Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.685
Filtrar
1.
Sci Rep ; 14(1): 12430, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816541

RESUMO

Dietary trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) is a potential candidate in anti-obesity trials. A transgenic mouse was previously successfully established to determine the anti-obesity properties of t10c12-CLA in male mice that could produce endogenous t10c12-CLA. To test whether there is a different impact of t10c12-CLA on lipid metabolism in both sexes, this study investigated the adiposity and metabolic profiles of female Pai mice that exhibited a dose-dependent expression of foreign Pai gene and a shift of t10c12-CLA content in tested tissues. Compared to their gender-match wild-type littermates, Pai mice had no fat reduction but exhibited enhanced lipolysis and thermogenesis by phosphorylated hormone-sensitive lipase and up-regulating uncoupling proteins in brown adipose tissue. Simultaneously, Pai mice showed hepatic steatosis and hypertriglyceridemia by decreasing gene expression involved in lipid and glucose metabolism. Further investigations revealed that t10c10-CLA induced excessive prostaglandin E2, adrenaline, corticosterone, glucagon and inflammatory factors in a dose-dependent manner, resulting in less heat release and oxygen consumption in Pai mice. Moreover, fibroblast growth factor 21 overproduction only in monoallelic Pai/wt mice indicates that it was sensitive to low doses of t10c12-CLA. These results suggest that chronic t10c12-CLA has system-wide effects on female health via synergistic actions of various hormones.


Assuntos
Corticosterona , Dinoprostona , Epinefrina , Fatores de Crescimento de Fibroblastos , Glucagon , Ácidos Linoleicos Conjugados , Camundongos Transgênicos , Animais , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , Corticosterona/metabolismo , Dinoprostona/metabolismo , Glucagon/metabolismo , Epinefrina/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/genética , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Lipólise/efeitos dos fármacos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Adiposidade/efeitos dos fármacos
2.
Front Immunol ; 15: 1375138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812501

RESUMO

Objectives: The effects of cold exposure on whole-body metabolism in humans have gained increasing attention. Brown or beige adipose tissues are crucial in cold-induced thermogenesis to dissipate energy and thus have the potential to combat metabolic disorders. Despite the immune regulation of thermogenic adipose tissues, the overall changes in vital immune cells during distinct cold periods remain elusive. This study aimed to discuss the overall changes in immune cells under different cold exposure periods and to screen several potential immune cell subpopulations on thermogenic regulation. Methods: Cibersort and mMCP-counter algorithms were employed to analyze immune infiltration in two (brown and beige) thermogenic adipose tissues under distinct cold periods. Changes in some crucial immune cell populations were validated by reanalyzing the single-cell sequencing dataset (GSE207706). Flow cytometry, immunofluorescence, and quantitative real-time PCR assays were performed to detect the proportion or expression changes in mouse immune cells of thermogenic adipose tissues under cold challenge. Results: The proportion of monocytes, naïve, and memory T cells increased, while the proportion of NK cells decreased under cold exposure in brown adipose tissues. Conclusion: Our study revealed dynamic changes in immune cell profiles in thermogenic adipose tissues and identified several novel immune cell subpopulations, which may contribute to thermogenic activation of adipose tissues under cold exposure.


Assuntos
Tecido Adiposo Marrom , Temperatura Baixa , Termogênese , Termogênese/imunologia , Animais , Camundongos , Tecido Adiposo Marrom/imunologia , Tecido Adiposo Marrom/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Bege/imunologia , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
4.
Cell Metab ; 36(5): 891-892, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718756

RESUMO

Brown adipose tissue has long been functionally characterized as an organ that regulates thermogenesis, body weight set point, and glucose homeostasis. In the May 9, 2024, issue of Cell, Verkerke et al. discover a novel function for brown adipose tissue in processing branched-chain amino acids into antioxidant metabolites that enter the circulation and regulate insulin signaling in the liver.


Assuntos
Adipócitos Marrons , Adipócitos Marrons/metabolismo , Animais , Humanos , Tecido Adiposo Marrom/metabolismo , Termogênese , Aminoácidos de Cadeia Ramificada/metabolismo , Insulina/metabolismo , Transdução de Sinais , Fígado/metabolismo
5.
Sci Rep ; 14(1): 10789, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734719

RESUMO

Brown adipocytes are potential therapeutic targets for the prevention of obesity-associated metabolic diseases because they consume circulating glucose and fatty acids for heat production. Angiotensin II (Ang II) peptide is involved in the pathogenesis of obesity- and cold-induced hypertension; however, the mechanism underlying the direct effects of Ang II on human brown adipocytes remains unclear. Our transcriptome analysis of chemical compound-induced brown adipocytes (ciBAs) showed that the Ang II type 1 receptor (AGTR1), but not AGTR2 and MAS1 receptors, was expressed. The Ang II/AGTR1 axis downregulated the expression of mitochondrial uncoupling protein 1 (UCP1). The simultaneous treatment with ß-adrenergic receptor agonists and Ang II attenuated UCP1 expression, triglyceride lipolysis, and cAMP levels, although cAMP response element-binding protein (CREB) phosphorylation was enhanced by Ang II mainly through the protein kinase C pathway. Despite reduced lipolysis, both coupled and uncoupled mitochondrial respiration was enhanced in Ang II-treated ciBAs. Instead, glycolysis and glucose uptake were robustly activated upon treatment with Ang II without a comprehensive transcriptional change in glucose metabolic genes. Elevated mitochondrial energy status induced by Ang II was likely associated with UCP1 repression. Our findings suggest that the Ang II/AGTR1 axis participates in mitochondrial thermogenic functions via glycolysis.


Assuntos
Adipócitos Marrons , Angiotensina II , Glicólise , Mitocôndrias , Termogênese , Proteína Desacopladora 1 , Humanos , Adipócitos Marrons/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Lipólise/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Glucose/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
6.
Nat Commun ; 15(1): 3473, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724563

RESUMO

Neuronal differentiation-the development of neurons from neural stem cells-involves neurite outgrowth and is a key process during the development and regeneration of neural functions. In addition to various chemical signaling mechanisms, it has been suggested that thermal stimuli induce neuronal differentiation. However, the function of physiological subcellular thermogenesis during neuronal differentiation remains unknown. Here we create methods to manipulate and observe local intracellular temperature, and investigate the effects of noninvasive temperature changes on neuronal differentiation using neuron-like PC12 cells. Using quantitative heating with an infrared laser, we find an increase in local temperature (especially in the nucleus) facilitates neurite outgrowth. Intracellular thermometry reveals that neuronal differentiation is accompanied by intracellular thermogenesis associated with transcription and translation. Suppression of intracellular temperature increase during neuronal differentiation inhibits neurite outgrowth. Furthermore, spontaneous intracellular temperature elevation is involved in neurite outgrowth of primary mouse cortical neurons. These results offer a model for understanding neuronal differentiation induced by intracellular thermal signaling.


Assuntos
Diferenciação Celular , Neurônios , Transdução de Sinais , Temperatura , Animais , Células PC12 , Neurônios/fisiologia , Neurônios/citologia , Camundongos , Ratos , Crescimento Neuronal , Neurogênese/fisiologia , Neuritos/metabolismo , Neuritos/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Termometria/métodos , Termogênese/fisiologia
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732127

RESUMO

The process of adipocyte browning has recently emerged as a novel therapeutic target for combating obesity and obesity-related diseases. Non-shivering thermogenesis is the process of biological heat production in mammals and is primarily mediated via brown adipose tissue (BAT). The recruitment and activation of BAT can be induced through chemical drugs and nutrients, with subsequent beneficial health effects through the utilization of carbohydrates and fats to generate heat to maintain body temperature. However, since potent drugs may show adverse side effects, nutritional or natural substances could be safe and effective as potential adipocyte browning agents. This review aims to provide an extensive overview of the natural food compounds that have been shown to activate brown adipocytes in humans, animals, and in cultured cells. In addition, some key genetic and molecular targets and the mechanisms of action of these natural compounds reported to have therapeutic potential to combat obesity are discussed.


Assuntos
Tecido Adiposo Marrom , Produtos Biológicos , Obesidade , Termogênese , Termogênese/efeitos dos fármacos , Humanos , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Marrons/efeitos dos fármacos
8.
Mol Metab ; 84: 101951, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729241

RESUMO

OBJECTIVE: Hypothalamic signals potently stimulate energy expenditure by engaging peripheral mechanisms to restore energy homeostasis. Previous studies have identified several critical hypothalamic sites (e.g. preoptic area (POA) and ventromedial hypothalamic nucleus (VMN)) that could be part of an interconnected neurocircuit that controls tissue thermogenesis and essential for body weight control. However, the key neurocircuit that can stimulate energy expenditure has not yet been established. METHODS: Here, we investigated the downstream mechanisms by which VMN neurons stimulate adipose tissue thermogenesis. We manipulated subsets of VMN neurons acutely as well as chronically and studied its effect on tissue thermogenesis and body weight control, using Sf1Cre and Adcyap1Cre mice and measured physiological parameters under both high-fat diet and standard chow diet conditions. To determine the node efferent to these VMN neurons, that is involved in modulating energy expenditure, we employed electrophysiology and optogenetics experiments combined with measurements using tissue-implantable temperature microchips. RESULTS: Activation of the VMN neurons that express the steroidogenic factor 1 (Sf1; VMNSf1 neurons) reduced body weight, adiposity and increased energy expenditure in diet-induced obese mice. This function is likely mediated, at least in part, by the release of the pituitary adenylate cyclase-activating polypeptide (PACAP; encoded by the Adcyap1 gene) by the VMN neurons, since we previously demonstrated that PACAP, at the VMN, plays a key role in energy expenditure control. Thus, we then shifted focus to the subpopulation of VMNSf1 neurons that contain the neuropeptide PACAP (VMNPACAP neurons). Since the VMN neurons do not directly project to the peripheral tissues, we traced the location of the VMNPACAP neurons' efferents. We identified that VMNPACAP neurons project to and activate neurons in the caudal regions of the POA whereby these projections stimulate tissue thermogenesis in brown and beige adipose tissue. We demonstrated that selective activation of caudal POA projections from VMNPACAP neurons induces tissue thermogenesis, most potently in negative energy balance and activating these projections lead to some similar, but mostly unique, patterns of gene expression in brown and beige tissue. Finally, we demonstrated that the activation of the VMNPACAP neurons' efferents that lie at the caudal POA are necessary for inducing tissue thermogenesis in brown and beige adipose tissue. CONCLUSIONS: These data indicate that VMNPACAP connections with the caudal POA neurons impact adipose tissue function and are important for induction of tissue thermogenesis. Our data suggests that the VMNPACAP → caudal POA neurocircuit and its components are critical for controlling energy balance by activating energy expenditure and body weight control.


Assuntos
Metabolismo Energético , Neurônios , Área Pré-Óptica , Termogênese , Núcleo Hipotalâmico Ventromedial , Animais , Núcleo Hipotalâmico Ventromedial/metabolismo , Termogênese/fisiologia , Área Pré-Óptica/metabolismo , Camundongos , Neurônios/metabolismo , Masculino , Fator Esteroidogênico 1/metabolismo , Fator Esteroidogênico 1/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Peso Corporal , Tecido Adiposo Marrom/metabolismo
9.
Front Endocrinol (Lausanne) ; 15: 1385811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765953

RESUMO

Background: Thermogenic beige adipocytes, which dissipate energy as heat, are found in neonates and adults. Recent studies show that neonatal beige adipocytes are highly plastic and contribute to >50% of beige adipocytes in adults. Neonatal beige adipocytes are distinct from recruited beige adipocytes in that they develop independently of temperature and sympathetic innervation through poorly defined mechanisms. Methods: We characterized the neonatal beige adipocytes in the inguinal white adipose tissue (iWAT) of C57BL6 postnatal day 3 and 20 mice (P3 and P20) by imaging, genome-wide RNA-seq analysis, ChIP-seq analysis, qRT-PCR validation, and biochemical assays. Results: We found an increase in acetylated histone 3 lysine 27 (H3K27ac) on the promoter and enhancer regions of beige-specific gene UCP1 in iWAT of P20 mice. Furthermore, H3K27ac ChIP-seq analysis in the iWAT of P3 and P20 mice revealed strong H3K27ac signals at beige adipocyte-associated genes in the iWAT of P20 mice. The integration of H3K27ac ChIP-seq and RNA-seq analysis in the iWAT of P20 mice reveal epigenetically active signatures of beige adipocytes, including oxidative phosphorylation and mitochondrial metabolism. We identify the enrichment of GA-binding protein alpha (GABPα) binding regions in the epigenetically active chromatin regions of the P20 iWAT, particularly on beige genes, and demonstrate that GABPα is required for beige adipocyte differentiation. Moreover, transcriptomic analysis and glucose oxidation assays revealed increased glycolytic activity in the neonatal iWAT from P20. Conclusions: Our findings demonstrate that epigenetic mechanisms regulate the development of peri-weaning beige adipocytes via GABPα. Further studies to better understand the upstream mechanisms that regulate epigenetic activation of GABPα and characterization of the metabolic identity of neonatal beige adipocytes will help us harness their therapeutic potential in metabolic diseases.


Assuntos
Adipócitos Bege , Adipogenia , Tecido Adiposo Branco , Animais Recém-Nascidos , Cromatina , Epigênese Genética , Fator de Transcrição de Proteínas de Ligação GA , Camundongos Endogâmicos C57BL , Animais , Camundongos , Adipócitos Bege/metabolismo , Cromatina/metabolismo , Cromatina/genética , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Masculino , Termogênese/genética , Histonas/metabolismo , Histonas/genética
10.
Commun Biol ; 7(1): 632, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796563

RESUMO

The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions; therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here, we investigate the effects of a long-term (12-month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild-type (WT) Wistar male and female rats. Our main findings are that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increases thermogenesis and brain glucose uptake in male rats and modifies the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. We use RNA-sequencing to show that GHSR-KO rats have upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuates ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating is reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.


Assuntos
Dieta Hiperlipídica , Obesidade , Ratos Wistar , Receptores de Grelina , Caracteres Sexuais , Animais , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Feminino , Ratos , Obesidade/metabolismo , Obesidade/genética , Grelina/metabolismo , Termogênese/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos
11.
Cell Rep ; 43(5): 114142, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691458

RESUMO

Despite medical advances, there remains an unmet need for better treatment of obesity. Itaconate, a product of the decarboxylation of the tricarboxylic acid cycle intermediate cis-aconitate, plays a regulatory role in both metabolism and immunity. Here, we show that itaconate, as an endogenous compound, counteracts high-fat-diet (HFD)-induced obesity through leptin-independent mechanisms in three mouse models. Specifically, itaconate reduces weight gain, reverses hyperlipidemia, and improves glucose tolerance in HFD-fed mice. Additionally, itaconate enhances energy expenditure and the thermogenic capacity of brown adipose tissue (BAT). Unbiased proteomic analysis reveals that itaconate upregulates key proteins involved in fatty acid oxidation and represses the expression of lipogenic genes. Itaconate may provoke a major metabolic reprogramming by inducing fatty acid oxidation and suppression of fatty acid synthesis in BAT. These findings highlight itaconate as a potential activator of BAT-mediated thermogenesis and a promising candidate for anti-obesity therapy.


Assuntos
Adipócitos Marrons , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Succinatos , Termogênese , Animais , Termogênese/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Succinatos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Adipócitos Marrons/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos
12.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673954

RESUMO

The objective was to assess whether low-protein (LP) diets regulate food intake (FI) and thermogenesis differently during thermoneutral (TN) and heat stress (HS) conditions. Two-hundred-day-old male broiler chicks were weight-matched and assigned to 36 pens with 5-6 chicks/pen. After 2 weeks of acclimation, birds were subjected into four groups (9 pens/group) including (1) a normal-protein diet under TN (ambient temperature), (2) an LP diet under TN, (3) a normal-protein diet under HS (35 °C for 7 h/day), and (4) an LP diet under HS, for 4 weeks. During HS, but not TN, LP tended to decrease FI, which might be associated with a lower mRNA abundance of duodenal ghrelin and higher GIP during HS. The LP group had a higher thermal radiation than NP under TN, but during HS, the LP group had a lower thermal radiation than NP. This was linked with higher a transcript of muscle ß1AR and AMPKα1 during TN, but not HS. Further, LP increased the gene expression of COX IV during TN but reduced COX IV and the sirtuin 1 abundance during HS. The dietary protein content differentially impacted plasma metabolome during TN and HS with divergent changes in amino acids such as tyrosine and tryptophan. Compared to NP, LP had increased abundances of p_Tenericutes, c_Mollicutes, c_Mollicutes_RF9, and f_tachnospiraceae under HS. Overall, LP diets may mitigate the negative outcome of heat stress on the survivability of birds by reducing FI and heat production. The differential effect of an LP diet on energy balance during TN and HS is likely regulated by gut and skeletal muscle and alterations in plasma metabolites and cecal microbiota.


Assuntos
Galinhas , Dieta com Restrição de Proteínas , Metabolismo Energético , Resposta ao Choque Térmico , Animais , Galinhas/metabolismo , Masculino , Termogênese , Ração Animal , Ingestão de Alimentos
13.
Epigenetics Chromatin ; 17(1): 12, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678237

RESUMO

BACKGROUND: Regulation of the thermogenic response by brown adipose tissue (BAT) is an important component of energy homeostasis with implications for the treatment of obesity and diabetes. Our preliminary analyses of RNA-Seq data uncovered many nodes representing epigenetic modifiers that are altered in BAT in response to chronic thermogenic activation. Thus, we hypothesized that chronic thermogenic activation broadly alters epigenetic modifications of DNA and histones in BAT. RESULTS: Motivated to understand how BAT function is regulated epigenetically, we developed a novel method for the first-ever unbiased top-down proteomic quantitation of histone modifications in BAT and validated our results with a multi-omic approach. To test our hypothesis, wildtype male C57BL/6J mice were housed under chronic conditions of thermoneutral temperature (TN, 28°C), mild cold/room temperature (RT, 22°C), or severe cold (SC, 8°C) and BAT was analyzed for DNA methylation and histone modifications. Methylation of promoters and intragenic regions in genomic DNA decrease in response to chronic cold exposure. Integration of DNA methylation and RNA expression datasets suggest a role for epigenetic modification of DNA in regulation of gene expression in response to cold. In response to cold housing, we observe increased bulk acetylation of histones H3.2 and H4, increased histone H3.2 proteoforms with di- and trimethylation of lysine 9 (K9me2 and K9me3), and increased histone H4 proteoforms with acetylation of lysine 16 (K16ac) in BAT. CONCLUSIONS: Our results reveal global epigenetically-regulated transcriptional "on" and "off" signals in murine BAT in response to varying degrees of chronic cold stimuli and establish a novel methodology to quantitatively study histones in BAT, allowing for direct comparisons to decipher mechanistic changes during the thermogenic response. Additionally, we make histone PTM and proteoform quantitation, RNA splicing, RRBS, and transcriptional footprint datasets available as a resource for future research.


Assuntos
Tecido Adiposo Marrom , Resposta ao Choque Frio , Metilação de DNA , Epigênese Genética , Histonas , Camundongos Endogâmicos C57BL , Animais , Tecido Adiposo Marrom/metabolismo , Camundongos , Masculino , Histonas/metabolismo , Código das Histonas , Termogênese , Temperatura Baixa
14.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588421

RESUMO

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Assuntos
Tecido Adiposo Marrom , Glucose , Camundongos , Humanos , Animais , Glucose/metabolismo , Tecido Adiposo Marrom/metabolismo , Acetilação , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética , Camundongos Endogâmicos C57BL , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
15.
Sci Rep ; 14(1): 9157, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644456

RESUMO

Brown adipose tissue (BAT) which is a critical regulator of energy homeostasis, and its activity is inhibited by obesity and low-grade chronic inflammation. Ginsenoside Rg3, the primary constituent of Korean red ginseng (steamed Panax ginseng CA Meyer), has shown therapeutic potential in combating inflammatory and metabolic diseases. However, it remains unclear whether Rg3 can protect against the suppression of browning or activation of BAT induced by inflammation. In this study, we conducted a screening of ginsenoside composition in red ginseng extract (RGE) and explored the anti-adipogenic effects of both RGE and Rg3. We observed that RGE (exist 0.25 mg/mL of Rg3) exhibited significant lipid-lowering effects in adipocytes during adipogenesis. Moreover, treatment with Rg3 (60 µM) led to the inhibition of triglyceride accumulation, subsequently promoting enhanced fatty acid oxidation, as evidenced by the conversion of radiolabeled 3H-fatty acids into 3H-H2O with mitochondrial activation. Rg3 alleviated the attenuation of browning in lipopolysaccharide (LPS)-treated beige adipocytes and primary brown adipocytes by recovered by uncoupling protein 1 (UCP1) and the oxygen consumption rate compared to the LPS-treated group. These protective effects of Rg3 on inflammation-induced inhibition of beige and BAT-derived thermogenesis were confirmed in vivo by treating with CL316,243 (a beta-adrenergic receptor agonist) and LPS to induce browning and inflammation, respectively. Consistent with the in vitro data, treatment with Rg3 (2.5 mg/kg, 8 weeks) effectively reversed the LPS-induced inhibition of brown adipocyte features in C57BL/6 mice. Our findings confirm that Rg3-rich foods are potential browning agents that counteract chronic inflammation and metabolic complications.


Assuntos
Tecido Adiposo Marrom , Ginsenosídeos , Lipopolissacarídeos , Mitocôndrias , Panax , Extratos Vegetais , Termogênese , Ginsenosídeos/farmacologia , Animais , Termogênese/efeitos dos fármacos , Panax/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Bege/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Adipogenia/efeitos dos fármacos
16.
Mol Nutr Food Res ; 68(8): e2300861, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566521

RESUMO

SCOPE: Brown rice, the most consumed food worldwide, has been shown to possess beneficial effects on the prevention of metabolic diseases. However, the way in which maternal brown rice diet improves metabolism in offspring and the regulatory mechanisms remains unclear. The study explores the epigenetic regulation of offspring energy metabolic homeostasis by maternal brown rice diet during pregnancy. METHODS AND RESULTS: Female mice are fed brown rice during pregnancy, and then body phenotypes, the histopathological analysis, and adipose tissues biochemistry assay of offspring mice are detected. It is found that maternal brown rice diet significantly reduces body weight and fat mass, increases energy expenditure and heat production in offspring. Maternal brown rice diet increases uncoupling protein 1 (UCP1) protein level and upregulates the mRNA expression of thermogenic genes in adipose tissues. Mechanistically, protein kinase A (PKA) signaling is likely responsible in the induced thermogenic program in offspring adipocytes, and the progeny adipocytes browning program is altered due to decreased level of DNA methyltransferase 1 protein and hypomethylation of the transcriptional coregulator positive regulatory domain containing 16 (PRDM16). CONCLUSIONS: These findings demonstrate that maternal brown rice during pregnancy improves offspring mice metabolic homeostasis via promoting adipose browning, and its mechanisms may be mediated by DNA methylation reprogramming.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Metilação de DNA , Oryza , Transdução de Sinais , Animais , Feminino , Gravidez , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos , Termogênese , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Fenômenos Fisiológicos da Nutrição Materna , Camundongos Endogâmicos C57BL , Dieta , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Epigênese Genética
17.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672499

RESUMO

Obesity, characterized by the excessive accumulation of adipose tissue, has emerged as a major public health concern worldwide. To develop effective strategies for treating obesity, it is essential to comprehend the biological properties of different adipose tissue types and their respective roles in maintaining energy balance. Adipose tissue serves as a crucial organ for energy storage and metabolism in the human body, with functions extending beyond simple fat storage to encompass the regulation of energy homeostasis and the secretion of endocrine factors. This review provides an overview of the key characteristics, functional differences, and interconversion processes among white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue. Moreover, it delves into the molecular mechanisms and recent research advancements concerning the browning of WAT, activation of BAT, and whitening of BAT. Although targeting adipose tissue metabolism holds promise as a potential approach for obesity treatment, further investigations are necessary to unravel the intricate biological features of various adipose tissue types and elucidate the molecular pathways governing their interconversion. Such research endeavors will pave the way for the development of more efficient and targeted therapeutic interventions in the fight against obesity.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Marrom , Tecido Adiposo Branco , Metabolismo Energético , Homeostase , Obesidade , Humanos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Obesidade/metabolismo , Termogênese , Tecido Adiposo/metabolismo
18.
Food Funct ; 15(8): 4627-4641, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38592736

RESUMO

Diet-induced thermogenesis (DIT) is crucial for maintaining body weight homeostasis, and the role of dietary fatty acids in modulating DIT is essential. However, the underlying mechanism of fatty acid regulated diet-induced thermogenesis remains elusive. Utilizing the diet- and genetic ablation-induced obese mice models, we found that the C16 unsaturated fatty acids, trans-palmitoleic acid (TPA) and cis-palmitoleic acid (CPA), significantly increased the energy expenditure by promoting the thermogenesis of brown adipose tissues and the production of beige cells in white adipose. As a result, there is a significant reduction in the occurrence of obesity, associated hepatic steatosis and hyperglycemia. Notably, TPA exhibited more potent effects on promoting DIT and alleviating obesity than CPA did. Using inhibitor and gene deletion mice models, we unveiled that TPA acted as a signaling molecule to play a biological function, which could be sensed by the hypothalamic FFAR1 to activate the sympathetic nervous system in promoting adipose tissue thermogenesis. Together, these results demonstrate the underlying mechanism of free fatty acids associated-DIT and will provide fresh insights into the roles of trans-fatty acids in the development of obesity.


Assuntos
Ácidos Graxos Monoinsaturados , Hipotálamo , Camundongos Endogâmicos C57BL , Obesidade , Receptores Acoplados a Proteínas G , Transdução de Sinais , Termogênese , Animais , Termogênese/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácidos Graxos Monoinsaturados/farmacologia , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Dieta Hiperlipídica
19.
Gene ; 915: 148421, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561165

RESUMO

Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.


Assuntos
Adipócitos Bege , Obesidade , Receptores Acoplados a Proteínas G , Termogênese , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Obesidade/metabolismo , Adipócitos Bege/metabolismo , Animais , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo
20.
Proc Natl Acad Sci U S A ; 121(19): e2311116121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683977

RESUMO

Conventionally, women are perceived to feel colder than men, but controlled comparisons are sparse. We measured the response of healthy, lean, young women and men to a range of ambient temperatures typical of the daily environment (17 to 31 °C). The Scholander model of thermoregulation defines the lower critical temperature as threshold of the thermoneutral zone, below which additional heat production is required to defend core body temperature. This parameter can be used to characterize the thermoregulatory phenotypes of endotherms on a spectrum from "arctic" to "tropical." We found that women had a cooler lower critical temperature (mean ± SD: 21.9 ± 1.3 °C vs. 22.9 ± 1.2 °C, P = 0.047), resembling an "arctic" shift compared to men. The more arctic profile of women was predominantly driven by higher insulation associated with more body fat compared to men, countering the lower basal metabolic rate associated with their smaller body size, which typically favors a "tropical" shift. We did not detect sex-based differences in secondary measures of thermoregulation including brown adipose tissue glucose uptake, muscle electrical activity, skin temperatures, cold-induced thermogenesis, or self-reported thermal comfort. In conclusion, the principal contributors to individual differences in human thermoregulation are physical attributes, including body size and composition, which may be partly mediated by sex.


Assuntos
Regulação da Temperatura Corporal , Humanos , Feminino , Masculino , Regulação da Temperatura Corporal/fisiologia , Adulto , Regiões Árticas , Adulto Jovem , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Marrom/metabolismo , Caracteres Sexuais , Fatores Sexuais , Temperatura Corporal/fisiologia , Termogênese/fisiologia , Metabolismo Basal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA