RESUMO
Colloidal activated carbon (CAC) is an emerging remedial enhancement fluid that is injected into the subsurface to adsorb hazardous industrial compounds for subsequent removal. CAC-enhanced remediation relies on accurate subsurface characterization and monitoring to ensure CAC reaches intended treatment locations. The objective of this study was to assess the effectiveness of the spectral induced polarization (SIP) technique to track CAC migration within porous media and its adsorption of the chlorinated solvent, tetrachloroethylene (PCE). Dynamic column experiments were performed with cyclic injection and flow of groundwater, CAC, and PCE within porous media, and simultaneous measurements of SIP and effluent quality. Results showed an increase in both the real and imaginary conductivities of the SIP response during injection/flow of CAC within porous media. Real conductivity returned to pre-CAC levels during subsequent flushing of CAC with groundwater, which had left behind only carbon-coated soil grains; however, imaginary conductivity identified the change in polarizability due to the alterations on the grain surface. The subsequent adsorption of aqueous phase PCE did not generate a distinctive change in SIP response, mainly due to the low 50 mg/L concentrations used. Overall, this study suggests that SIP can be a valuable tool to effectively and non-invasively track the migration of injected CAC within porous media for contaminant adsorption, suggesting it can be used to enhance the implementation and management of environmental remediation programs.
Assuntos
Carbono , Recuperação e Remediação Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química , Carbono/química , Adsorção , Tetracloroetileno/química , Carvão Vegetal/químicaRESUMO
Significant challenges remain for the remediation of chlorinated-solvent plumes in groundwater, such as trichloroethene (TCE) and tetrachloroethene (PCE). A novel slow-release permanganate gel (SRP-G) technique may show promise for the in-situ treatment (remediation) of chlorinated contaminant plumes in groundwater. A series of laboratory experiments were conducted to characterize the primary physical factors that influence SRP-G gelation processes to optimize SRP-G performance for plume treatment. Specifically, experiments were conducted to quantify gel zeta potential, particle size distribution, and viscosity to determine SRP-G gelation characteristics and processes. These experiments tested various concentrations of two SRP-G amendment solutions (NaMnO4 and KMnO4) prepared with 30-wt.% and 50-wt.% colloidal silica to determine such influences on zeta potential, particle size distribution, and viscosity. The results of this study show that SRP-G solutions with low zeta potential and relatively high pH favor more rapid SRP-G gelation. The concomitant interaction of the predominantly negatively charged colloidal silica particles and the positively charged dissociated cations (Na+ and K+) in the SRP-G solution had the effect of stabilizing charge imbalance via attraction of particles and thereby inducing a greater influence on the gelation process. Gel particle size distribution and changes in viscosity had a significant influence on SRP-G solution gelation. The addition of permanganate (NaMnO4 or KMnO4) increased the average particle size distribution and the viscosity of the SRP-G solution and decreased the overall gelation time. SRP-G amendments (NaMnO4 or KMnO4) prepared with 50-wt.% colloidal silica showed more effective gelation (and reduced gelation time) compared to SRP-G amendments prepared with 30-wt.% colloidal silica. Under the conditions of these experiments, it was determined that both the 7-wt.% NaMnO4 solution and 90 mg/L KMnO4 solution using 50-wt.% colloidal silica would be the optimal injection SRP-G solution concentrations for this in-situ treatment technique.
Assuntos
Géis , Água Subterrânea , Compostos de Manganês , Óxidos , Solventes , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Água Subterrânea/química , Géis/química , Solventes/química , Compostos de Manganês/química , Óxidos/química , Recuperação e Remediação Ambiental/métodos , Tricloroetileno/química , Halogenação , Viscosidade , Tamanho da Partícula , Tetracloroetileno/química , Tetracloroetileno/análiseRESUMO
The presence of organic immiscible liquids such as chlorinated solvents and fuels continues to be a primary source of risk for many hazardous waste sites. In this study, the standard miscible-displacement interfacial partitioning tracer test (IPTT) method was used for the first time to measure NAPL-water interfacial areas for a range of saturations. Multiple measurements were conducted for a natural quartz sand, with tetrachloroethene as the representative NAPL. The interfacial areas increased with decreasing water saturation. The measurements compared well to interfacial areas measured for the same sand with two alternative tracer methods, the mass-distribution batch method and the two-phase flow method. Measurements obtained with all three tracer-based methods exhibit a relatively large degree of variability. Thus, it is important to employ replication when using these methods. In contrast, interfacial areas measured with x-ray microtomography exhibit very small variability. However, the measured interfacial areas do not capture the contribution of surface-roughness to film-associated interfacial area. Each method has associated advantages and disadvantages, and it is important to be cognizant of them during their application.
Assuntos
Movimentos da Água , Água/química , Resíduos Perigosos , Fenômenos Físicos , Porosidade , Quartzo/química , Propriedades de Superfície , Tetracloroetileno/química , Microtomografia por Raio-X/métodosRESUMO
Perchloroethene (PCE) is a hazardous and persistent groundwater pollutant. Both treatment with nanoscaled zero-valent iron (nZVI) and biological degradation by bacteria have downsides. Distribution of nZVI underground is difficult and a high percentage of injected nZVI is consumed by anaerobic corrosion, forming H2 rather than being available for PCE dechlorination. On the other hand, microbial PCE degradation can suffer from the absence of H2. This can cause the accumulation of the hazardous metabolites cis-1,2-dichloroethene (DCE) or vinylchloride (VC). The combination of chemical and biological PCE degradation is a promising approach to overcome the disadvantages of each method alone. In this lysimeter study, artificial aquifers were created to test the influence of nZVI on anaerobic microbial PCE dechlorination by a commercially available culture containing Dehalococcoides spp. under field-like conditions. The effect of the combined treatment was investigated with molasses as an additional electron source and after cessation of molasses addition. The combination of nZVI and the Dehalococcoides spp. containing culture led to a PCE discharge in the lysimeter outflow that was 4.7 times smaller than that with nZVI and 1.6 times smaller than with bacterial treatment. Moreover, fully dechlorinated end-products showed an 11-fold increase compared to nZVI and a 4.2-fold increase compared to the microbial culture. The addition of nZVI to the microbial culture also decreased the accumulation of hazardous metabolites by 1.7 (cis-DCE) and 1.2 fold (VC). The stimulatory effect of nZVI on microbial degradation was most obvious after the addition of molasses was stopped.
Assuntos
Ferro/metabolismo , Nanoestruturas/química , Tetracloroetileno/metabolismo , Dehalococcoides/metabolismo , Halogenação , Ferro/química , Tetracloroetileno/químicaRESUMO
Electrochemical removal of chlorinated ethenes in groundwater plumes may potentially overcome some of the challenges faced by current remediation technologies. So far, studies have been conducted in simplified settings of synthetic groundwater and inert porous matrices. This study is a stepwise investigation of the influence of field-extracted groundwater, sandy sediment and groundwater aquifer temperatures on the removal of an aged partially degraded contamination of tetrachloroethylene (PCE) at a typical groundwater flow rate. The aim is to assess the potential for applying electrochemistry at contaminated sites. At a constant current of 120â¯mA, pH and conductivity were unaffected downgradient the electrochemical zone. Major groundwater species were reduced and oxidized. Some minerals deposited, others dissolved. Hydrogen peroxide, a strong oxidant, was formed in levels up to 5â¯mgâ¯L-1 with a limited distribution into the sandy sediment. Trichloromethane was formed, supposedly by oxidation of organic matter in the sandy sediment in the presence of chloride. The more realistic the settings, the higher the PCE removal, bringing concentrations down to 7.8⯱â¯2.3⯵gâ¯L-1. A complete removal of trichloroethylene and cis-1,2-dichloroethylene was obtained. The results suggest that competing reactions related to the natural complex hydrogeochemistry are insignificant in terms of affecting the electrochemical degradation of PCE and chlorinated intermediates.
Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Tetracloroetileno/análise , Poluentes Químicos da Água/análise , Cloro/análise , Dicloroetilenos , Etilenos , Halogenação , Peróxido de Hidrogênio , Tetracloroetileno/química , Tricloroetileno/metabolismo , Poluentes Químicos da Água/químicaRESUMO
Several manufacturers are producing disposable dual-use dust masks that are primarily designed to protect against airborne particulate exposures but that also contain a layer of activated carbon to provide protection against organic vapors (OVs) at levels below permissible exposure levels, referred to as "nuisance level" by the FFR manufacturers. Industries identified in the literature as commonly having employees exposed to nuisance-level OVs include beautician salons, dry cleaning operations, and pesticide applications. This study investigated the adsorption capabilities of three different dual-use dust masks that contain both filter media to remove particles and activated carbon to capture OVs. The three dual-use dust masks were tested and compared relative to the 50% breakthrough time for two OVs (acetone and perchloroethylene) and one non-carbon-based contaminant gas (ammonia) often found in agricultural settings at nuisance-level amounts. The dual-use dust masks were exposed to 15 ppm and 50 ppm for all 3 compounds, which represented the range of nuisance-level exposure documented in literature. Most tests were conducted at 21 °C and 50% relative humidity. A relative humidity level of 95% was also created to compare results under that condition. The non-approved dual-use dust masks were ineffective for all vapors and offered less than 10 min of protection before 50% breakthrough occurred. All dual-use dust masks performed poorly when exposed to ammonia, with breakthrough time less than 7 min at 50 ppm and 10 min at 15 ppm. The approved dual-use dust mask had 50% breakthrough times, for example, of 121 min and 233 min for acetone at 15 ppm and 50 ppm, respectively. The less volatile perchloroethylene took over 400 min to achieve 50% breakthrough at 50 ppm. High relative humidity reduced breakthrough times by up to 70%. These results indicate high variability in performance among dual-use dust masks. Performance is also dependent on gas/vapor volatility and levels of water vapor. However, one model tested, the 3M model 8514, did show promise as an acceptable method for greatly reducing nuisance-level OV exposures.
Assuntos
Adsorção , Poluentes Ocupacionais do Ar , Carvão Vegetal , Dispositivos de Proteção Respiratória/normas , Acetona/química , Amônia/química , Filtração , Umidade , Máscaras , Exposição Ocupacional/prevenção & controle , Tetracloroetileno/químicaRESUMO
Volatile chlorinated hydrocarbons (VCHs) are often found as a type of persistent and ubiquitous contaminant in groundwater. The feasibility, characteristics and microbial mechanism of acclimation of biodiversity-rich inoculation source for bioelectrochemical stimulated VCH dechlorination remain poorly understood. Here, the superior bioelectrochemical catalytic activities were observed for tetrachloroethylene (0.26â¯mMâ¯d-1) and 1,2-dichloroethane (2.20â¯mMâ¯d-1) dechlorination in anaerobic sludge-acclimated biocathodes with an optimal potential of -0.5â¯V, averaging 1.60-2.71 times higher than those reported in previous works on biocathodes. When the cathode was applied as the sole electron donor for dechlorination, columbic efficiencies reached the values greater than 80%. Tetrachloroethylene dechlorination showed a metabolic pathway with cis-1,2-dichloroethene as the main product, whereas 1,2-dichloroethane was dechlorinated entirely to the nontoxic ethene. The cathodic biofilms were highly abundant with the dechlorination and electro-active genera, while significant bacterial consortium variation was observed in response to the different VCH types and changes in cathodic potential. Bacillus, Pseudomonas and Lactococcus were mostly enriched for tetrachloroethylene dechlorination, and pceA, tceA and omcX were highly expressed. Geobacter was the most predominant during 1,2-dichloroethane dechlorination with rdhA, tceA and omcX highly expressed. In addition, although the impact of cathodic potentials was weaker than that of VCH types, the lower cathodic potentials, the more abundant of the electrode respiring populations and the higher expression of extracellular electron transfer related gene. This study demonstrated the great potential of acclimation of anaerobic sludge by electrical stimulation for accelerating VCH remediations and gave insights into its working molecular mechanisms.
Assuntos
Aclimatação , Biodegradação Ambiental , Técnicas Eletroquímicas/métodos , Dicloretos de Etileno/química , Esgotos/microbiologia , Tetracloroetileno/química , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Eletrodos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/metabolismo , Tetracloroetileno/metabolismoRESUMO
Chloroethenes are common groundwater and soil contaminants due to extensive historic utilization and inappropriate discharge. The tendency for chloroethenes to become sequestered as dense non-aqueous phase liquids (DNAPL)-a point source to groundwater contamination and causing high concentrations of chloroethenes in proximal aquifers poses a great challenge for remediation of chloroethene contaminated sites. In this study, we report isolation and characterization of a Dehalococcoides mccartyi strain 11G which couples growth with reductive dechlorination of trichloroethenes (TCE), dichloroethene (DCE) isomers and vinyl chloride (VC) to ethene at a growth yield ranging from 2.47 ± 0.23 × 108 to 5.64 ± 0.43 × 108 cells/µmoles Cl- released and co-metabolically dechlorinates tetrachloroethene (PCE) in the presence of TCE. Compared with previous D. mccartyi strains showing dechlorination of TCE at up to 2.0 mM, strain 11G is distinguished by its capacity to dechlorinate chloroethenes at initial concentrations of DCE isomers as high as 4 mM and TCE as high as 3.5 mM to ethene. Bioaugmentation of a contaminated microcosm with strain 11G resulted in complete detoxification of a mixture of 5 mM chloroethenes (2.5 mM of each TCE and cis-DCE) after 40 days. Strain 11G is a promising candidate for in situ bioremediation of high-concentration-chloroethene contaminated sites.
Assuntos
Chloroflexi/metabolismo , Cloreto de Vinil/metabolismo , Biodegradação Ambiental , Chloroflexi/genética , Chloroflexi/crescimento & desenvolvimento , Chloroflexi/isolamento & purificação , Água Subterrânea/química , Halogenação , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Tetracloroetileno/química , Tetracloroetileno/metabolismo , Tricloroetileno/química , Tricloroetileno/metabolismo , Cloreto de Vinil/química , Poluentes da Água/química , Poluentes da Água/metabolismoRESUMO
Thermal proteome profiling (TPP) is increasingly applied in eukaryotes to investigate protein-ligand binding through protein melting curve shifts induced by the presence of a ligand. In anaerobic bacteria, identification of protein-substrate interactions is a major challenge. We applied TPP to Sulfurospirillum multivorans, which is able to use trichloroethene as electron acceptor for growth, to investigate the interaction of its tetrachloroethene reductive dehalogenase PceA with trichloroethene. Several modifications in the protocol (e.g., incubation under anaerobic conditions; increasing the temperature range up to 97⯰C) extended the protein detection range and allowed the investigation of oxygen-sensitive proteins. Enzymatic reductive dehalogenation was prevented by omitting the electron donor during incubations. This enabled detecting the interaction of PceA with trichloroethene and confirmed that trichloroethene is a substrate of this enzyme. Interestingly, a putative response regulator showed a similar trend, which is the first biochemical hint for its proposed role in trichloroethene respiration. We proved that our TPP approach facilitates the identification of protein-substrate interactions of strictly anaerobic reductive dehalogenases and probably their regulators. This strategy can be used to identify yet unknown substrate specificities and possible signal-sensing proteins, and therefore has the potential to elucidate one of the unresolved fields in research on organohalide-respiring bacteria. SIGNIFICANCE: The assessment of enzyme-substrate or protein-ligand interactions in organohalide-respiring bacteria is a fundamental challenge. Thermal proteome profiling (TPP) allows elucidating proteome-wide thermal stability changes relying on the sensitivity of modern mass spectrometry. This gives access to the identification of interactions not detectable with other methods. In this TPP study, we demonstrate the interactions of a chlorinated substrate with a reductive dehalogenase and potentially with a response regulator, thereby supporting the response regulator's function in organohalide respiration. The strategy might also be applied to identify yet unknown substrates of other enzymes in bacteria which are difficult to investigate or for which only low amounts of biomass are available. The assessment of enzyme-substrate interactions, which might enable conclusions about enzyme specificities, represents a new application for TPP.
Assuntos
Proteínas de Bactérias/química , Campylobacteraceae/enzimologia , Temperatura Alta , Oxirredutases/química , Tetracloroetileno/química , Proteínas de Bactérias/metabolismo , Oxirredutases/metabolismo , Tetracloroetileno/metabolismoRESUMO
The study was conducted to demonstrate the influence of extracellular secretions from Microbacterium on the reductive dechlorination of tetrachloroethene (PCE). A series of mixed cultures were established from a paddy soil sample. In the mixed cultures amended with extracellular secretions from Microbacterium, PCE was rapidly and completely converted into cis-1,2-dichloroethene (cis-DCE) and trans-1,2-dichloroethene (trans-DCE) within 40 days. The unamended mixed cultures showed weak signs of dechlorination after a pronounced lag phase, and trichloroethene (TCE) was accumulated as a major end product. This result means that amendment with extracellular secretions from Microbacterium shortened the lag phase, increased the dechlorination velocity and promoted the production of less-chlorinated chloroethene. The results were corroborated by defined subculture experiments, which proved that microorganisms from unamended mixed cultures could also be stimulated by extracellular secretions from Microbacterium. Desulfitobacterium was identified as the main dechlorinating population in all mixed cultures by direct PCR. Additionally, the 16S rRNA gene copies of Desulfitobacterium increased by one or two orders of magnitude with PCE dechlorination, which provided corroborative evidence for the identification result. The volatile fatty acids were monitored, and most interestingly, a close association between propionate oxidation and dechlorination was found, which has rarely been mentioned before. It was assumed that the oxidation of propionate provided hydrogen for dechlorination, while dechlorination facilitated the shift of the reaction toward propionate oxidation by reducing the partial pressure of hydrogen.
Assuntos
Biodegradação Ambiental , Desulfitobacterium/fisiologia , Tetracloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Halogenação , Oxirredução , RNA Ribossômico 16S , Tetracloroetileno/química , Tricloroetileno , Cloreto de VinilRESUMO
Here we revisit whether the common mixed-valent Fe mineral, magnetite, is a viable reductant for the abiotic natural attenuation of perchloroethylene (PCE) and trichloroethylene (TCE) in anoxic groundwater plumes. We measured PCE and TCE reduction by stoichiometric magnetite as a function of pH and Fe(ii) concentration. In the absence of added Fe(ii), stoichiometric magnetite does not reduce PCE and TCE over a three month period under anoxic conditions. When Fe(ii) is added to magnetite suspensions, PCE and TCE are reduced under Fe(ii) and pH conditions that appear to be controlled by the solubility of ferrous hydroxide, Fe(OH)2(s). Reduction rates are slow with only 1 to 30% carbon products (primarily acetylene) accumulating over several months. We conducted a similar set of experiments with Fe(OH)2(s) alone and found that, compared to in the presence of magnetite, Fe(OH)2(s) reduces PCE and TCE only at Fe(ii) concentrations that are too high (≥13 mM, 726 mg L-1) to be representative of natural aquifer conditions. Our results suggest that magnetite present in aquifer sediments alone is unlikely to reduce PCE and TCE sufficiently fast to contribute to natural attenuation of PCE and TCE. The lack of compelling evidence for PCE and TCE reduction by magnetite raises important questions regarding the current application of using magnetic susceptibility as a potential indicator for abiotic natural attenuation. Dynamic conditions and high Fe(ii) concentrations that favor active precipitation of minerals, such as Fe(OH)2(s) in the presence of magnetite (or other Fe minerals), however, may lead to PCE and TCE reduction that could help attenuate PCE and TCE plumes.
Assuntos
Óxido Ferroso-Férrico/química , Tetracloroetileno/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Água Subterrânea , Oxirredução , SolubilidadeRESUMO
High-strength droplet interfaces are attractive for many applications, specifically in cases where droplets are channeled through fluidic devices and manipulated by electromagnetic fields. Using models and experiments, we study the deformation of droplets and capsules with protein interfaces in an electric field in thin and wide electrode gaps. Proteins are chosen from candidates expected to display qualitatively different interfacial interactions and strengths: a globular protein (bovine serum albumin), a reversible cross-linking peptide (AFD4), and a hydrophobin (cerato ulmin). Dilute protein additives can lead to over 1 order of magnitude stronger oil-water interfaces than those stabilized by small surfactants. We develop small deformation models to evaluate a protein membrane's interfacial elasticity, notably accounting for the electric field perturbation encountered in a gap and a careful treatment of a generalized elastic interface with both surface tension and interfacial elasticity. Results indicate that globular proteins, which typically have comparable surface tension and interfacial elasticity, can be modeled well by this generalized elastic interface. We further find that when in a gap, droplets and capsules migrate toward one electrode, deform asymmetrically, exhibit polar spreading on the electrode, and predictably stretch more than in the infinite gap scenario at constant field strength.
Assuntos
Proteínas Fúngicas/química , Micotoxinas/química , Peptídeos/química , Soroalbumina Bovina/química , Eletricidade Estática , Animais , Bovinos , Elasticidade , Membranas Artificiais , Óleo Mineral/química , Modelos Químicos , Compostos de Organossilício/química , Tensão Superficial , Tensoativos/química , Tetracloroetileno/química , Água/químicaRESUMO
After the injection of Carbo-Iron® into an aquifer contaminated with tetrachloroethene (PCE), combined chemical and microbiological contaminant degradation processes were found in a long-term study of the field site in Lower Saxony (Germany). The applied composite material Carbo-Iron, which consists of colloidal activated carbon and embedded nanoscale zero-valent iron (ZVI) structures, functioned as intended: accumulating the pollutants and promoting their reductive dechlorination. Furthermore, the particles decreased the redox potential of the groundwater due to their reaction with oxygen and to the ZVI-corrosion-induced formation of molecular hydrogen up to 190â¯days after the injection, the latter promoting sulphate-reducing conditions. The emergence of cis-dichloroethene (cis-DCE), which was only found in trace quantities before the injection of Carbo-Iron, together with the presence of organisms related to Sulfospirillum multivorans, Desulfitobacterium spp. and Dehalococcoides mccartyi, indicate that Carbo-Iron is also able to support microbial degradation of PCE. However, cis-DCE did not accumulate in the present case study, although it is often observed at sites with active microbial dechlorination. The results of compound-specific isotope analysis in combination with pyrosequencing data suggested the oxidative degradation of cis-DCE by an organism related to Polaromonas sp. strain JS666. Consequently, the formation of the carcinogenic degradation intermediate vinyl chloride was circumvented. Overall, the moderate and slow change of environmental conditions mediated by Carbo-Iron not only supported organohalide-respiring bacteria, but also created the basis for a subsequent microbial oxidation step.
Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Tetracloroetileno/química , Poluentes Químicos da Água/química , Bactérias/metabolismo , Biodegradação Ambiental , Carvão Vegetal/química , Alemanha , Ferro/química , Tetracloroetileno/análise , Poluentes Químicos da Água/análiseRESUMO
The evaluation of groundwater contaminant e.g. tetrachloroethene (PCE) degradation processes requires complete quantification of and pathway analysis of the groundwater contaminant under investigation. For example the reduction of PCE concentrations in the groundwater by unknown dissolution and/or sorption processes will impede interpretation of the fate and behaviour of such contaminants. In the present study PCE dissolution and sorption processes during anaerobic microbial degradation of chlorinated ethenes were investigated. For this purpose, microcosms were prepared using sediment samples from a PCE-contaminated aquifer, which in previous studies had demonstrated anaerobic organohalide respiration of PCE. Solid/water distribution coefficients (kd) of PCE were determined and validated by loss-on-ignition (LOI) and PCE sorption experiments. The determined kd magnitudes indicated methodological congruency, yielding values for sediment samples within a range of 1.15±0.02 to 5.93±0.34L·kg-1. The microcosm experiment showed lower PCE concentrations than expected, based on spiked PCE and observed anaerobic microbial degradation processes. Nevertheless the amount of PCE spike added was completely recovered albeit in the form of lower chlorinated metabolites. A delay due to dissolution processes was not responsible for this phenomenon. Sorption to sediments could only partially explain the reduction of PCE in the water phase. Accordingly, the results point to reversible sorption processes of PCE, possibly onto bacterial cell compartments and/or exopolymeric substances.
Assuntos
Água Subterrânea/química , Tetracloroetileno/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Monitoramento Ambiental , Sedimentos Geológicos/química , Tetracloroetileno/análise , Poluentes Químicos da Água/análiseRESUMO
Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of liquid elemental mercury in the subsurface is lacking, although this is critical for assessing both characterization and remediation approaches for mercury DNAPL contaminated sites. Therefore, in this study the infiltration behaviour of elemental mercury in fully and partially water saturated systems was investigated using column experiments. The properties affecting the constitutive relations governing the infiltration behaviour of liquid Hg0, and PCE for comparison, were determined using Pc(S) experiments with different granular porous media (glass beads and sands) for different two- and three-phase configurations. Results showed that, in water saturated porous media, elemental mercury, as PCE, acted as a non-wetting fluid. The required entry head for elemental mercury was higher (from about 5 to 7 times). However, due to the almost tenfold higher density of mercury, the required NAPL entry heads of 6.19cm and 12.51cm for mercury to infiltrate were 37.5% to 20.7% lower than for PCE for the same porous media. Although Leverett scaling was able to reproduce the natural tendency of Hg0 to be more prone than PCE to infiltrate in water saturated porous media, it considerably underestimated Hg0 infiltration capacity in comparison with the experimental results. In the partially water saturated system, in contrast with PCE, elemental mercury also acted as a nonwetting fluid, therefore having to overcome an entry head to infiltrate. The required Hg0 entry heads (10.45 and 15.74cm) were considerably higher (68.9% and 25.8%) than for the water saturated porous systems. Furthermore, in the partially water saturated systems, experiments showed that elemental mercury displaced both air and water, depending on the initial water distribution within the pores. This indicates that the conventional wettability hierarchy, in which the NAPL has an intermediate wetting state between the air and the water phases, is not valid for liquid elemental mercury. Therefore, for future modelling of elemental mercury DNAPL infiltration behaviour in variably water saturated porous media, a different formulation of the governing constitutive relations will be required.
Assuntos
Mercúrio/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Mercúrio/química , Porosidade , Dióxido de Silício , Poluentes do Solo/análise , Poluentes do Solo/química , Tetracloroetileno/análise , Tetracloroetileno/química , MolhabilidadeRESUMO
Laboratory batch experiments were performed to assess the impacts of temperature and mineralogy on the abiotic dechlorination of tetrachloroethene (PCE) or trichloroethene (TCE) due to the presence of ferrous minerals in natural aquifer clayey soils under anaerobic conditions. A combination of x-ray diffraction (XRD), magnetic susceptibility, and ferrous mineral content were used to characterize each of the 3 natural soils tested in this study, and dechlorination at temperatures ranging from 20 to 55°C were examined. Results showed that abiotic dechlorination occurred in all 3 soils examined, yielding reduced gas abiotic dechlorination products acetylene, butane, ethene, and/or propane. Bulk first-order dechlorination rate constants (kbulk), scaled to the soil:water ratio expected for in situ conditions, ranged from 2.0×10-5day-1 at 20°C, to 32×10-5day-1 at 55°C in the soil with the greatest ferrous mineral content. For the generation of acetylene and ethene from PCE, the reaction was well described by Arrhenius kinetics, with an activation energy of 91kJ/mol. For the generation of coupling products butane and propane, the Arrhenius equation did not provide a satisfactory description of the data, likely owing to the complex reaction mechanisms associated with these products and/or diffusional mass transfer processes associated with the ferrous minerals likely responsible for these coupling reactions. Although the data set was too limited to determine a definitive correlation, the two soils with elevated ferrous mineral contents had elevated abiotic dechlorination rate constants, while the one soil with a low ferrous mineral content had a relatively low abiotic dechlorination rate constant. Overall, results suggest intrinsic abiotic dechlorination rates may be an important long-term natural attenuation component in site conceptual models for clays that have the appropriate iron mineralogy.
Assuntos
Silicatos de Alumínio/química , Solo/química , Tetracloroetileno/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Argila , Difusão , Água Subterrânea/química , Halogenação , Ferro , Cinética , Temperatura , Difração de Raios XRESUMO
The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>>TCE>PCE >>nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.
Assuntos
Ferro/química , Peróxidos/química , Espécies Reativas de Oxigênio/química , Poluentes Químicos da Água/química , Ácido Edético/química , Etano/análogos & derivados , Etano/química , Água Subterrânea/química , Hidrocarbonetos Clorados/química , Radical Hidroxila/química , Nitrobenzenos/química , Oxidantes/química , Oxirredução , Substâncias Redutoras/química , Sulfatos , Tetracloroetileno/química , Tricloroetileno/química , Purificação da Água/métodos , terc-Butil ÁlcoolRESUMO
Chloroethenes (CEs) are widespread groundwater toxicants that are reductively dechlorinated to nontoxic ethene (ETH) by members of Dehalococcoides. This study established a Dehalococcoides-dominated enrichment culture (designated "YN3") that dechlorinates tetrachloroethene (PCE) to ETH with high dechlorination activity, that is, complete dechlorination of 800 µM PCE to ETH within 14 days in the presence of Dehalococcoides species at 5.7 ± 1.9 × 107 copies of 16S rRNA gene/mL. The metagenome of YN3 harbored 18 rdhA genes (designated YN3rdhA1-18) encoding the catalytic subunit of reductive dehalogenase (RdhA), four of which were suggested to be involved in PCE-to-ETH dechlorination based on significant increases in their transcription in response to CE addition. The predicted proteins for two of these four genes, YN3RdhA8 and YN3RdhA16, showed 94% and 97% of amino acid similarity with PceA and VcrA, which are well known to dechlorinate PCE to trichloroethene (TCE) and TCE to ETH, respectively. The other two rdhAs, YN3rdhA6 and YN3rdhA12, which were never proved as rdhA for CEs, showed particularly high transcription upon addition of vinyl chloride (VC), with 75 ± 38 and 16 ± 8.6 mRNA copies per gene, respectively, suggesting their possible functions as novel VC-reductive dehalogenases. Moreover, metagenome data indicated the presence of three coexisting bacterial species, including novel species of the genus Bacteroides, which might promote CE dechlorination by Dehalococcoides.
Assuntos
Biodegradação Ambiental , Chloroflexi/enzimologia , Metagenoma/genética , Oxirredutases/genética , Cloro/química , Cloro/toxicidade , Chloroflexi/genética , Etilenos/química , Genoma Bacteriano/genética , Halogenação/genética , Família Multigênica/genética , Oxirredutases/química , RNA Ribossômico 16S/genética , Tetracloroetileno/química , Cloreto de Vinil/químicaRESUMO
Viscosity remedial technology, which uses a water-soluble polymer mixed with remedial fluids, has been introduced in recent years to improve the removal efficacy of perchloroethylene/tetrachloroethylene (PCE) by improving oxidant coverage (i.e. sweep efficiency). Xanthan gum and hydrolysed polyacrylamide (HPAM) are relatively stable with time and temperature and possess salt and oxidation resistance, indicating that they may be good flooding agents (the former is better than the latter in this work). In this work, we quantified the polymer directly improved oxidation of PCE during transport by using a two-dimensional flow tank. Using a low pore volume (≤3.0), the removal rate of the PCE increased with the polymer concentration before stabilizing at approximately 93.00 and 88.30% for xanthan and HPAM, respectively. In this work, over 80% of PCE was removed via less than 3.0 PV of the SDS solution, whereas complete removal (100%) was achieved with less than 3.0 PV of SDS foam. Furthermore, the new experimental discoveries demonstrate that xanthan is better than HPAM and SDS foam is a better remediation agent than the SDS solution for removing PCE. Graphical abstract (Reaction device, A - inlet device (pump 1#), B - 2D tank, C - outflow device (pump 2#), D - data recording and processing device, E - microscopic expression, E (a) - KMnO4 flushing, E (b) - polymer solution flushing).
Assuntos
Recuperação e Remediação Ambiental/métodos , Oxidantes/química , Tetracloroetileno/química , Resinas Acrílicas/química , Oxirredução , Polímeros/química , Polissacarídeos Bacterianos/química , Dodecilsulfato de Sódio/química , ViscosidadeRESUMO
The simultaneous anaerobic transformation of tetrachloroethene (PCE) and carbon tetrachloride (CT) was evaluated in a continuous flow column. The column was packed with quartz sand and bioaugmented with the Evanite culture (EV) that is capable of transforming PCE to ethene. Azizian and Semprini (2016) reported that PCE and CT could be simultaneously transformed in the column, with PCE (0.1mM) transformed mainly to ethene and CT (0.015mM) to chloroform (CF) (20%) and an unknown transformation product, likely carbon dioxide (CO2). The fermentation of propionate, formed from lactate fermentation, was inhibited after the transformation of CT, likely from the exposure to CF. Reported here is the second phase of that study where a second bioaugmentation of the EV culture was made to reintroduce a lactate and propionate fermenting population to the column. Effective lactate and propionate fermentation were restored with a H2 concentration of ~25nM maintained in the column effluent. PCE (0.1mM) was effectively transformed to ethene (~98%) and vinyl chloride (VC) (~2%). Unlabeled CT (0.015 to 0.03mM) was completely transformed with a transient build-up of CF and chloromethane (CM), which were subsequently removed below their detection limits. A series of transient tests were initiated through the addition of carbon-13 labeled CT (13CT), with concentrations gradually increased from 0.03 to 0.10mM. GC-MS analysis of the column effluent showed that 13C labeled CO2 (13CO2) was formed, ranging from 82 to 93% of the 13CT transformed, with the transient increases in 13CO2 associated with the increased concentration of 13CT. A modified COD analysis indicated a lesser amount of 13CT (18%) was transformed to soluble products, while 13CO2 represented 82% the 13CT transformed. In a final transient test, the influent lactate concentration was decreased from 1.1 to 0.67mM. The transformation of both CT and PCE changed dramatically. Only 59% of the 13CT was transformed, primarily to CF. 13CO2 concentrations gradually decreased to background levels, indicating CO2 was no longer a transformation product. PCE transformation resulted in the following percentage of products formed: cDCE (60%), VC (36%), and ethene (4%). Incomplete propionate fermentation was also observed, consistent with the build-up of CF and the decrease in H2 concentrations to approximately 2nM. The results clearly demonstrate that high concentrations of CT were transformed to CO2, and effective PCE dehalogenation to ethene was maintained when excess lactate was fed and propionate was effectively fermented. However, when the lactate concentration was reduced, both PCE and CT transformation and propionate fermentation were negatively impacted.