Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 157: 17-23, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335116

RESUMO

Hyperthermophilic xylanases play a critical role in bioconversion from xylan to sugar in the process of biomass utilization. The discovery of new or improvement of existing xylanases based on directed evolution is expected to be an effective approach to meet the increasing demand of thermostable xylanases. In this work, a xylanase B gene (CTN_0623) from Thermotoga neapolitana (Tne) was cloned and xylanase B (herein named TnexlnB) was solubly expressed in E. coli with a high amount using a heat shock vector pHsh. TnexlnB showed the highest endo-ß-1,4-xylan hydrolase activity at 75 °C and pH 6.0. Additionally, 1 mM Mg2+, Ba2+ and Ca2+ improved the activity of TnexlnB by 31%, 37%, and 53%, respectively. The optimal temperature reached 85 °C by site-directed mutation at the last three helices of TnexlnB. Km and Vmax towards birchwood xylan were determined for both wide type and the best mutant, as follow: 1.09 mg/mL, 191.76 U/mg and 0.29 mg/mL, 376.42 U/mg, respectively. Further characterization highlighted good thermal stability (>80% of enzymatic activity after 1 h at 90 °C) for the best mutant, which made this enzyme suitable for biomass degradation at high temperature.


Assuntos
Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Temperatura Alta , Engenharia de Proteínas , Açúcares/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Biomassa , Biotransformação , Endo-1,4-beta-Xilanases/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Thermotoga neapolitana/enzimologia , Thermotoga neapolitana/genética
2.
J Biotechnol ; 306: 118-124, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31550489

RESUMO

Using multi-step error prone PCR (ep-PCR) of the gene encoding endoglucanase Cel12A (27 kDa) from Thermotoga neapolitana, mutants were obtained with many fold increase in the enzyme activity. The best mutant (C6, N47S/E57 K/ V88A/S157 P/K165 H) obtained after four rounds of ep-PCR showed 2.7-, 5- and 4.8-fold increase in activity against CMC, RAC and Avicel, respectively, compared with the wild type enzyme. The other characteristics of the mutated enzyme with respect to stability, optimum working pH and temperature were comparable to the wild type enzyme.C6 mutant showed higher binding efficiency towards the rice straw (∼50%) than the wild type (∼41%). The structural information obtained from the protein docking of the wild type Cel12A and its mutant showed that E57 K improved the binding affinity between enzyme and ligand by producing conformational changes in the catalytic cavity. The other mutations can facilitate the enzyme-substrate binding interactions to enhance catalytic activity although they are not directly involved in catalysis. The wild type and mutant enzyme produce cellobiose as the major products for both soluble and insoluble substrates, suggesting that this enzyme should be a cellobiohydrolase instead of endoglucanase as previously reported.


Assuntos
Celulase/genética , Celulase/metabolismo , Thermotoga neapolitana/enzimologia , Catálise , Celulase/química , Celulose/metabolismo , Evolução Molecular Direcionada , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Mutação , Reação em Cadeia da Polimerase/métodos , Relação Estrutura-Atividade , Temperatura , Thermotoga neapolitana/genética , Thermotoga neapolitana/metabolismo
3.
J Biotechnol ; 296: 42-52, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30885654

RESUMO

The biological conversion of lignocellulose into fermentable sugars is a key process for the sustainable production of biofuels from plant biomass. Polysaccharides in plant feedstock can be valorized using thermostable mixtures of enzymes that degrade the cell walls, thus avoiding harmful and expensive pre-treatments. (Hyper)thermophilic bacteria of the phylum Thermotogae provide a rich source of enzymes for such industrial applications. Here we selected T. neapolitana as a source of hyperthermophilic hemicellulases for the degradation of lignocellulosic biomass. Two genes encoding putative hemicellulases were cloned from T. neapolitana genomic DNA and expressed in Escherichia coli. Further characterization revealed that the genes encoded an endo-1,4-ß-galactanase and an α-l-arabinofuranosidase with optimal temperatures of ˜90 °C and high turnover numbers during catalysis (kcat values of ˜177 and ˜133 s-1, respectively, on soluble substrates). These enzymes were combined with three additional T. neapolitana hyperthermophilic hemicellulases - endo-1,4-ß-xylanase (XynA), endo-1,4-ß-mannanase (ManB/Man5A) and ß-glucosidase (GghA) - to form a highly thermostable hemicellulolytic blend. The treatment of barley straw and corn bran with this enzymatic cocktail resulted in the solubilization of multiple hemicelluloses and boosted the yield of fermentable sugars by up to 65% when the complex substrates were further degraded by cellulases.


Assuntos
Celulase/química , Glicosídeo Hidrolases/química , Lignina/química , Polissacarídeos/química , Biocombustíveis , Biomassa , Celulase/genética , Estabilidade Enzimática/genética , Escherichia coli/genética , Fermentação , Glicosídeo Hidrolases/genética , Hidrólise/efeitos dos fármacos , Polissacarídeos/genética , Temperatura , Thermotoga neapolitana/enzimologia , Thermotoga neapolitana/genética
4.
Extremophiles ; 20(5): 771-83, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27457081

RESUMO

The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, ß-1,4-mannotriose, and ß-1,4-mannotetraose. The CelE orthologs additionally bind ß-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind ß-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Evolução Molecular , Mananas/metabolismo , Thermotoga maritima/genética , Thermotoga neapolitana/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transferência Genética Horizontal , Filogenia , Ligação Proteica , Seleção Genética , Especificidade por Substrato , Thermotoga maritima/enzimologia , Thermotoga neapolitana/enzimologia
5.
J Basic Microbiol ; 56(9): 949-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27112133

RESUMO

A 1.3 kb xyl-A gene encoding xylose isomerase from a hyperthermophilic eubacterium Thermotoga naphthophila RKU-10 (TnapXI) was cloned and over-expressed in Escherichia coli to produce the enzyme in mesophilic conditions that work at high temperature. The enzyme was concentrated by lyophilization and purified by heat treatment, fractional precipitation, and UNOsphere Q anion-exchange column chromatography to homogeneity level. The apparent molecular mass was estimated by SDS-PAGE to be 49.5 kDa. The active enzyme showed a clear zone on Native-PAGE when stained with 2, 3, 5-triphenyltetrazolium chloride. The optimum temperature and pH for D-glucose to D-fructose isomerization were 98 °C and 7.0, respectively. Xylose isomerase retains 85% of its activity at 50 °C (t1/2 1732 min) for 4 h and 32.5% at 90 °C (t1/2 58 min) for 2 h. It retains 90-95% of its activity at pH 6.5-7.5 for 30 min. The enzyme was highly activated (350%) with the addition of 0.5 mM Co(2+) and to a lesser extent about 180 and 80% with the addition of 5 and 10 mM Mn(2+) and Mg(2+) , respectively but it was inhibited (54-90%) in the presence of 0.5-10 mM Ca(2+) with respect to apo-enzyme. D-glucose isomerization product was also analyzed by Thin Layer Chromatography (Rf 0.65). The enzyme was very stable at neutral pH and sufficiently high temperature and required only a trace amount of Co(2+) for its optimal activity and stability. Overall, 52.2% conversion of D-glucose to D-fructose was achieved by TnapXI. Thus, it has a great potential for industrial applications.


Assuntos
Aldose-Cetose Isomerases/genética , Clonagem Molecular , Thermotoga neapolitana/enzimologia , Thermotoga neapolitana/metabolismo , Xilose/metabolismo , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Temperatura Alta , Modelos Moleculares , Simulação de Acoplamento Molecular , Análise de Sequência de DNA , Homologia de Sequência , Thermotoga neapolitana/genética
6.
BMC Genomics ; 16 Suppl 3: S7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25708162

RESUMO

BACKGROUND: Despite the large volume of genome sequencing data produced by next-generation sequencing technologies and the highly sophisticated software dedicated to handling these types of data, gaps are commonly found in draft genome assemblies. The existence of gaps compromises our ability to take full advantage of the genome data. This study aims to identify a practical approach for biologists to complete their own genome assemblies using commonly available tools and resources. RESULTS: A pipeline was developed to assemble complete genomes primarily from the next generation sequencing (NGS) data. The input of the pipeline is paired-end Illumina sequence reads, and the output is a high quality complete genome sequence. The pipeline alternates the employment of computational and biological methods in seven steps. It combines the strengths of de novo assembly, reference-based assembly, customized programming, public databases utilization, and wet lab experimentation. The application of the pipeline is demonstrated by the completion of a bacterial genome, Thermotoga sp. strain RQ7, a hydrogen-producing strain. CONCLUSIONS: The developed pipeline provides an example of effective integration of computational and biological principles. It highlights the complementary roles that in silico and wet lab methodologies play in bioinformatical studies. The constituting principles and methods are applicable to similar studies on both prokaryotic and eukaryotic genomes.


Assuntos
Genoma Bacteriano , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Software , Simulação por Computador , Thermotoga maritima/genética , Thermotoga neapolitana/genética
7.
Biotechnol Lett ; 36(9): 1853-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24867319

RESUMO

A pET-based vector pDH21 expressing the methylase, M.TneDI (recognizing CGCG) from Thermotoga was constructed, and transformed into E. coli BL21(DE3). Despite E. coli BL21(DE3) being McrBC positive, 30 transformants were isolated, which were suspected to be McrBC(-) mutants. The overexpression of M.TneDI was verified by SDS-PAGE analysis. Compared to the previously constructed pJC340 vector, a pACYC184 derivative expressing M.TneDI from a tet promotor, the newly constructed pDH21 vector improved the expression of the methylase about fourfold, allowing complete protection of DNA substrates. This study not only demonstrates a practical approach to overexpressing potential lethal proteins in E. coli but also delivers a production strain of M.TneDI that may be useful in various in vitro methylation applications.


Assuntos
DNA-Citosina Metilases/biossíntese , DNA-Citosina Metilases/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Thermotoga neapolitana/enzimologia , Viabilidade Microbiana , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Thermotoga neapolitana/genética
8.
World J Microbiol Biotechnol ; 28(12): 3337-44, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22914897

RESUMO

By constructing the genomic library, a ß-glucosidase gene, with a length of 2,382 bp, encoding 793 amino acids, designated bgla, is cloned from a marine bacterium Aeromonas sp. HC11e-3. The enzyme is expressed successfully in the recombinant host Escherichia coli BL21 (DE3) and purified using glutathione affinity purification system. It shows the optimal activity at pH 6, 55 °C and hydrolyzes aryl-glucoside specially. Ca(2+), Mn(2+), Zn(2+), Ba(2+), Pb(2+), Sr(2+) can activate the enzyme activity, whereas SDS, EDTA, DTT show slight inhibition to the enzyme activity. Homologous comparing shows that the enzyme belongs to glycosyl hydrolase family 3, exhibiting 46 % identity with a fully characterized glucosidase from Thermotoga neapolitana DSM 4359. Such results provide useful references for investigating other glucosidases in the glycosyl family 3 as well as developing glucosidases using in suitable industrial area.


Assuntos
Aeromonas/enzimologia , Glucosidases/genética , Glucosidases/metabolismo , Aeromonas/genética , Aeromonas/isolamento & purificação , Sequência de Aminoácidos , Cátions Bivalentes/metabolismo , Cromatografia de Afinidade , Clonagem Molecular , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Glucosidases/química , Glucosidases/isolamento & purificação , Concentração de Íons de Hidrogênio , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Água do Mar/microbiologia , Homologia de Sequência de Aminoácidos , Temperatura , Thermotoga neapolitana/enzimologia , Thermotoga neapolitana/genética
9.
BMC Biotechnol ; 12: 2, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22225774

RESUMO

BACKGROUND: Thermotoga spp. are attractive candidates for producing biohydrogen, green chemicals, and thermostable enzymes. They may also serve as model systems for understanding life sustainability under hyperthermophilic conditions. A lack of genetic tools has hampered the investigation and application of these organisms. This study aims to develop a genetic transfer system for Thermotoga spp. RESULTS: Methods for preparing and handling Thermotoga solid cultures under aerobic conditions were optimized. A plating efficiency of ~50% was achieved when the bacterial cells were embedded in 0.3% Gelrite. A Thermotoga-E. coli shuttle vector pDH10 was constructed using pRQ7, a cryptic mini-plasmid found in T. sp. RQ7. Plasmid pDH10 was introduced to T. maritima and T. sp. RQ7 by electroporation and liposome-mediated transformation. Transformants were isolated, and the transformed kanamycin resistance gene (kan) was detected from the plasmid DNA extracts of the recombinant strains by PCR and was confirmed by restriction digestions. The transformed DNA was stably maintained in both Thermotoga and E. coli even without the selective pressure. CONCLUSIONS: Thermotoga are transformable by multiple means. Recombinant Thermotoga strains have been isolated for the first time. A heterologous kan gene is functionally expressed and stably maintained in Thermotoga.


Assuntos
Escherichia coli/genética , Vetores Genéticos , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Transformação Bacteriana , Antibacterianos/farmacologia , Clonagem Molecular , DNA Bacteriano/genética , Escherichia coli/efeitos dos fármacos , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/efeitos dos fármacos , Canamicina/farmacologia , Plasmídeos/genética , Thermotoga maritima/efeitos dos fármacos , Thermotoga maritima/genética , Thermotoga neapolitana/efeitos dos fármacos , Thermotoga neapolitana/genética
10.
Biotechnol Prog ; 28(2): 312-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22034176

RESUMO

Constraint-based models of biochemical reaction networks require experimental validation to test model-derived hypotheses and iteratively improve the model. Physiological and proteomic analysis of Thermotoga neapolitana growth on cellotetraose was conducted to identify gene products related to growth on cellotetraose to improve a constraint-based model of T. neapolitana central carbon metabolism with incomplete cellotetraose pathways. In physiological experiments comparing cellotetraose to cellobiose and glucose as growth substrates, product formation yields on cellotetraose, cellobiose, and glucose were similar; however cell yields per mol carbon consumed were higher on cellotetraose than on cellobiose or glucose. Proteomic analysis showed increased expression of several proteins from cells grown on cellotetraose compared with glucose cell cultures, including cellobiose phosphorylase (CTN_0783), endo-1,4-ß-glucosidase (CTN_1106), and an ATP-binding protein (CTN_1296). The CTN_1296 gene product should be evaluated further for participation in cellotetraose metabolism and is included as one of two hypothetical gene-protein-reaction associations in the T. neapolitana constraint-based model to reinstate cellotetraose metabolism in model simulations.


Assuntos
Carbono/metabolismo , Proteômica , Thermotoga neapolitana/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celobiose/metabolismo , Celulose/análogos & derivados , Celulose/metabolismo , Glucose/metabolismo , Tetroses/metabolismo , Thermotoga neapolitana/enzimologia , Thermotoga neapolitana/genética , Thermotoga neapolitana/crescimento & desenvolvimento
11.
Enzyme Microb Technol ; 48(3): 260-6, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22112909

RESUMO

The gene encoding a type I pullulanase from the hyperthermophilic anaerobic bacterium Thermotoga neapolitana (pulA) was cloned in Escherichia coli and sequenced. The pulA gene from T. neapolitana showed 91.5% pairwise amino acid identity with pulA from Thermotoga maritima and contained the four regions conserved in all amylolytic enzymes. pulA encodes a protein of 843 amino acids with a 19-residue signal peptide. The pulA gene was subcloned and overexpressed in E. coli under the control of the T7 promoter. The purified recombinant enzyme (rPulA) produced a 93-kDa protein with pullulanase activity. rPulA was optimally active at pH 5-7 and 80°C and had a half-life of 88 min at 80°C. rPulA hydrolyzed pullulan, producing maltotriose, and hydrolytic activities were also detected with amylopectin, starch, and glycogen, but not with amylose. This substrate specificity is typical of a type I pullulanase. Thin layer chromatography of the reaction products in the reaction with pullulan and aesculin showed that the enzyme had transglycosylation activity. Analysis of the transfer product using NMR and isoamylase treatment revealed it to be α-maltotriosyl-(1,6)-aesculin, suggesting that the enzyme transferred the maltotriosyl residue of pullulan to aesculin by forming α-1,6-glucosidic linkages. Our findings suggest that the pullulanase from T. neapolitana is the first thermostable type I pullulanase which has α-1,6-transferring activity.


Assuntos
Clonagem Molecular/métodos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteínas Recombinantes/metabolismo , Thermotoga neapolitana/enzimologia , Sequência de Aminoácidos , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Glucanos/metabolismo , Glicosídeo Hidrolases/química , Glicosilação , Temperatura Alta , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Análise de Sequência de DNA , Especificidade por Substrato , Thermotoga neapolitana/genética , Thermotoga neapolitana/metabolismo
12.
Extremophiles ; 15(6): 665-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21918796

RESUMO

A putative Type II restriction-modification system of Thermotoga neapolitana, TneDI, was cloned into Escherichia coli XL1-Blue MRF' and characterized. Gene CTN_0339 specifies the endonuclease R.TneDI, while CTN_0340 encodes the cognate DNA methyltransferase M.TneDI. Both enzymes were purified simply by heating the cell lysates of E. coli followed by centrifugation. The enzymes were active over a broad range of temperatures, from 42°C to at least 77°C, with the highest activities observed at 77°C. R.TneDI cleaved at the center of the recognition sequence (CG↓CG) and generated blunt-end cuts. Overexpression of R.TneDI in BL21(DE3) was confirmed by both SDS-PAGE and Western blotting.


Assuntos
Metilases de Modificação do DNA/metabolismo , Thermotoga neapolitana/genética , Sequência de Bases , Western Blotting , Clonagem Molecular , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Recombinação Genética , Thermotoga neapolitana/enzimologia
13.
J Microbiol ; 49(4): 628-34, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21887647

RESUMO

We cloned the gene for an extracellular α-amylase, AmyE, from the hyperthermophilic bacterium Thermotoga neapolitana and expressed it in Escherichia coli. The molecular mass of the enzyme was 92 kDa as a monomer. Maximum activity was observed at pH 6.5 and temperature 75°C and the enzyme was highly thermostable. AmyE hydrolyzed the typical substrates for α-amylase, including soluble starch, amylopectin, and maltooli-gosaccharides. The hydrolytic pattern of AmyE was similar to that of a typical α-amylase; however, unlike most of the calcium (Ca(2+))-dependent α-amylases, the activity of AmyE was unaffected by Ca(2+). The specific activities of AmyE towards various substrates indicated that the enzyme preferred maltooligosaccharides which have more than four glucose residues. AmyE could not hydrolyze maltose and maltotriose. When maltoheptaose was incubated with AmyE at the various time courses, the products consisting of maltose through maltopentaose was evenly formed indicating that the enzyme acts in an endo-fashion. The specific activity of AmyE (7.4 U/mg at 75° C, pH 6.5, with starch as the substrate) was extremely lower than that of other extracellular α-amylases, which indicates that AmyE may cooperate with other highly active extracellular α-amylases for the breakdown of the starch or α-glucans into maltose and maltotriose before transport into the cell in the members of Thermotoga sp.


Assuntos
Thermotoga neapolitana/enzimologia , alfa-Amilases/genética , Sequência de Aminoácidos , Clonagem Molecular , Sequência Conservada , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Especificidade por Substrato , Temperatura , Thermotoga neapolitana/genética , alfa-Amilases/isolamento & purificação , alfa-Amilases/metabolismo
14.
BMC Biochem ; 12: 11, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21345211

RESUMO

BACKGROUND: The thermostable ß-glucosidase (TnBgl1A) from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e.g. quercetin-3-glucoside (Q3) was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-ß-D-glucopyranoside (pNPGlc), and screened for hydrolysis of Q3. RESULTS: Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1). Three residues in this area located on ß-strand 5 (F219, N221, and G222) close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S) were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as Tm by differential scanning calorimetry (101.9°C for wt), was kept in the mutated variants and significant decrease (ΔT of 5-10°C) was only observed for the triple mutants. The exchanged residue(s) in the respective mutant resulted in variations in KM and turnover. The KM-value was only changed in variants mutated at position 221 (N221S) and was in all cases monitored as a 2-3 × increase for pNPGlc, while the KM decreased a corresponding extent for Q3.Turnover was only significantly changed using pNPGlc, and was decreased 2-3 × in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S) increased turnover up to 3.5 × compared to the wild type. Modelling showed that the mutation at position 221, may alter the position of N291 resulting in increased hydrogen bonding of Q3 (at a position corresponding to the +1 subsite) which may explain the decrease in KM for this substrate. CONCLUSION: These results show that residues at the +2 subsite are interesting targets for mutagenesis and mutations at these positions can directly or indirectly affect both KM and turnover. An affinity change, leading to a decreased KM, can be explained by an altered position of N291, while the changes in turnover are more difficult to explain and may be the result of smaller conformational changes in the active site.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quercetina/análogos & derivados , Thermotoga neapolitana/enzimologia , beta-Glucosidase/química , beta-Glucosidase/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Biocatálise , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Quercetina/química , Quercetina/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Thermotoga neapolitana/química , Thermotoga neapolitana/genética , beta-Glucosidase/metabolismo
15.
Biochimie ; 93(3): 533-41, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21129434

RESUMO

Folding of large structured RNAs into their functional tertiary structures at high temperatures is challenging. Here we show that I-TnaI protein, a small LAGLIDADG homing endonuclease encoded by a group I intron from a hyperthermophilic bacterium, acts as a maturase that is essential for the catalytic activity of this intron at high temperatures and physiological cationic conditions. I-TnaI specifically binds to and induces tertiary packing of the P4-P6 domain of the intron; this RNA-protein complex might serve as a thermostable platform for active folding of the entire intron. Interestingly, the binding affinity of I-TnaI to its cognate intron RNA largely increases with temperature; over 30-fold stronger binding at higher temperatures relative to 37 °C correlates with a switch from an entropy-driven (37 °C) to an enthalpy-driven (55-60 °C) interaction mode. This binding mode may represent a novel strategy how an RNA binding protein can promote the function of its target RNA specifically at high temperatures.


Assuntos
Endonucleases/metabolismo , Íntrons/genética , Estabilidade de RNA , Temperatura , Sequência de Bases , Splicing de RNA , RNA Bacteriano/genética , Especificidade por Substrato , Termodinâmica , Thermotoga neapolitana/enzimologia , Thermotoga neapolitana/genética
16.
BMC Microbiol ; 10: 260, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20950419

RESUMO

BACKGROUND: In recent years, there has been an increasing interest in SSBs because they find numerous applications in diverse molecular biology and analytical methods. RESULTS: We report the characterization of single-stranded DNA binding proteins (SSBs) from the thermophilic bacteria Thermotoga maritima (TmaSSB) and Thermotoga neapolitana (TneSSB). They are the smallest known bacterial SSB proteins, consisting of 141 and 142 amino acid residues with a calculated molecular mass of 16.30 and 16.58 kDa, respectively. The similarity between amino acid sequences of these proteins is very high: 90% identity and 95% similarity. Surprisingly, both TmaSSB and TneSSB possess a quite low sequence similarity to Escherichia coli SSB (36 and 35% identity, 55 and 56% similarity, respectively). They are functional as homotetramers containing one single-stranded DNA binding domain (OB-fold) in each monomer. Agarose mobility assays indicated that the ssDNA-binding site for both proteins is salt independent, and fluorescence spectroscopy resulted in a size of 68 ± 2 nucleotides. The half-lives of TmaSSB and TneSSB were 10 h and 12 h at 100°C, respectively. When analysed by differential scanning microcalorimetry (DSC) the melting temperature (Tm) was 109.3°C and 112.5°C for TmaSSB and TneSSB, respectively. CONCLUSION: The results showed that TmaSSB and TneSSB are the most thermostable SSB proteins identified to date, offering an attractive alternative to TaqSSB and TthSSB in molecular biology applications, especially with using high temperature e. g. polymerase chain reaction (PCR).


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Thermotoga maritima/química , Thermotoga neapolitana/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Bacteriano/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Dados de Sequência Molecular , Peso Molecular , Reação em Cadeia da Polimerase , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Análise de Sequência de Proteína , Cloreto de Sódio , Espectrometria de Fluorescência , Thermotoga maritima/genética , Thermotoga neapolitana/genética
17.
Protein Eng Des Sel ; 23(7): 529-36, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20418388

RESUMO

Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Fragmentos de Peptídeos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Thermus thermophilus/metabolismo , Adenilato Quinase/química , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Vetores Genéticos , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica , Estabilidade Proteica , Temperatura , Thermotoga maritima/genética , Thermotoga neapolitana/genética , Thermotoga neapolitana/metabolismo , Thermus thermophilus/genética
18.
J Mol Biol ; 397(3): 724-39, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20138890

RESUMO

Based on sequence and phylogenetic analyses, glycoside hydrolase (GH) family 3 can be divided into several clusters that differ in the length of their primary sequences. However, structural data on representatives of GH3 are still scarce, since only three of their structures are known and only one of them has been thoroughly characterized-that of an exohydrolase from barley. To allow a deeper structural understanding of the GH3 family, we have determined the crystal structure of the thermostable beta-glucosidase from Thermotoga neapolitana, which has potentially important applications in environmentally friendly industrial biosynthesis at a resolution of 2.05 A. Selected active-site mutants have been characterized kinetically, and the structure of the mutant D242A is presented at 2.1 A resolution. Bgl3B from Th. neapolitana is the first example of a GH3 glucosidase with a three-domain structure. It is composed of an (alpha/beta)(8) domain similar to a triose phosphate isomerase barrel, a five-stranded alpha/beta sandwich domain (both of which are important for active-site organization), and a C-terminal fibronectin type III domain of unknown function. Remarkably, the direction of the second beta-strand of the triose phosphate isomerase barrel domain is reversed, which has implications for the active-site shape. The active site, at the interface of domains 1 and 2, is much more open to solvent than the corresponding site in the structurally homologous enzyme from barley, and only the -1 site is well defined. The structures, in combination with kinetic studies of active-site variants, allow the identification of essential catalytic residues (the nucleophile D242 and the acid/base E458), as well as other residues at the -1 subsite, including D58 and W243, which, by mutagenesis, are shown to be important for substrate accommodation/interaction. The position of the fibronectin type III domain excludes a direct participation of this domain in the recognition of small substrates, although it may be involved in the anchoring of the enzyme on large polymeric substrates and in thermostability.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Thermotoga neapolitana/enzimologia , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Catálise , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Glicosilação , Temperatura Alta , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Thermotoga neapolitana/genética , Thermotoga neapolitana/crescimento & desenvolvimento , beta-Glucosidase/genética
19.
J Biosci Bioeng ; 108(6): 455-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19914575

RESUMO

The genes encoding beta-N-acetylglucosaminidase (nagA and cbsA) from Thermotoga maritima and Thermotoga neapolitana were cloned and expressed in Escherichia coli in order to investigate whether Thermotoga sp. is capable of utilizing chitin as a carbon source. NagA and CbsA were purified to homogeneity by HiTrap Q HP and Sephacryl S-200 HR column chromatography. Both enzymes were homodimers containing a family 3 glycoside hydrolase (GH3) catalytic domain, with a monomer molecular mass of 54 kDa. The optimal temperatures and pHs for the activities of the beta-N-acetylglucosaminidases were found to be 65-75 degrees C and 7.0-8.0, respectively. Both enzymes hydrolyzed chitooligomers such as di-N-acetylchitobiose and tri-N-acetylchitotriose, and synthetic substrates such as p-nitrophenyl-beta-D-glucose (pNPGlc), p-nitrophenyl N-acetyl beta-D-glucosamine (pNPGlcNAc), p-nitrophenyl di-N-acetyl beta-D-chitobiose (pNPGlcNAc(2)) and p-nitrophenyl tri-N-acetyl beta-D-chitotriose (pNPGlcNAc(3)). However, the enzymes had no activity against p-nitrophenyl-beta-D-galactose (pNPGal) and p-nitrophenyl N-acetyl beta-D-galactosamine (pNPGalNAc) or highly polymerized chitin. The k(cat) and K(m) values were determined for pNPGlcNAc, pNPGlcNAc(2) and pNPGlcNAc(3). The k(cat)/K(m) value for pNPGlcNAc was the highest among three synthetic substrates. NagA and CbsA initially hydrolyzed p-nitrophenyl substrates to give GlcNAc, suggesting that the enzymes have exo-activity with chitin oligosaccharides from the non-reducing ends, like other beta-N-acetylglucosaminidases. However, NagA and CbsA can be distinguished from other GH3-type beta-N-acetylglucosaminidases in that they are highly active against di-N-acetylchitobiose. Thus, the present results suggest that the physiological role of both enzymes is to degrade the chitooligosaccharides transported through membrane following hydrolysis of chitin into beta-N-acetylglucosamine to be further metabolized in Thermotoga sp.


Assuntos
Acetilglucosaminidase/metabolismo , Thermotoga maritima/enzimologia , Thermotoga neapolitana/enzimologia , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Sequência de Aminoácidos , Quitina/metabolismo , Clonagem Molecular , Dissacarídeos/metabolismo , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Thermotoga maritima/genética , Thermotoga neapolitana/genética , Trissacarídeos/metabolismo
20.
J Microbiol Biotechnol ; 18(5): 901-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18633289

RESUMO

Thermotoga neapolitana beta-glucosidase (BglA) was subjected to site-directed mutagenesis in an effort to increase its ability to synthesize arbutin derivatives by transglycosylation. The transglycosylation reaction of the wild-type enzyme displays major beta(1,6) and minor beta(1,3) or beta(1,4) regioselectivity. The three mutants, N291T, F412S, and N291T/F412S, increased the ratio of transglycosylation/hydrolysis compared with the wild-type enzyme when pNPG and arbutin were used as a substrate and an acceptor, respectively. N291T and N219T/F412s had transglycosylation/hydrolysis ratios about 3- and 8-fold higher, respectively, than that of the wild-type enzyme. This is due to the decreased hydrolytic activity of the mutant rather than increased transglycosylation activity. Interestingly, N291T showed altered regioselectivity, as well as increased transglycosylation products. TLC analysis of the transglycosylation products indicated that N291T retained its beta(1,3) regioselectivity, but lost its beta(1,4) and beta(1,6) regioselectivity. The altered regioselectivity of N291T using two other acceptors, esculin and salicin, was also confirmed by TLC. The major transglycosylation products of the wild type and N291T mutant were clearly different. This result suggests that Asn-291 is highly involved in the catalytic mechanism by controlling the transglycosylation reaction.


Assuntos
Arbutina/biossíntese , Proteínas de Bactérias/química , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Thermotoga neapolitana/enzimologia , beta-Glucosidase/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Evolução Molecular Direcionada , Especificidade por Substrato , Thermotoga neapolitana/química , Thermotoga neapolitana/genética , beta-Glucosidase/genética , beta-Glucosidase/isolamento & purificação , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA