motif. Apart from its own operon promoter, HsdC can bind to the promoters of the clpB chaperone gene and a tRNA cluster.


Assuntos
Proteínas de Bactérias/metabolismo , Sítios de Ligação/fisiologia , Enzimas de Restrição-Modificação do DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Processamento de Proteína Pós-Traducional , Tenericutes/metabolismo , Proteínas de Bactérias/genética , Mapeamento Cromossômico , Enzimas de Restrição-Modificação do DNA/genética , Endopeptidase Clp/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/metabolismo , Óperon/fisiologia , Regiões Promotoras Genéticas , Ligação Proteica , RNA de Transferência/metabolismo , Tenericutes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia
11.
ISME J ; 10(11): 2679-2692, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27058507

RESUMO

Tenericutes are a unique class of bacteria that lack a cell wall and are typically parasites or commensals of eukaryotic hosts. Environmental 16S rDNA surveys have identified a number of tenericute clades in diverse environments, introducing the possibility that these Tenericutes may represent non-host-associated, free-living microorganisms. Metagenomic sequencing of deep-sea methane seep sediments resulted in the assembly of two genomes from a Tenericutes-affiliated clade currently known as 'NB1-n' (SILVA taxonomy) or 'RF3' (Greengenes taxonomy). Metabolic reconstruction revealed that, like cultured members of the Mollicutes, these 'NB1-n' representatives lack a tricarboxylic acid cycle and instead use anaerobic fermentation of simple sugars for substrate level phosphorylation. Notably, the genomes also contained a number of unique metabolic features including hydrogenases and a simplified electron transport chain containing an RNF complex, cytochrome bd oxidase and complex I. On the basis of the metabolic potential predicted from the annotated genomes, we devised an anaerobic enrichment media that stimulated the growth of these Tenericutes at 10 °C, resulting in a mixed culture where these organisms represented ~60% of the total cells by targeted fluorescence in situ hybridization (FISH). Visual identification by FISH confirmed these organisms were not directly associated with Eukaryotes and electron cryomicroscopy of cells in the enrichment culture confirmed an ultrastructure consistent with the defining phenotypic property of Tenericutes, with a single membrane and no cell wall. On the basis of their unique gene content, phylogenetic placement and ultrastructure, we propose these organisms represent a novel class within the Tenericutes, and suggest the names Candidatus 'Izimaplasma sp. HR1' and Candidatus 'Izimaplasma sp. HR2' for the two genome representatives.


Assuntos
Metano/metabolismo , Filogenia , Água do Mar/microbiologia , Tenericutes/genética , DNA Bacteriano/genética , Genoma Bacteriano , Genômica , Hibridização in Situ Fluorescente , Metano/análise , RNA Ribossômico 16S/genética , Água do Mar/análise , Tenericutes/classificação , Tenericutes/isolamento & purificação , Tenericutes/metabolismo
12.
PLoS One ; 11(3): e0151351, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977596

RESUMO

Myeolchi-aekjeot (MA) in Korea is produced outdoors without temperature controls, which is a major obstacle to produce commercial MA products with uniform quality. To investigate the effects of temperature on MA fermentation, pH, bacterial abundance and community, and metabolites were monitored during fermentation at 15°C, 20°C, 25°C, and 30°C. Initial pH values were approximately 6.0, and pH values increased after approximately 42 days, with faster increases at higher temperatures. Bacterial abundances increased rapidly in all MA samples after quick initial decreases during early fermentation and then they again steadily decreased after reaching their maxima, which were significantly greater at higher temperatures. Bacterial community analysis revealed that Proteobacteria and Tenericutes were predominant in all initial MA samples, but they were rapidly displaced by Firmicutes as fermentation progressed. Photobacterium and Mycoplasma belonging to Proteobacteria and Tenericutes, respectively, which may include potentially pathogenic strains, were dominant in initial MA, but decreased with the growth of Chromohalobacter, which occurred faster at higher temperatures--they were dominant until 273 and 100 days at 15°C and 20°C, respectively, but not detected after 30 days at 25°C and 30°C. Chromohalobacter also decreased with the appearance of subsequent genera belonging to Firmicutes in all MA samples. Tetragenococcus, halophilic lactic acid bacteria, appeared predominantly at 20°C, 25°C, and 30°C; they were most abundant at 30°C, but not detected at 15°C. Alkalibacillus and Lentibacillus appeared as dominant genera with the decrease of Tetragenococcus at 25°C and 30°C, but only Lentibacillus was dominant at 15°C and 20°C. Metabolite analysis showed that amino acids related to tastes were major metabolites and their concentrations were relatively higher at high temperatures. This study suggests that high temperatures (approximately 30°C) may be appropriate in MA fermentation, in the light of faster disappearance of potentially pathogenic genera, higher amino acids, growth of Tetragenococcus, and faster fermentation.


Assuntos
Fermentação , Microbiologia de Alimentos , Alimentos , Temperatura , Reatores Biológicos , Firmicutes/crescimento & desenvolvimento , Firmicutes/metabolismo , Mycoplasma/crescimento & desenvolvimento , Mycoplasma/metabolismo , Photobacterium/crescimento & desenvolvimento , Photobacterium/metabolismo , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/metabolismo , República da Coreia , Tenericutes/crescimento & desenvolvimento , Tenericutes/metabolismo
13.
Am J Physiol Endocrinol Metab ; 309(10): E840-51, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26394664

RESUMO

The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational ß-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of ß-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Together, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.


Assuntos
Diabetes Gestacional/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Superfície Celular/metabolismo , Actinobacteria/classificação , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Animais , Bacteroidetes/classificação , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Diabetes Gestacional/sangue , Diabetes Gestacional/microbiologia , Ácidos Graxos Voláteis/sangue , Feminino , Fermentação , Conteúdo Gastrointestinal/química , Conteúdo Gastrointestinal/microbiologia , Insulina/sangue , Secreção de Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tipagem Molecular , Gravidez , Manutenção da Gravidez , Análise de Componente Principal , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/genética , Tenericutes/classificação , Tenericutes/crescimento & desenvolvimento , Tenericutes/isolamento & purificação , Tenericutes/metabolismo , Técnicas de Cultura de Tecidos
14.
PLoS One ; 9(3): e89312, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24595068

RESUMO

We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, Spiroplasma melliferum, Mycoplasma gallisepticum, and Acholeplasma laidlawii. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.


Assuntos
Metabolômica/métodos , Tenericutes/metabolismo , Vias Biossintéticas , Hidrolases/metabolismo , Espectrometria de Massas , Metaboloma , Via de Pentose Fosfato , Terpenos/metabolismo
15.
Biochem Biophys Res Commun ; 446(4): 927-32, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24650664

RESUMO

The mreB gene family encodes actin-like proteins that determine cell shape by directing cell wall synthesis and often exists in one to three copies in the genomes of non-spherical bacteria. Intriguingly, while most wall-less bacteria do not have this gene, five to seven mreB homologs are found in Spiroplasma and Haloplasma, which are both characterized by cell contractility. To investigate the molecular evolution of this gene family in wall-less bacteria, we sampled the available genome sequences from these two genera and other related lineages for comparative analysis. The gene phylogenies indicated that the mreB homologs in Haloplasma are more closely related to those in Firmicutes, whereas those in Spiroplasma form a separate clade. This finding suggests that the gene family expansions in these two lineages are the results of independent ancient duplications. Moreover, the Spiroplasma mreB homologs can be classified into five clades, of which the genomic positions are largely conserved. The inference of gene gains and losses suggests that there has been an overall trend to retain only one homolog from each of the five mreB clades in the evolutionary history of Spiroplasma.


Assuntos
Actinas/genética , Proteínas de Bactérias/genética , Evolução Molecular , Tenericutes/citologia , Tenericutes/genética , Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Duplicação Gênica , Genoma Bacteriano , Filogenia , Spiroplasma/citologia , Spiroplasma/genética , Spiroplasma/metabolismo , Tenericutes/metabolismo
16.
J Biomol Struct Dyn ; 32(1): 65-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23297862

RESUMO

Many studies have explored the mechanisms involved in relative amino acid usage (RAAU) in a variety of prokaryotes and eukaryotes. A strong bias was observed in highly expressed genes (HEGs) of endosymbiotic bacteria. By means of correspondence analysis, we studied the major trends affecting internal variability of RAAU in Mollicutes. The principal trend is related to the usage of smaller, less aromatic, and GC-rich coded amino acids in HEGs. Given the nature of the genetic code, these properties are linked among them. Expectedly, we found a slow evolutionary rate of HEGs, which is likely driven by purifying selection. On the other hand, the rest of the genes accumulate rapid changes as a result of the extreme mutational bias toward A + T of the genomes and genetic drift, increasing internal variability. Amino acid changes across the phylogeny of the group were traced in order to estimate the mean molecular weight and aromaticity trends in each branch. Finally, we compared amino acid usage bias within and between Mollicutes and the free-living Firmicutes.


Assuntos
Aminoácidos/metabolismo , Tenericutes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Expressão Gênica , Genes Bacterianos , Deriva Genética , Mutação , Filogenia , Seleção Genética , Tenericutes/genética
17.
Biochem Cell Biol ; 88(2): 185-94, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20453921

RESUMO

GroEL is a chaperone thought of as essential for bacterial life. However, some species of Mollicutes are missing GroEL. We use phylogenetic analysis to show that the presence of GroEL is polyphyletic among the Mollicutes, and that there is evidence for lateral gene transfer of GroEL to Mycoplasma penetrans from the Proteobacteria. Furthermore, we propose that the presence of GroEL in Mycoplasma may be required for invasion of host tissue, suggesting that GroEL may act as an adhesin-invasin.


Assuntos
Chaperonina 60/genética , Chaperonina 60/metabolismo , Tenericutes/genética , Tenericutes/metabolismo , Chaperonina 60/química , Filogenia , Tenericutes/química
18.
BMC Genomics ; 9: 617, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19099556

RESUMO

BACKGROUND: The bacterial cell wall is the target of many antibiotics and cell envelope constituents are critical to host-pathogen interactions. To combat resistance development and virulence, a detailed knowledge of the individual factors involved is essential. Members of the LytR-CpsA-Psr family of cell envelope-associated attenuators are relevant for beta-lactam resistance, biofilm formation, and stress tolerance, and they are suggested to play a role in cell wall maintenance. However, their precise function is still unknown. This study addresses the occurrence as well as sequence-based characteristics of the LytR-CpsA-Psr proteins. RESULTS: A comprehensive list of LytR-CpsA-Psr proteins was established, and their phylogenetic distribution and clustering into subgroups was determined. LytR-CpsA-Psr proteins were present in all Gram-positive organisms, except for the cell wall-deficient Mollicutes and one strain of the Clostridiales. In contrast, the majority of Gram-negatives did not contain LytR-CpsA-Psr family members. Despite high sequence divergence, the LytR-CpsA-Psr domains of different subclusters shared a highly similar, predicted mixed a/beta-structure, and conserved charged residues. PhoA fusion experiments, using MsrR of Staphylococcus aureus, confirmed membrane topology predictions and extracellular location of its LytR-CpsA-Psr domain. CONCLUSION: The LytR-CpsA-Psr domain is unique to bacteria. The presence of diverse subgroups within the LytR-CpsA-Psr family might indicate functional differences, and could explain variations in phenotypes of respective mutants reported. The identified conserved structural elements and amino acids are likely to be important for the function of the domain and will help to guide future studies of the LytR-CpsA-Psr proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Parede Celular/metabolismo , Sequência Conservada , Evolução Molecular , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tenericutes/genética , Tenericutes/metabolismo , Fatores de Transcrição/genética
19.
J Mol Microbiol Biotechnol ; 12(1-2): 147-54, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17183222

RESUMO

The mollicutes are cell wall-less bacteria that live in close association with their eukaryotic hosts. Their genomes are strongly reduced and so are their metabolic capabilities. A survey of the available genome sequences reveals that the mollicutes are capable of utilizing sugars as source of carbon and energy via glycolysis. The pentose phosphate pathway is incomplete in these bacteria, and genes encoding enzymes of the tricarboxylic acid cycle are absent from the genomes. Sugars are transported by the phosphotransferase system. As in related bacteria, the phosphotransferase system does also seem to play a regulatory role in the mollicutes as can be concluded from the functionality of the regulatory HPr kinase/phosphorylase. In Mycoplasma pneumoniae, the activity of HPr kinase is triggered in the presence of glycerol. This carbon source may be important for the mollicutes since it is available in epithelial tissues and its metabolism results in the formation of hydrogen peroxide, the major virulence factor of several mollicutes. In plant-pathogenic mollicutes such as Spiroplasma citri, the regulation of carbon metabolism is crucial in the adaptation to life in plant tissues or the insect vectors. Thus, carbon metabolism seems to be intimately linked to pathogenicity in the mollicutes.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Via de Pentose Fosfato/fisiologia , Fosfotransferases/metabolismo , Tenericutes/metabolismo , Carboidratos/fisiologia , Ciclo do Ácido Cítrico , Glicerol/metabolismo , Peróxido de Hidrogênio/metabolismo , Tenericutes/patogenicidade , Virulência
20.
J Mol Microbiol Biotechnol ; 11(3-5): 256-64, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16983200

RESUMO

Mollicutes are a class of bacteria that lack a peptidoglycan layer but have various cell shapes. They perform chromosome segregation and binary fission in a well-organized manner. Especially, species with polarized cell morphology duplicate their membrane protrusion at a position adjacent to the original one and move the new protrusion laterally to the opposite end pole before cell division. The featured various cell shapes of Mollicutes are supported by cytoskeletal structures composed of proteins. Recent progress in the study of cytoskeletons of walled bacteria and genome sequencing has revealed that the cytoskeletons of Mollicutes are not common with those of other bacteria. Mollicutes have special cytoskeletal proteins and structures that are sometimes not shared even by other mollicute species.


Assuntos
Citoesqueleto/ultraestrutura , Tenericutes/ultraestrutura , Proteínas de Bactérias/fisiologia , Divisão Celular , Segregação de Cromossomos , Cromossomos Bacterianos , Proteínas do Citoesqueleto/fisiologia , Citoesqueleto/metabolismo , Tenericutes/citologia , Tenericutes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA