Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 593: 52-56, 2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35063769

RESUMO

COVID-19, the respiratory infection caused by the novel coronavirus SARS-CoV-2, presents a clinical picture consistent with the dysregulation of many of the pathways mediated by the metalloprotease ADAM17. ADAM17 is a sheddase that plays a key role in the modulation of ACE2, the receptor which also functions as the point of attachment leading to cell entry by the virus. This work investigates the possibility that ADAM17 dysregulation and attachment of the SARS-CoV-2 virion to the ACE2 receptor are linked events, with the latter causing the former. Tetraspanins, the transmembrane proteins that function as scaffolds for the construction of viral entry platforms, are mooted as key components in this connection.


Assuntos
Proteína ADAM17/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , Tetraspanina 29/metabolismo , Internalização do Vírus , Proteína ADAM17/química , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Humanos , Modelos Biológicos , Simulação de Acoplamento Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Pandemias , Ligação Proteica , Domínios Proteicos , Receptores Virais/química , SARS-CoV-2/fisiologia , Tetraspanina 29/química
2.
Future Med Chem ; 14(4): 221-231, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34939426

RESUMO

Background: Vitiligo is a relatively common depigmenting skin disorder. UV light stimulation is often used to obtain repigmentation. Wnt signaling regulates melanocyte differentiation, and expression of TYR is upregulated in narrow-band UVB-treated epidermis. Manipulation of these two pathways by drugs could serve as one of the therapeutic approaches for durable repigmentation. Methods & results: CD9 was identified as a novel TYR activator by virtual screening and bioactivity assay. CD9 activated the Wnt signaling pathway through triggering translocation of ß-catenin from cytoplasm to nucleus. Conclusion: The pathogenesis of vitiligo is complicated and varies with each individual, so combination therapy may be much more suitable for treatment of vitiligo. CD9 could synergize with other anti-inflammatory compounds or autoimmune suppressors to shorten repigmentation time and improve efficacy.


Assuntos
Melaninas/metabolismo , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ligantes , Camundongos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Tetraspanina 29/química , Tetraspanina 29/metabolismo , Vitiligo/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos
3.
Chem Commun (Camb) ; 57(40): 4906-4909, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870995

RESUMO

A CD9-binding peptide (RSHRLRLH), screened from EWI-2, was characterized, and its effect on cellular migration and invasion was evaluated. As CD9 protein is overexpressed in cancer cells and plays an important role in cellular migration, the CD9-binding peptide preferentially inhibited the migration of cancer cells. Unlike conventional antiproliferative drugs, this CD9-binding peptide is promising as a novel precision antimigratory agent for cancer therapeutics.


Assuntos
Peptídeos/farmacologia , Tetraspanina 29/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Peptídeos/química , Tetraspanina 29/genética
4.
Nat Commun ; 11(1): 1606, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32231207

RESUMO

Tetraspanins play critical roles in various physiological processes, ranging from cell adhesion to virus infection. The members of the tetraspanin family have four membrane-spanning domains and short and large extracellular loops, and associate with a broad range of other functional proteins to exert cellular functions. Here we report the crystal structure of CD9 and the cryo-electron microscopic structure of CD9 in complex with its single membrane-spanning partner protein, EWI-2. The reversed cone-like molecular shape of CD9 generates membrane curvature in the crystalline lipid layers, which explains the CD9 localization in regions with high membrane curvature and its implications in membrane remodeling. The molecular interaction between CD9 and EWI-2 is mainly mediated through the small residues in the transmembrane region and protein/lipid interactions, whereas the fertilization assay revealed the critical involvement of the LEL region in the sperm-egg fusion, indicating the different dependency of each binding domain for other partner proteins.


Assuntos
Tetraspanina 29/química , Tetraspanina 29/fisiologia , Animais , Antígenos CD/química , Adesão Celular/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Feminino , Fertilização/fisiologia , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Conformação Proteica , Tetraspanina 29/genética
5.
FEBS J ; 287(24): 5323-5344, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32181977

RESUMO

Lipidation of transmembrane proteins regulates many cellular activities, including signal transduction, cell-cell communication, and membrane trafficking. However, how lipidation at different sites in a membrane protein affects structure and function remains elusive. Here, using native mass spectrometry we determined that wild-type human tetraspanins CD9 and CD81 exhibit nonstochastic distributions of bound acyl chains. We revealed CD9 lipidation at its three most frequent lipidated sites suffices for EWI-F binding, while cysteine-to-alanine CD9 mutations markedly reduced binding of EWI-F. EWI-F binding by CD9 was rescued by mutating all or, albeit to a lesser extent, only the three most frequently lipidated sites into tryptophans. These mutations did not affect the nanoscale distribution of CD9 in cell membranes, as shown by super-resolution microscopy using a CD9-specific nanobody. Thus, these data demonstrate site-specific, possibly conformation-dependent, functionality of lipidation in tetraspanin CD9 and identify tryptophan mimicry as a possible biochemical approach to study site-specific transmembrane-protein lipidation.


Assuntos
Alanina/química , Membrana Celular/metabolismo , Lipídeos/química , Tetraspanina 29/química , Tetraspanina 29/metabolismo , Triptofano/química , Alanina/genética , Alanina/metabolismo , Comunicação Celular , Humanos , Mutação , Ligação Proteica , Triptofano/genética , Triptofano/metabolismo
6.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 254-259, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950826

RESUMO

The tetraspanin family of proteins with four membrane-spanning proteins function in a wide range of physiological processes in higher organisms, including cell migration and proliferation, cell fusion, fertilization and virus infection. Although the recently reported structure of CD81 unveiled the basic architecture of this family for the first time, further structural and functional studies are required in order to understand the mechanistic details of the complicated functions of the tetraspanin-family proteins. In this study, attempts were made to crystallize human CD9, a representative member of the tetraspanin family, and it was demonstrated that the truncation of a variable region in the second long extracellular loop significantly improved crystal growth.


Assuntos
Tetraspanina 29/química , Sequência de Aminoácidos , Cromatografia em Gel , Cristalização , Cristalografia por Raios X , Humanos , Estrutura Secundária de Proteína
7.
Nanoscale ; 11(13): 6036-6044, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30869094

RESUMO

Membrane partition and remodeling play a key role in numerous cell mechanisms, especially in viral replication cycles where viruses subvert the plasma membrane to enter and escape from the host cell. Specifically assembly and release of HIV-1 particles require specific cellular components, which are recruited to the egress site by the viral protein Gag. We previously demonstrated that HIV-1 assembly alters both partitioning and dynamics of the tetraspanins CD9 and CD81, which are key players in many infectious processes, forming enriched areas where the virus buds. In this study we correlated super resolution microscopy mapping of tetraspanins with membrane topography delineated by atomic force microscopy (AFM) in Gag-expressing cells. We revealed that CD9 is specifically trapped within the nascent viral particles, especially at buds tips, suggesting that Gag mediates CD9 and CD81 depletion from the plasma membrane. In addition, we showed that CD9 is organized as small membrane assemblies of few tens of nanometers that can coalesce upon Gag expression.


Assuntos
HIV-1/fisiologia , Tetraspanina 28/química , Tetraspanina 29/química , Membrana Celular/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Microscopia de Força Atômica , Tetraspanina 28/metabolismo , Tetraspanina 29/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
8.
Nano Lett ; 19(1): 19-28, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30517011

RESUMO

In vitro and in vivo delivery of RNAs of interest holds promise for gene therapy. Recently, exosomes are considered as a kind of rational vehicle for RNA delivery, especially miRNA and/or siRNA, while the loading efficiency is limited. In this study, we engineered the exosomes for RNA loading by constructing a fusion protein in which the exosomal membrane protein CD9 was fused with RNA binding protein, while the RNA of interest either natively harbors or is engineered to have the elements for the binding. By proof-of-principle experiments, we here fused CD9 with HuR, an RNA binding protein interacting with miR-155 with a relatively high affinity. In the exosome packaging cells, the fused CD9-HuR successfully enriched miR-155 into exosomes when miR-155 was excessively expressed. Moreover, miR-155 encapsulated in the exosomes in turn could be efficiently delivered into the recipient cells and recognized the endogenous targets. In addition, we also revealed that the CD9-HuR exosomes could enrich the functional miRNA inhibitor or CRISPR/dCas9 when the RNAs were engineered to have the AU rich elements. Taken together, we here have established a novel strategy for enhanced RNA cargo encapsulation into engineered exosomes, which in turn functions in the recipient cells.


Assuntos
Proteína Semelhante a ELAV 1/química , Exossomos/química , MicroRNAs/química , Tetraspanina 29/química , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Exossomos/genética , Técnicas de Transferência de Genes , Humanos , Camundongos , MicroRNAs/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Tetraspanina 29/genética
9.
Lab Invest ; 99(2): 200-209, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30401958

RESUMO

Tetraspanin CD9 is essential for sperm-egg fusion and also contributes to uterine repair through microexosome formation. Microexosomes share CD9 with exosomes and are released from eggs and uterine epithelial cells. However, the mechanism for the formation of microexosomes remains unknown. To address this issue, we examined membrane localization and extracellular release of CD9 proteins using uterine epithelial cells and secretions in mice and humans. In mice, CD9 localized predominantly on the basal region of the plasma membrane and relocated to the apical region upon embryo implantation. Furthermore, extracellular CD9 proteins were detected in uterine secretions of mice and women undergoing infertility treatment, but were below detectable levels in supernatants of pluripotent stem cells. Ultrastructural analysis demonstrated that membrane projections were shortened and the number of mitochondria was reduced in uterine epithelial cells lacking Cd9 genes. Our results suggest that CD9 repositioning and release affect both membrane structures and mitochondrial state in the uterus, and contribute to female fertility.


Assuntos
Tetraspanina 29 , Útero , Animais , Secreções Corporais/química , Secreções Corporais/citologia , Linhagem Celular , Ciclo Estral , Exossomos/química , Exossomos/metabolismo , Feminino , Humanos , Infertilidade Feminina , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/química , Mitocôndrias/metabolismo , Tetraspanina 29/química , Tetraspanina 29/metabolismo , Tetraspanina 29/fisiologia , Útero/química , Útero/citologia , Útero/metabolismo , Útero/fisiologia
10.
J Proteome Res ; 17(9): 3308-3316, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30080416

RESUMO

Analysis of protein phosphorylation in extracellular vesicles (EVs) offers an unprecedented potential for understanding cancer signaling and early stage disease diagnosis. However, prior to the phosphoproteome analysis step, the isolation of EVs from biofluids remains a challenging issue to overcome due to the low yield and impurity from current isolation methods. Here, we carry out an extensive assessment of several EV isolation methods including a novel rapid isolation method EVTRAP for highly efficient capture of extracellular vesicles from human urine sample. We demonstrate that over 95% recovery yield can be consistently achieved by EVTRAP, a significant improvement over current standard techniques. We then applied EVTRAP to identify over 16 000 unique peptides representing 2000 unique EV proteins from 200 µL urine sample, including all known EV markers with substantially increased recovery levels over ultracentrifugation. Most importantly, close to 2000 unique phosphopeptides were identified from more than 860 unique phosphoproteins using 10 mL of urine. The data demonstrated that EVTRAP is a highly effective and potentially widely implementable clinical isolation method for analysis of EV protein phosphorylation.


Assuntos
Técnicas de Química Analítica/instrumentação , Vesículas Extracelulares/química , Fosfopeptídeos/análise , Fosfoproteínas/isolamento & purificação , Proteoma/isolamento & purificação , Biomarcadores/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imãs , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Fosfoproteínas/química , Fosfoproteínas/classificação , Fosfoproteínas/urina , Ligação Proteica , Proteoma/química , Proteoma/classificação , Tetraspanina 29/química , Tetraspanina 29/metabolismo , Ultracentrifugação
11.
Protein Expr Purif ; 135: 8-15, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28442431

RESUMO

The human tetraspanin family of scaffold proteins comprises 33 isoforms. Being integral membrane proteins, they organize a so-called tetraspanin web via homomeric and heteromeric protein-protein interactions with integrins, immunoglobulins, growth factors, receptor tyrosine kinases, proteases, signaling proteins, and viral capsid proteins. Tetraspanins promote cellular effects, such as adhesion, migration, invasion, signaling, membrane fusion, protein trafficking, cancer progression, and infections. The ubiquitous expression of multiple tetraspanin isoforms and partner proteins hampers specific interaction studies. Here, we evaluated Dictyostelium discoideum as a non-mammalian expression system for human tetraspanins. Using high-content imaging we quantified tetraspanins in D. discoideum via fusion with green fluorescent protein. Three human tetraspanins, CD9, CD81, and CD151, served as test cases for which optimizations were carried out. We swapped the GFP domain between the N- and C-termini, added a Kozak sequence, and partially or fully adapted of the codon usage. This way, CD81 and CD151 were successfully produced. A conformation specific antibody further confirmed correct folding of CD81 and flow cytometry indicated an intracellular localization. Based on these data, we envision a D. discoideum-based co-expression platform with human partner proteins for studying tetraspanin interactions and their selective druggability on a large scale without the interference of endogenous human proteins.


Assuntos
Dictyostelium/genética , Ensaios de Triagem em Larga Escala , Tetraspanina 24/genética , Tetraspanina 28/genética , Tetraspanina 29/genética , Transgenes , Animais , Anticorpos/química , Clonagem Molecular , Dictyostelium/metabolismo , Citometria de Fluxo , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Conformação Proteica , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tetraspanina 24/química , Tetraspanina 24/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Tetraspanina 29/química , Tetraspanina 29/metabolismo
12.
Biochem J ; 474(4): 589-596, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27993971

RESUMO

Tetraspanins play important roles in normal (e.g. cell adhesion, motility, activation, and proliferation) and pathological conditions (e.g. metastasis and viral infection). Tetraspanins interact with integrins and regulate integrin functions, but the specifics of tetraspanin-integrin interactions are unclear. Using co-immunoprecipitation with integrins as a sole method to detect interaction between integrins and full-length tetraspanins, it has been proposed that the variable region (helices D and E) of the extracellular-2 (EC2) domain of tetraspanins laterally associates with a non-ligand-binding site of integrins. We describe that, using adhesion assays, the EC2 domain of CD81, CD9, and CD151 bound to integrin αvß3, and this binding was suppressed by cRGDfV, a specific inhibitor of αvß3, and antibody 7E3, which is mapped to the ligand-binding site of ß3. We also present evidence that the specificity loop of ß3 directly bound to the EC2 domains. This suggests that the EC2 domains specifically bind to the classical ligand-binding site of αvß3. αvß3 was a more effective receptor for the EC2 domains than the previously known tetraspanin receptors α3ß1, α4ß1, and α6ß1. Docking simulation predicted that the helices A and B of CD81 EC2 bind to the RGD-binding site of αvß3. Substituting Lys residues at positions 116 and 144/148 of CD81 EC2 in the predicted integrin-binding interface reduced the binding of CD81 EC2 to αvß3, consistent with the docking model. These findings suggest that, in contrast with previous models, the ligand-binding site of integrin αvß3, a new tetraspanin receptor, binds to the constant region (helices A and B) of the EC2 domain.


Assuntos
Integrina alfaVbeta3/química , Tetraspanina 24/química , Tetraspanina 28/química , Tetraspanina 29/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Sítios de Ligação , Células CHO , Clonagem Molecular , Cricetulus , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/imunologia , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tetraspanina 24/genética , Tetraspanina 24/imunologia , Tetraspanina 28/genética , Tetraspanina 28/imunologia , Tetraspanina 29/genética , Tetraspanina 29/imunologia
13.
BMB Rep ; 49(11): 585-586, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27733233

RESUMO

Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells. [BMB Reports 2016; 49(11): 585-586].


Assuntos
Portadores de Fármacos/química , Vesículas Extracelulares/química , Animais , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Portadores de Fármacos/metabolismo , Exossomos/química , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Luz , Domínios e Motivos de Interação entre Proteínas/efeitos da radiação , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tetraspanina 29/química , Tetraspanina 29/metabolismo
14.
J Biol Chem ; 291(7): 3145-57, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26668317

RESUMO

A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitously expressed transmembrane metalloprotease that cleaves the extracellular regions from its transmembrane substrates. ADAM10 is essential for embryonic development and is implicated in cancer, Alzheimer, and inflammatory diseases. The tetraspanins are a superfamily of 33 four-transmembrane proteins in mammals, of which the TspanC8 subgroup (Tspan5, 10, 14, 15, 17, and 33) promote ADAM10 intracellular trafficking and enzymatic maturation. However, the interaction between TspanC8s and ADAM10 has only been demonstrated in overexpression systems and the interaction mechanism remains undefined. To address these issues, an antibody was developed to Tspan14, which was used to show co-immunoprecipitation of Tspan14 with ADAM10 in primary human cells. Chimeric Tspan14 constructs demonstrated that the large extracellular loop of Tspan14 mediated its co-immunoprecipitation with ADAM10, and promoted ADAM10 maturation and trafficking to the cell surface. Chimeric ADAM10 constructs showed that membrane-proximal stalk, cysteine-rich, and disintegrin domains of ADAM10 mediated its co-immunoprecipitation with Tspan14 and other TspanC8s. This TspanC8-interacting region was required for ADAM10 exit from the endoplasmic reticulum. Truncated ADAM10 constructs revealed differential TspanC8 binding requirements for the stalk, cysteine-rich, and disintegrin domains. Moreover, Tspan15 was the only TspanC8 to promote cleavage of the ADAM10 substrate N-cadherin, whereas Tspan14 was unique in reducing cleavage of the platelet collagen receptor GPVI. These findings suggest that ADAM10 may adopt distinct conformations in complex with different TspanC8s, which could impact on substrate selectivity. Furthermore, this study identifies regions of TspanC8s and ADAM10 for potential interaction-disrupting therapeutic targeting.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , Endotélio Vascular/metabolismo , Proteínas de Membrana/metabolismo , Tetraspaninas/metabolismo , Proteínas ADAM/química , Proteínas ADAM/genética , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Animais , Plaquetas/citologia , Linhagem Celular , Membrana Celular/enzimologia , Células Cultivadas , Endotélio Vascular/citologia , Ativação Enzimática , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Propriedades de Superfície , Tetraspanina 29/química , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , Tetraspaninas/química , Tetraspaninas/genética
15.
PLoS One ; 9(12): e116289, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551757

RESUMO

Multinucleated giant cells, formed by the fusion of monocytes/macrophages, are features of chronic granulomatous inflammation associated with infections or the persistent presence of foreign material. The tetraspanins CD9 and CD81 regulate multinucleated giant cell formation: soluble recombinant proteins corresponding to the large extracellular domain (EC2) of human but not mouse CD9 can inhibit multinucleated giant cell formation, whereas human CD81 EC2 can antagonise this effect. Tetraspanin EC2 are all likely to have a conserved three helix sub-domain and a much less well-conserved or hypervariable sub-domain formed by short helices and interconnecting loops stabilised by two or more disulfide bridges. Using CD9/CD81 EC2 chimeras and point mutants we have mapped the specific regions of the CD9 EC2 involved in multinucleated giant cell formation. These were primarily located in two helices, one in each sub-domain. The cysteine residues involved in the formation of the disulfide bridges in CD9 EC2 were all essential for inhibitory activity but a conserved glycine residue in the tetraspanin-defining 'CCG' motif was not. A tyrosine residue in one of the active regions that is not conserved between human and mouse CD9 EC2, predicted to be solvent-exposed, was found to be only peripherally involved in this activity. We have defined two spatially-distinct sites on the CD9 EC2 that are required for inhibitory activity. Agents that target these sites could have therapeutic applications in diseases in which multinucleated giant cells play a pathogenic role.


Assuntos
Células Gigantes/metabolismo , Tetraspanina 29/fisiologia , Sequência de Aminoácidos , Animais , Diferenciação Celular , Sequência Conservada , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Estrutura Terciária de Proteína , Alinhamento de Sequência , Tetraspanina 29/química , Tetraspanina 29/genética
16.
PLoS One ; 8(11): e79033, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236085

RESUMO

The characterization of membrane proteins is still challenging. The major issue is the high hydrophobicity of membrane proteins that necessitates the use of detergents for their extraction and solubilization. The very poor compatibility of mass spectrometry with detergents remains a tremendous obstacle in studies of membrane proteins. Here, we investigated the potential of atmospheric pressure photoionization (APPI) for mass spectrometry study of membrane proteins. This work was focused on the tetraspanin CD9 and the multidrug transporter BmrA. A set of peptides from CD9, exhibiting a broad range of hydropathicity, was investigated using APPI as compared to electrospray ionization (ESI). Mass spectrometry experiments revealed that the most hydrophobic peptides were hardly ionized by ESI whereas all peptides, including the highly hydrophobic one that corresponds to the full sequence of the first transmembrane domain of CD9, were easily ionized by APPI. The native protein BmrA purified in the presence of the non-ionic detergent beta-D-dodecyl maltoside (DDM) was digested in-solution using trypsin. The resulting peptides were investigated by flow injection analysis of the mixture followed by mass spectrometry. Upon ESI, only detergent ions were detected and the ionic signals from the peptides were totally suppressed. In contrast, APPI allowed many peptides distributed along the sequence of the protein to be detected. Furthermore, the parent ion corresponding to the first transmembrane domain of the protein BmrA was detected under APPI conditions. Careful examination of the APPI mass spectrum revealed a-, b-, c- and y- fragment ions generated by in-source fragmentation. Those fragment ions allowed unambiguous structural characterization of the transmembrane domain. In conclusion, APPI-MS appears as a versatile method allowing the ionization and fragmentation of hydrophobic peptides in the presence of detergent.


Assuntos
Detergentes/química , Glucosídeos/química , Fragmentos de Peptídeos/química , Tetraspanina 29/química , Transportadores de Cassetes de Ligação de ATP/química , Sequência de Aminoácidos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas por Ionização por Electrospray
17.
Mol Reprod Dev ; 80(6): 451-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23572435

RESUMO

This study was conducted to investigate the effect of vitrification of bovine metaphase-II (MII) oocytes on CD9 expression and fertilization capacity. Surviving vitrified/warmed oocytes were used to detect CD9 distribution (fluorescence microscopy), CD9 mRNA (qRT-PCR), and CD9 protein expression (Western blot), and to analyze in vitro fertilization rates (number of sperm bound to or that penetrated the oocytes) after removing the zona pellucida. Fresh oocytes acted as control. The experimental results showed that the vitrification/warming procedures significantly decreased CD9 expression at the mRNA and protein levels, and changed the CD9 distribution pattern in bovine oocytes. After fertilization in vitro, the average number of sperm binding and penetration of vitrified oocytes were significantly lower than those of the non-vitrified oocytes. In conclusion, vitrification of bovine oocytes caused a decrease in CD9 expression at the mRNA and protein levels, and an alteration of CD9 distribution pattern, which may have resulted in lowered fertilization capacity.


Assuntos
Criopreservação , Fertilidade/fisiologia , Oócitos/fisiologia , Tetraspanina 29/biossíntese , Animais , Bovinos , Feminino , Fertilização in vitro/veterinária , Microscopia de Fluorescência , Oócitos/química , Oócitos/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Análise de Sobrevida , Tetraspanina 29/análise , Tetraspanina 29/química , Tetraspanina 29/metabolismo , Vitrificação
18.
Rapid Commun Mass Spectrom ; 25(22): 3436-40, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22002698

RESUMO

Mass spectrometry (MS) has dramatically evolved in the last two decades and has been the driving force of the spectacular expansion of proteomics during this period. However, the very poor compatibility of MS with detergents is still a technical obstacle in some studies, in particular on membrane proteins. Indeed, the high hydrophobicity of membrane proteins necessitates the use of detergents for their extraction and solubilization. Here, we address the analytical potential of high-field asymmetric waveform ion mobility spectrometry (FAIMS) for separating peptides from detergents. The study was focused on peptides from the human integral membrane protein CD9. A tryptic peptide was mixed with the non-ionic detergents Triton X-100 or beta-D-dodecyl maltoside (DDM) as well as with the ionic detergents sodium dodecyl sulfate (SDS) or sodium deoxycholate (SDC). Although electrospray ionization (ESI) alone led to a total suppression of the peptide ion signal on mass spectra with only detection of the detergents, use of FAIMS allowed separation and clear identification of the peptide with any of the detergents studied. The detection and identification of the target compound in the presence of an excess of detergents are then feasible. FAIMS should prove especially useful in the structural and proteomic analysis of membrane proteins.


Assuntos
Detergentes/química , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/isolamento & purificação , Proteômica/métodos , Ácido Desoxicólico/química , Humanos , Octoxinol/química , Fragmentos de Peptídeos/química , Dodecilsulfato de Sódio/química , Tetraspanina 29/química , Tetraspanina 29/isolamento & purificação , Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA