Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.183
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731856

RESUMO

We characterized the therapeutic biological modes of action of several terpenes in Poria cocos F.A Wolf (PC) and proposed a broad therapeutic mode of action for PC. Molecular docking and drug-induced transcriptome analysis were performed to confirm the pharmacological mechanism of PC terpene, and a new analysis method, namely diffusion network analysis, was proposed to verify the mechanism of action against Alzheimer's disease. We confirmed that the compound that exists only in PC has a unique mechanism through statistical-based docking analysis. Also, docking and transcriptomic analysis results could reflect results in clinical practice when used complementarily. The detailed pharmacological mechanism of PC was confirmed by constructing and analyzing the Alzheimer's disease diffusion network, and the antioxidant activity based on microglial cells was verified. In this study, we used two bioinformatics approaches to reveal PC's broad mode of action while also using diffusion networks to identify its detailed pharmacological mechanisms of action. The results of this study provide evidence that future pharmacological mechanism analysis should simultaneously consider complementary docking and transcriptomics and suggest diffusion network analysis, a new method to derive pharmacological mechanisms based on natural complex compounds.


Assuntos
Simulação de Acoplamento Molecular , Terpenos , Transcriptoma , Terpenos/farmacologia , Terpenos/química , Transcriptoma/efeitos dos fármacos , Humanos , Wolfiporia/química , Perfilação da Expressão Gênica/métodos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Biologia Computacional/métodos , Animais
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732065

RESUMO

The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.


Assuntos
Carotenoides , Luz , Thymus (Planta) , Trichoderma , Compostos Orgânicos Voláteis , Thymus (Planta)/química , Thymus (Planta)/metabolismo , Trichoderma/metabolismo , Trichoderma/crescimento & desenvolvimento , Carotenoides/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Clorofila/metabolismo , Terpenos/metabolismo , Flavonoides/metabolismo , Flavonoides/análise , Antioxidantes/metabolismo , Antocianinas/metabolismo , Antocianinas/análise , Clorofila A/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento
3.
Food Res Int ; 186: 114347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729697

RESUMO

Although Z. mioga flower buds are popular among consumers for its unique spicy flavor, high nutritional and medicinal value, there are few reports on the formation and changes of the flavor during its growth and maturation process. The understanding of the profile of volatile compounds would help to unravel the flavor formation for Z. mioga flower buds during growth. The volatile changes in Z. mioga flower buds were analyzed by GC-MS and a total of 182 volatile compounds identified, and the terpenoids accounted for the most abundant volatile substances. Almost all the identified volatiles presented an intuitive upward trend throughout the growth period and reached the maximum at the later stage of development (DS3 or DS4). Regarding the PCA and HCA results, there were significant differences found among the four stages, and the DS3 was the critical node. The top 50 differential volatiles screened by OPLS-DA and PLS-DA were all up-regulated, and the correlation analysis indicated that terpenoids might synergize with other chemical types of volatiles to jointly affect the flavor formation of Z. mioga flower buds during growth. The association network for flavor omics revealed that the most important sensory flavor for Z. mioga flower buds were woody and sweet, and the main contribution compounds for the unique flavor contained ß-guaiene, ß-farnesene, δ-cadinene and citronellyl isobutanoate. Taken together, the results of this study provided a reference for flavor quality evaluation of flower buds and determination of the best harvest period.


Assuntos
Flores , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis , Flores/crescimento & desenvolvimento , Flores/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Paladar , Terpenos/metabolismo , Terpenos/análise
4.
Clin Transl Sci ; 17(5): e13804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700454

RESUMO

St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.


Assuntos
Barreira Hematoencefálica , Hypericum , Floroglucinol , Floroglucinol/análogos & derivados , Extratos Vegetais , Tomografia por Emissão de Pósitrons , Terfenadina/análogos & derivados , Terpenos , Humanos , Hypericum/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Floroglucinol/farmacocinética , Floroglucinol/farmacologia , Floroglucinol/administração & dosagem , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , Masculino , Adulto , Tomografia por Emissão de Pósitrons/métodos , Terpenos/farmacologia , Terpenos/farmacocinética , Terpenos/metabolismo , Feminino , Adulto Jovem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/farmacocinética , Compostos Bicíclicos com Pontes/administração & dosagem , Terfenadina/farmacocinética , Terfenadina/administração & dosagem , Terfenadina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Voluntários Saudáveis
5.
J Agric Food Chem ; 72(19): 11124-11139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698543

RESUMO

Terpenes and pentene dimers are less studied volatile organic compounds (VOCs) but are associated with specific features of extra virgin olive oils (EVOOs). This study aimed to analyze mono- and sesquiterpenes and pentene dimers of Italian monovarietal EVOOs over 3 years (14 cultivars, 225 samples). A head space-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method recently validated was used for terpene and pentene dimer quantitation. The quantitative data collected were used for both the characterization and clustering of the cultivars. Sesquiterpenes were the molecules that most characterized the different cultivars, ranging from 3.908 to 38.215 mg/kg; different groups of cultivars were characterized by different groups of sesquiterpenes. Pentene dimers (1.336 and 3.860 mg/kg) and monoterpenes (0.430 and 1.794 mg/kg) showed much lower contents and variability among cultivars. The application of Kruskal-Wallis test-PCA-LDA-HCA to the experimental data allowed defining 4 clusters of cultivars and building a predictive model to classify the samples (94.3% correct classification). The model was further tested on 33 EVOOs, correctly classifying 91% of them.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Olea , Azeite de Oliva , Controle de Qualidade , Microextração em Fase Sólida , Terpenos , Compostos Orgânicos Voláteis , Microextração em Fase Sólida/métodos , Azeite de Oliva/química , Itália , Terpenos/química , Terpenos/análise , Olea/química , Compostos Orgânicos Voláteis/química , Quimiometria/métodos , Dimerização
6.
J Alzheimers Dis ; 99(1): 333-343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701154

RESUMO

Background: Neurodegeneration is a term describing an irreversible process of neuronal damage. In recent decades, research efforts have been directed towards deepening our knowledge of numerous neurodegenerative disorders, with a particular focus on conditions such as Alzheimer's disease (AD). Human transferrin (htf) is a key player in maintaining iron homeostasis within brain cells. Any disturbance in this equilibrium gives rise to the emergence of neurodegenerative diseases and associated pathologies, particularly AD. Limonene, a natural compound found in citrus fruits and various plants, has shown potential neuroprotective properties. Objective: In this study, our goal was to unravel the binding of limonene with htf, with the intention of comprehending the interaction mechanism of limonene with htf. Methods: Binding was scrutinized using fluorescence quenching and UV-Vis spectroscopic analyses. The binding mechanism of limonene was further investigated at the atomic level through molecular docking and extensive 200 ns molecular dynamic simulation (MD) studies. Results: Molecular docking uncovered that limonene interacted extensively with the deep cavity located within the htf binding pocket. MD results indicated that binding of limonene to htf did not induce substantial structural alterations, ultimately forming stable complex. The findings from fluorescence binding indicated a pronounced interaction between limonene and htf, limonene binds to htf with a binding constant (K) of 0.1×105 M-1. UV spectroscopy also advocated stable htf-limonene complex formation. Conclusions: The study deciphered the binding mechanism of limonene with htf, providing a platform to use limonene in AD therapeutics in context of iron homeostasis.


Assuntos
Doença de Alzheimer , Limoneno , Simulação de Acoplamento Molecular , Transferrina , Limoneno/farmacologia , Limoneno/metabolismo , Limoneno/química , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Transferrina/metabolismo , Simulação de Dinâmica Molecular , Terpenos/farmacologia , Terpenos/química , Terpenos/metabolismo , Ligação Proteica
7.
BMC Complement Med Ther ; 24(1): 185, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711049

RESUMO

BACKGROUND: Cancer is a fatal disease that severely affects humans. Designing new anticancer strategies and understanding the mechanism of action of anticancer agents is imperative. HYPOTHESIS/PURPOSE: In this study, we evaluated the utility of metformin and D-limonene, alone or in combination, as potential anticancer therapeutics using the human liver and breast cancer cell lines HepG2 and MCF-7. STUDY DESIGN: An integrated systems pharmacology approach is presented for illustrating the molecular interactions between metformin and D-limonene. METHODS: We applied a systems-based analysis to introduce a drug-target-pathway network that clarifies different mechanisms of treatment. The combination treatment of metformin and D-limonene induced apoptosis in both cell lines compared with single drug treatments, as indicated by flow cytometric and gene expression analysis. RESULTS: The mRNA expression of Bax and P53 genes were significantly upregulated while Bcl-2, iNOS, and Cox-2 were significantly downregulated in all treatment groups compared with normal cells. The percentages of late apoptotic HepG2 and MCF-7 cells were higher in all treatment groups, particularly in the combination treatment group. Calculations for the combination index (CI) revealed a synergistic effect between both drugs for HepG2 cells (CI = 0.14) and MCF-7 cells (CI = 0.22). CONCLUSION: Our data show that metformin, D-limonene, and their combinations exerted significant antitumor effects on the cancer cell lines by inducing apoptosis and modulating the expression of apoptotic genes.


Assuntos
Apoptose , Neoplasias da Mama , Proliferação de Células , Limoneno , Neoplasias Hepáticas , Metformina , Humanos , Metformina/farmacologia , Limoneno/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Células MCF-7 , Terpenos/farmacologia , Feminino , Antineoplásicos/farmacologia , Cicloexenos/farmacologia
8.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731459

RESUMO

Terpenoid alkaloids are recognized as a class of compounds with limited numbers but potent biological activities, primarily derived from plants, with a minor proportion originating from animals and microorganisms. These alkaloids are synthesized from the same prenyl unit that forms the terpene skeleton, with the nitrogen atom introduced through ß-aminoethanol, ethylamine, or methylamine, leading to a range of complex and diverse structures. Based on their skeleton type, they can be categorized into monoterpenes, sesquiterpenes, diterpenes, and triterpene alkaloids. To date, 289 natural terpenoid alkaloids, excluding triterpene alkaloids, have been identified in studies published between 2019 and 2024. These compounds demonstrate a spectrum of biological activities, including anti-inflammatory, antitumor, antibacterial, analgesic, and cardioprotective effects, making them promising candidates for further development. This review provides an overview of the sources, chemical structures, and biological activities of natural terpenoid alkaloids, serving as a reference for future research and applications in this area.


Assuntos
Alcaloides , Terpenos , Alcaloides/química , Alcaloides/farmacologia , Terpenos/química , Terpenos/farmacologia , Humanos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Estrutura Molecular
9.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731460

RESUMO

Tanacetum parthenium L. (Asteraceae) is a perennial herbaceous plant with a long-standing historical use in traditional medicine. Recently Tanacetum parthenium L. essential oil has been associated with a promising potential for future applications in the pharmaceutical industry, in the cosmetics industry, and in agriculture. Investigations on the essential oil (EO) have indicated antimicrobial, antioxidant, and repellent activity. The present study aimed to evaluate the chemical composition of Bulgarian T. parthenium essential oil from two different regions, to compare the results to those reported previously in the literature, and to point out some of its future applications. The essential oils of the air-dried flowering aerial parts were obtained by hydrodistillation using a Clevenger-type apparatus. The chemical composition was evaluated using gas chromatography with mass spectrometry (GC-MS). It was established that the oxygenated monoterpenes were the predominant terpene class, followed by the monoterpene hydrocarbons. Significant qualitative and quantitative differences between both samples were revealed. Camphor (50.90%), camphene (16.12%), and bornyl acetate (6.05%) were the major constituents in the feverfew EO from the western Rhodope Mountains, while in the EO from the central Balkan mountains camphor (45.54%), trans-chrysanthenyl acetate (13.87%), and camphene (13.03%) were the most abundant components.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis , Tanacetum parthenium , Óleos Voláteis/química , Bulgária , Tanacetum parthenium/química , Terpenos/química , Terpenos/análise , Cânfora/química , Cânfora/análise , Óleos de Plantas/química , Monoterpenos Bicíclicos
10.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731461

RESUMO

This present study aims to characterize the essential oil compositions of the aerial parts of M. spicata L. and endemic M. longifolia ssp. cyprica (Heinr. Braun) Harley by using GC-FID and GC/MS analyses simultaneously. In addition, it aims to perform multivariate statistical analysis by comparing with the existing literature, emphasizing the literature published within the last two decades, conducted on both species growing within the Mediterranean Basin. The major essential oil components of M. spicata were determined as carvone (67.8%) and limonene (10.6%), while the major compounds of M. longifolia ssp. cyprica essential oil were pulegone (64.8%) and 1,8-cineole (10.0%). As a result of statistical analysis, three clades were determined for M. spicata: a carvone-rich chemotype, a carvone/trans-carveol chemotype, and a pulegone/menthone chemotype, with the present study result belonging to the carvone-rich chemotype. Carvone was a primary determinant of chemotype, along with menthone, pulegone, and trans-carveol. In M. longifolia, the primary determinants of chemotype were identified as pulegone and menthone, with three chemotype clades being pulegone-rich, combined menthone/pulegone, and combined menthone/pulegone with caryophyllene enrichment. The primary determinants of chemotype were menthone, pulegone, and caryophyllene. The present study result belongs to pulegone-rich chemotype.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Mentha spicata , Mentha , Óleos Voláteis , Óleos Voláteis/química , Mentha/química , Mentha spicata/química , Análise Multivariada , Região do Mediterrâneo , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/análise , Monoterpenos/química , Monoterpenos/análise , Limoneno/química , Terpenos/química , Terpenos/análise , Mentol
11.
Plant Physiol Biochem ; 210: 108590, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574692

RESUMO

The essential oil of Pelargonium graveolens (rose-scented geranium), an important aromatic plant, comprising mainly mono- and sesqui-terpenes, has applications in food and cosmetic industries. This study reports the characterization of isoprenyl disphosphate synthases (IDSs) involved in P. graveolens terpene biosynthesis. The six identified PgIDSs belonged to different classes of IDSs, comprising homomeric geranyl diphosphate synthases (GPPSs; PgGPPS1 and PgGPPS2), the large subunit of heteromeric GPPS or geranylgeranyl diphosphate synthases (GGPPSs; PgGGPPS), the small subunit of heteromeric GPPS (PgGPPS.SSUI and PgGPPS.SSUII), and farnesyl diphosphate synthases (FPPS; PgFPPS).All IDSs exhibited maximal expression in glandular trichomes (GTs), the site of aroma formation, and their expression except PgGPPS.SSUII was induced upon treatment with MeJA. Functional characterization of recombinant proteins revealed that PgGPPS1, PgGGPPS and PgFPPS were active enzymes producing GPP, GGPP/GPP, and FPP respectively, whereas both PgGPPS.SSUs and PgGPPS2 were inactive. Co-expression of PgGGPPS (that exhibited bifunctional G(G)PPS activity) with PgGPPS.SSUs in bacterial expression system showed lack of interaction between the two proteins, however, PgGGPPS interacted with a phylogenetically distant Antirrhinum majus GPPS.SSU. Further, transient expression of AmGPPS.SSU in P. graveolens leaf led to a significant increase in monoterpene levels. These findings provide insight into the types of IDSs and their role in providing precursors for different terpenoid components of P. graveolens essential oil.


Assuntos
Pelargonium , Proteínas de Plantas , Terpenos , Terpenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pelargonium/metabolismo , Pelargonium/genética , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Tricomas/metabolismo , Óleos Voláteis/metabolismo
12.
Plant Physiol Biochem ; 210: 108511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593484

RESUMO

Terpenoids are a vast class of plant specialized metabolites (PSMs) manufactured by plants and are involved in their interactions with environment. In addition, they add health benefits to human nutrition and are widely used as pharmaceutically active compounds. However, native plants produce a limited amount of terpenes restricting metabolite yield of terpene-related metabolites. Exponential growth in the plant metabolome data and the requirement of alternative approaches for producing the desired amount of terpenoids, has redirected plant biotechnology research to plant metabolic engineering, which requires in-depth knowledge and precise expertise about dynamic plant metabolic pathways and cellular physiology. Metabolic engineering is an assuring tool for enhancing the concentration of terpenes by adopting specific strategies such as overexpression of the key genes associated with the biosynthesis of targeted metabolites, controlling the modulation of transcription factors, downregulation of competitive pathways (RNAi), co-expression of the biosynthetic pathway genes in heterologous system and other combinatorial approaches. Microorganisms, fast-growing host plants (such as Nicotiana benthamiana), and cell suspension/callus cultures have provided better means for producing valuable terpenoids. Manipulation in the biosynthetic pathways responsible for synthesis of terpenoids can provide opportunities to enhance the content of desired terpenoids and open up new avenues to enhance their production. This review deliberates the worth of metabolic engineering in medicinal plants to resolve issues associated with terpenoid production at a commercial scale. However, to bring the revolution through metabolic engineering, further implementation of genome editing, elucidation of metabolic pathways using omics approaches, system biology approaches, and synthetic biology tactics are essentially needed.


Assuntos
Engenharia Metabólica , Terpenos , Terpenos/metabolismo , Engenharia Metabólica/métodos
13.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587823

RESUMO

AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.


Assuntos
Acroleína , Acroleína/análogos & derivados , Antibacterianos , Corynebacterium , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Monoterpenos , Óleos Voláteis , Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Acroleína/farmacologia , Monoterpenos/farmacologia , Cimenos/farmacologia , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Vancomicina/farmacologia , Linezolida/farmacologia , Limoneno/farmacologia , Eucaliptol/farmacologia , Timol/farmacologia , Clindamicina/farmacologia , Humanos , Penicilinas/farmacologia , Terpenos/farmacologia , Cicloexenos/farmacologia , Infecções por Corynebacterium/microbiologia
14.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673998

RESUMO

As one of the largest and most diverse classes of specialized metabolites in plants, terpenoids (oprenoid compounds, a type of bio-based material) are widely used in the fields of medicine and light chemical products. They are the most important secondary metabolites in coniferous species and play an important role in the defense system of conifers. Terpene synthesis can be promoted by regulating the expressions of terpene synthase genes, and the terpene biosynthesis pathway has basically been clarified in Pinus massoniana, in which there are multiple rate-limiting enzymes and the rate-limiting steps are difficult to determine, so the terpene synthase gene regulation mechanism has become a hot spot in research. Herein, we amplified a PmDXR gene (GenBank accession no. MK969119.1) of the MEP pathway (methyl-erythritol 4-phosphate) from Pinus massoniana. The DXR enzyme activity and chlorophyll a, chlorophyll b and carotenoid contents of overexpressed Arabidopsis showed positive regulation. The PmDXR gene promoter was a tissue-specific promoter and can respond to ABA, MeJA and GA stresses to drive the expression of the GUS reporter gene in N. benthamiana. The DXR enzyme was identified as a key rate-limiting enzyme in the MEP pathway and an effective target for terpene synthesis regulation in coniferous species, which can further lay the theoretical foundation for the molecularly assisted selection of high-yielding lipid germplasm of P. massoniana, as well as provide help in the pathogenesis of pine wood nematode disease.


Assuntos
Regulação da Expressão Gênica de Plantas , Pinus , Proteínas de Plantas , Pinus/genética , Pinus/metabolismo , Pinus/parasitologia , Pinus/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Clorofila/biossíntese , Carotenoides/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Terpenos/metabolismo , Clorofila A/metabolismo , Plantas Geneticamente Modificadas , Acetatos/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regiões Promotoras Genéticas , Ácido Abscísico/metabolismo , Vias Biossintéticas
15.
BMC Genomics ; 25(1): 390, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649807

RESUMO

Medicinal plants are rich sources for treating various diseases due their bioactive secondary metabolites. Fenugreek (Trigonella foenum-graecum) is one of the medicinal plants traditionally used in human nutrition and medicine which contains an active substance, called diosgenin, with anticancer properties. Biosynthesis of this important anticancer compound in fenugreek can be enhanced using eliciting agents which involves in manipulation of metabolite and biochemical pathways stimulating defense responses. Methyl jasmonate elicitor was used to increase diosgenin biosynthesis in fenugreek plants. However, the molecular mechanism and gene expression profiles underlying diosgening accumulation remain unexplored. In the current study we performed an extensive analysis of publicly available RNA-sequencing datasets to elucidate the biosynthesis and expression profile of fenugreek plants treated with methyl jasmonate. For this purpose, seven read datasets of methyl jasmonate treated plants were obtained that were covering several post-treatment time points (6-120 h). Transcriptomics analysis revealed upregulation of several key genes involved in diosgenein biosynthetic pathway including Squalene synthase (SQS) as the first committed step in diosgenin biosynthesis as well as Squalene Epoxidase (SEP) and Cycloartenol Synthase (CAS) upon methyl jasmonate application. Bioinformatics analysis, including gene ontology enrichment and pathway analysis, further supported the involvement of these genes in diosgenin biosynthesis. The bioinformatics analysis led to a comprehensive validation, with expression profiling across three different fenugreek populations treated with the same methyl jasmonate application. Initially, key genes like SQS, SEP, and CAS showed upregulation, followed by later upregulation of Δ24, suggesting dynamic pathway regulation. Real-time PCR confirmed consistent upregulation of SQS and SEP, peaking at 72 h. Additionally, candidate genes Δ24 and SMT1 highlighted roles in directing metabolic flux towards diosgenin biosynthesis. This integrated approach validates the bioinformatics findings and elucidates fenugreek's molecular response to methyl jasmonate elicitation, offering insights for enhancing diosgenin yield. The assembled transcripts and gene expression profiles are deposited in the Zenodo open repository at https://doi.org/10.5281/zenodo.8155183 .


Assuntos
Vias Biossintéticas , Perfilação da Expressão Gênica , Oxilipinas , Terpenos , Transcriptoma , Trigonella , Trigonella/metabolismo , Trigonella/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Terpenos/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Acetatos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
16.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612398

RESUMO

Pak choi exhibits a diverse color range and serves as a rich source of flavonoids and terpenoids. However, the mechanisms underlying the heterosis and coordinated regulation of these compounds-particularly isorhamnetin-remain unclear. This study involved three hybrid combinations and the detection of 528 metabolites from all combinations, including 26 flavonoids and 88 terpenoids, through untargeted metabolomics. Analysis of differential metabolites indicated that the heterosis for the flavonoid and terpenoid contents was parent-dependent, and positive heterosis was observed for isorhamnetin in the two hybrid combinations (SZQ, 002 and HMG, ZMG). Moreover, there was a high transcription level of flavone 3'-O-methyltransferase, which is involved in isorhamnetin biosynthesis. The third group was considered the ideal hybrid combination for investigating the heterosis of flavonoid and terpenoid contents. Transcriptome analysis identified a total of 12,652 DEGs (TPM > 1) in various groups that were used for comparison, and DEGs encoding enzymes involved in various categories, including "carotenoid bio-synthesis" and "anthocyanin biosynthesis", were enriched in the hybrid combination (SZQ, 002). Moreover, the category of anthocyanin biosynthesis also was enriched in the hybrid combination (HMG, ZMG). The flavonoid pathway demonstrated more differential metabolites than the terpenoid pathway did. The WGCNA demonstrated notable positive correlations between the dark-green modules and many flavonoids and terpenoids. Moreover, there were 23 ERF genes in the co-expression network (r ≥ 0.90 and p < 0.05). Thus, ERF genes may play a significant role in regulating flavonoid and terpenoid biosynthesis. These findings enhance our understanding of the heterosis and coordinated regulation of flavonoid and terpenoid biosynthesis in pak choi, offering insights for genomics-based breeding improvements.


Assuntos
Flavonoides , Terpenos , Antocianinas , Vigor Híbrido/genética , Perfilação da Expressão Gênica
17.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612633

RESUMO

Terpenes are high-value chemicals which can be produced by engineered cyanobacteria from sustainable resources, solar energy, water and CO2. We previously reported that the euryhaline unicellular cyanobacteria Synechocystis sp. PCC 6803 (S.6803) and Synechococcus sp. PCC 7002 (S.7002) produce farnesene and limonene, respectively, more efficiently than other terpenes. In the present study, we attempted to enhance farnesene production in S.6803 and limonene production in S.7002. Practically, we tested the influence of key cyanobacterial enzymes acting in carbon fixation (RubisCO, PRK, CcmK3 and CcmK4), utilization (CrtE, CrtR and CruF) and storage (PhaA and PhaB) on terpene production in S.6803, and we compared some of the findings with the data obtained in S.7002. We report that the overproduction of RubisCO from S.7002 and PRK from Cyanothece sp. PCC 7425 increased farnesene production in S.6803, but not limonene production in S.7002. The overexpression of the crtE genes (synthesis of terpene precursors) from S.6803 or S.7002 did not increase farnesene production in S.6803. In contrast, the overexpression of the crtE gene from S.6803, but not S.7002, increased farnesene production in S.7002, emphasizing the physiological difference between these two model cyanobacteria. Furthermore, the deletion of the crtR and cruF genes (carotenoid synthesis) and phaAB genes (carbon storage) did not increase the production of farnesene in S.6803. Finally, as a containment strategy of genetically modified strains of S.6803, we report that the deletion of the ccmK3K4 genes (carboxysome for CO2 fixation) did not affect the production of limonene, but decreased the production of farnesene in S.6803.


Assuntos
Sesquiterpenos , Synechococcus , Synechocystis , Limoneno , Synechococcus/genética , Synechocystis/genética , Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Terpenos , Ciclo do Carbono
18.
J Nat Prod ; 87(4): 1092-1102, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38557062

RESUMO

As an important bioactive molecular backbone, drimane meroterpenoids have drawn a great deal of attention from both pharmacologists and chemists. Inspired by the prevalidated success of conformational restriction in the discovery of novel pharmaceutical leads, two distinct tetracyclic drimane meroterpenoids, (-)-pelorol and (+)-aureol, were synthesized from the inexpensive starting material (-)-sclareol through 10 and 8 steps with 5.6% and 5.4% overall yield, respectively. The mild conditions, operational facility, and scalability enabled the expedient synthesis and biological exploration of not only natural products themselves but also their mimics. The first agrochemical exploration showed (-)-pelorol and (+)-aureol possessed good antifungal activity against Rhizoctonia solani, with EC50 values of 7.7 and 6.9 µM, respectively. This revealed that tetracyclic drimane meroterpenoids are valuable models for antifungal lead discovery.


Assuntos
Antifúngicos , Rhizoctonia , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Estrutura Molecular , Rhizoctonia/efeitos dos fármacos , Terpenos/farmacologia , Terpenos/síntese química , Terpenos/química , Estereoisomerismo , Sesquiterpenos/farmacologia , Sesquiterpenos/síntese química , Sesquiterpenos/química , Sesquiterpenos Policíclicos/farmacologia , Testes de Sensibilidade Microbiana
19.
Mar Drugs ; 22(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667800

RESUMO

Two new meroterpenoids, hyrtamide A (1) and hyrfarnediol A (2), along with two known ones, 3-farnesyl-4-hydroxybenzoic acid methyl ester (3) and dictyoceratin C (4), were isolated from a South China Sea sponge Hyrtios sp. Their structures were elucidated by NMR and MS data. Compounds 2-4 exhibited weak cytotoxicity against human colorectal cancer cells (HCT-116), showing IC50 values of 41.6, 45.0, and 37.3 µM, respectively. Furthermore, compounds 3 and 4 significantly suppressed the invasion of HCT-116 cells while also downregulating the expression of vascular endothelial growth factor receptor 1 (VEGFR-1) and vimentin proteins, which are key markers associated with angiogenesis and epithelial-mesenchymal transition (EMT). Our findings suggest that compounds 3 and 4 may exert their anti-invasive effects on tumor cells by inhibiting the expression of VEGFR-1 and impeding the process of EMT.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Poríferos , Terpenos , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Poríferos/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Terpenos/farmacologia , Terpenos/isolamento & purificação , Terpenos/química , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células HCT116 , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vimentina/metabolismo , Linhagem Celular Tumoral , China
20.
Mar Drugs ; 22(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667803

RESUMO

Three novel meroterpenoids, taladrimanins B-D (1-3), were isolated from the marine-derived fungus Talaromyces sp. M27416, alongside three biogenetically related compounds (4-6). We delineated taladrimanin B's (1) structure using HRESIMS and NMR, confirmed its configuration via quantum chemical NMR analysis and DP4+ methodology, and verified it through X-ray crystallography. ECD calculations determined the absolute configuration of compound 1, while comparative NMR and ECD analyses elucidated the absolute configurations of 2 and 3. These compounds are drimane-type meroterpenoids with a C10 polyketide unit (8R-configuration). We proposed a biosynthetic pathway and noted that compound 1 showed cytotoxic activity against MKN-45 and 5637 cell lines and selective antibacterial effects against Staphylococcus aureus CICC 10384.


Assuntos
Antibacterianos , Staphylococcus aureus , Talaromyces , Terpenos , Talaromyces/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Humanos , Linhagem Celular Tumoral , Staphylococcus aureus/efeitos dos fármacos , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Cristalografia por Raios X , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Testes de Sensibilidade Microbiana , Organismos Aquáticos , Estrutura Molecular , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA