Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0256465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424935

RESUMO

Tree pruning is carried out to reduce conflict with infrastructure, buildings, and any other human activity. However, heavy pruning may result in a diminished tree crown capacity for sugar production and exposure to fungal infection. This risk leads to a decrease in tree stability or vigour. In this work, we analysed the effect of heavy pruning of roadside trees on the photosynthetic performance process compared to neighbouring unpruned trees. Four years of tree crown growth was studied by terrestrial imaging. Tree vitality (Roloff's classification) and risk (Visual Tree Assessment) were evaluated. Over-pruned trees showed intensified photosynthetic efficiency during the growing season following pruning. Particularly ET0/TR0 and PIABS tended to increase in pruned trees while higher Fv/Fm was noted only in late October, suggesting delayed leaf senescence. After four years, pruned trees rebuilt their crowns, however not in their entirety. Results obtained from biometric, vitality, and risk assessment showed high differentiation in pruned tree crown recovery. Our results revealed that despite the intensified efforts of trees to recover from wounding effects, severe pruning evokes dieback occurrence and a higher risk of failure in mature trees.


Assuntos
Fotossíntese , Senescência Vegetal , Tilia , Tilia/crescimento & desenvolvimento , Tilia/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
2.
Plant Cell Environ ; 43(3): 532-547, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31873942

RESUMO

Understanding stomatal regulation is fundamental to predicting the impact of changing environmental conditions on vegetation. However, the influence of soil temperature (ST) and soil water content (SWC) on canopy conductance (gs ) through changes in belowground hydraulic conductance (kbg ) remains poorly understood, because kbg has seldom been measured in field conditions. Our aim was to (a) examine the dependence of kbg on ST and SWC, (b) examine the dependence of gs on kbg and (c) test a recent stomatal optimization model according to which gs and soil-to-leaf hydraulic conductance are strongly coupled. We estimated kbg from continuous sap flow and xylem diameter measurements in three boreal species. kbg increased strongly with increasing ST when ST was below +8°C, and typically increased with increasing SWC when ST was not limiting. gs was correlated with kbg in all three species, and modelled and measured gs were well correlated in Pinus sylvestris (a model comparison was only possible for this species). These results imply an important role for kbg in mediating linkages between the soil environment and leaf gas exchange. In particular, our finding that ST strongly influences kbg in mature trees may help us to better understand tree behaviour in cold environments.


Assuntos
Gases/metabolismo , Folhas de Planta/fisiologia , Solo , Temperatura , Água/metabolismo , Alnus/fisiologia , Modelos Biológicos , Pinus/fisiologia , Caules de Planta/fisiologia , Especificidade da Espécie , Tilia/fisiologia , Fatores de Tempo , Xilema/fisiologia
3.
Ying Yong Sheng Tai Xue Bao ; 30(5): 1454-1468, 2019 May.
Artigo em Chinês | MEDLINE | ID: mdl-31106999

RESUMO

Leaf dark respiration is an important component of carbon cycle. Understanding the differences of leaf dark respiration and light inhibition between saplings and mature trees is important for accurate estimation of ecosystem gross primary productivity (GPP). We meansured leaf dark respiration of saplings and mature trees of two dominant species (Pinus koraiensis and Tilia amurensis) in light and in darkness in the broadleaved-Korean pine mixed forest on Changbai Mountain. Differences of leaf dark respiration, light inhibition and leaf physiological and ecological parameters between saplings and mature trees were analyzed. The reason of differences on leaf dark respiration and the light inhibition were explored. The results showed that leaf dark respiration of saplings of two species under light was 6.8%-39.6% higher than that of mature trees in growing season. Light inhibition of leaf dark respiration in saplings was 2.5%-14.1% lower than in mature trees. The difference of light inhibition of leaf dark respiration between saplings and mature trees of P. koraiensis was higher than that of T. amurensis, with a maximum difference of 18.6%. The higher leaf dark respiration and lower light inhibition degree in saplings might result from the changes of max net photosynthesis rate, specific leaf area, and stomatal conductance, instead of leaf nitrogen content.


Assuntos
Pinus/fisiologia , Luz Solar , Tilia/fisiologia , Árvores , Ecossistema , Florestas
4.
Environ Pollut ; 248: 247-259, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30798026

RESUMO

Trees are considered good candidates for phytoremediation of soils contaminated with trace elements (TE), e.g. mine tailings. Using two year-old Tilia cordata plants, we demonstrated the nature and the scale of root architecture, especially root apices, as an indicator of mining sludge toxicity and plant capability to cope with these stress conditions. The novelty of our research is the analysis of the root response to substrate with extremely high concentrations of numerous toxic TE, and the 3D illustration of the disorders in root apex architecture using a clarity technique for confocal microscopy. The analysis demonstrates (1) a marked reduction in the size of the root apex zones (2) the occurrence of vascular tissues abnormally close to the root apex (3) collapse of the internal tissues in many root apices. Simultaneously, at the cellular level we observed some signs of a defensive response - such as a common increase of cell wall (CW) thickness and the formation of local CW thickenings - that enlarge the CW capacity for TE sequestration. However, we also detected harmful effects. Among others, a massive deposition of TE in the middle lamella which caused major damage - probably one of the reasons why the inner tissues of the root apex often collapsed - and the formation of incomplete CWs resulting in the occurrence of extremely large cells. Moreover, many cells of the root apex exhibited degenerated protoplasts. All these alterations indicate the harsh conditions for lime growth and survival and simultaneously, the manifestation of a defensive response. The obtained results allowed us to conclude that analysis of the nature and scale of structural alterations in roots can be useful indicators of plant ability to cope with stress conditions, e.g. in prospect of using the examined plants for reclamation of soils contaminated with TE.


Assuntos
Biodegradação Ambiental , Parede Celular/efeitos dos fármacos , Mineração , Poluentes do Solo/toxicidade , Tilia/fisiologia , Compostos de Cálcio , Óxidos , Raízes de Plantas/química , Plantas , Esgotos/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Oligoelementos/análise , Árvores
5.
PLoS One ; 14(2): e0210470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716078

RESUMO

Dryland ecosystems cover nearly 45% of the Earth's land area and account for large proportions of terrestrial net primary production and carbon pools. However, predicting rates of plant litter decomposition in these vast ecosystems has proven challenging due to their distinctly dry and often hot climate regimes, and potentially unique physical drivers of decomposition. In this study, we elucidated the role of photopriming, i.e. exposure of standing dead leaf litter to solar radiation prior to litter drop that would chemically change litter and enhance biotic decay of fallen litter. We exposed litter substrates to three different UV radiation treatments simulating three-months of UV radiation exposure in southern New Mexico: no light, UVA+UVB+Visible, and UVA+Visible. There were three litter types: mesquite leaflets (Prosopis glandulosa, litter with high nitrogen (N) concentration), filter paper (pure cellulose), and basswood (Tilia spp, high lignin concentration). We deployed the photoprimed litter in the field within a large scale precipitation manipulation experiment: ∼50% precipitation reduction, ∼150% precipitation addition, and ambient control. Our results revealed the importance of litter substrate, particularly N content, for overall decomposition in drylands, as neither filter paper nor basswood exhibited measurable mass loss over the course of the year-long study, while high N-containing mesquite litter exhibited potential mass loss. We saw no effect of photopriming on subsequent microbial decay. We did observe a precipitation effect on mesquite where the rate of decay was more rapid in ambient and precipitation addition treatments than in the drought treatment. Overall, we found that precipitation and N played a critical role in litter mass loss. In contrast, photopriming had no detected effects on mass loss over the course of our year-long study. These results underpin the importance of biotic-driven decomposition, even in the presence of photopriming, for understanding litter decomposition and biogeochemical cycles in drylands.


Assuntos
Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Prosopis/efeitos da radiação , Tilia/efeitos da radiação , Celulose/metabolismo , Clima Desértico , Ecossistema , Lignina/metabolismo , New Mexico , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Prosopis/fisiologia , Tilia/fisiologia , Raios Ultravioleta
6.
Ying Yong Sheng Tai Xue Bao ; 29(11): 3685-3695, 2018 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-30460816

RESUMO

Biomass is a basic quantitative character of forest ecosystem. Biomass data are foundation of researching many forestry and ecology problems. Accurate quantification of tree biomass is critical and essential for calculating carbon storage, as well as for studying climate change, forest health, forest productivity, nutrient cycling, etc. Constructing biomass models is considered a good approach to estimate forest biomass. Based on biomass data of 97 sampling trees of natural Tilia Linn. in Xiaoxing'an Mountains and Zhangguangcai ranges, three additive systems of individual tree biomass equations were developed: based on tree diameter at breast height (D) only, based on tree diameter at breast height and height (H), and based on the best models. The nonlinear seemly unrelated regression was used to estimate the parameters in the additive system of biomass equations. The heteroscedasticity in model residuals was addressed by applying a unique weight function to each equation. The individual tree biomass model validation was accomplished by Jackknifing technique. The results showed that three additive systems of individual tree biomass equations could fit and predict the biomass of Tilia Linn. well (adjusted coefficient of determination Ra2>0.84, mean predicted error percentage MPE<8.5%, mean absolute error MAE<16.3 kg,mean standard error percentage MPSE<28.5%). The biomass equations of stem and aboveground were better than biomass equations of branch, foliage and crown. Adding total tree height and crown factor in the additive systems of biomass equations could significantly improve model fitting performance and predicting precision (Ra2 improved from 0.01 to 0.04, MAE decreased from 0.01 to 4.55 kg), narrow the confidence interval of the predicted value and the biomass of stem, foliage and aboveground were increased more than the biomass of branch and crown. In general, the equations of the additive system based on the best models produced the best model fitting, followed by that of the additive system based on D and H, and that based on D. It was essential to develop biomass model by adding total tree height and crown factor.


Assuntos
Biomassa , Tilia/fisiologia , Agricultura Florestal , Florestas , Árvores
7.
Tree Physiol ; 37(2): 209-219, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27672187

RESUMO

Stomatal anatomical traits and rapid responses to several components of visible light were measured in Tilia cordata Mill. seedlings grown in an open, fully sunlit field (C-set), or under different kinds of shade. The main questions were: (i) stomatal responses to which visible light spectrum regions are modified by growth-environment shade and (ii) which separate component of vegetational shade is most effective in eliciting the acclimation effects of the full vegetational shade. We found that stomatal opening in response to red or green light did not differ between the plants grown in the different environments. Stomatal response to blue light was increased (in comparison with that of C-set) in the leaves grown in full vegetational shade (IABW-set), in attenuated UVAB irradiance (AB-set) or in decreased light intensity (neutral shade) plus attenuated UVAB irradiance (IAB-set). In all sets, the addition of green light-two or four times stronger-into induction light barely changed the rate of the blue-light-stimulated stomatal opening. In the AB-set, stomatal response to blue light equalled the strong IABW-set response. In attenuated UVB-grown leaves, stomatal response fell midway between IABW- and C-set results. Blue light response by neutral shade-grown leaves did not differ from that of the C-set, and the response by the IAB-set did not differ from that of the AB-set. Stomatal size was not modified by growth environments. Stomatal density and index were remarkably decreased only in the IABW- and IAB-sets. It was concluded that differences in white light responses between T. cordata leaves grown in different light environments are caused only by their different blue light response. Differences in stomatal sensitivity are not dependent on altered stomatal anatomy. Attenuated UVAB irradiance is the most efficient component of vegetational shade in stimulating acclimation of stomata, whereas decreased light intensity plays a minor role.


Assuntos
Luz , Folhas de Planta/efeitos da radiação , Tilia/metabolismo , Tilia/efeitos da radiação , Aclimatação , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Tilia/anatomia & histologia , Tilia/fisiologia
8.
PLoS One ; 11(12): e0151935, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27935944

RESUMO

BACKGROUND: EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. CHANGES IN FOREST STRUCTURE: We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest type. The spatial relationships between remnant and novel forests, shifts in ecotone structure and the loss of historic forest types point to significant challenges for land managers if landscape restoration is a priority. The spatial signals of novelty and ecological change also point to potential challenges in using modern spatial distributions of species and communities and their relationship to underlying geophysical and climatic attributes in understanding potential responses to changing climate. The signal of human settlement on modern forests is broad, spatially varying and acts to homogenize modern forests relative to their historic counterparts, with significant implications for future management.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal/tendências , Dispersão Vegetal/fisiologia , Árvores/fisiologia , Biomassa , Cedrus/fisiologia , Ecossistema , Florestas , Cicutas (Apiáceas)/fisiologia , Humanos , Larix/fisiologia , Meio-Oeste dos Estados Unidos , Filogeografia , Caules de Planta/fisiologia , Quercus/fisiologia , Tilia/fisiologia , Ulmus/fisiologia
9.
Am J Bot ; 103(9): 1687-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27630119

RESUMO

PREMISE OF THE STUDY: Sprouting in woody plant species allows for the long-term persistence of small, isolated populations experiencing changing environments and can preserve genetic diversity in these populations despite the infrequent recruitment of sexually produced individuals. We examined demographic data collected over a 10-yr period for Tilia americana var. caroliniana populations in the context of genetic structure as an empirical case study of this concept. METHODS: Two back-barrier islands on the Georgia coast of the United States were completely censused for Tilia americana var. caroliniana. Recruitment, growth, and mortality of all stems were tracked over 10 yr. All genets were genotyped using eight nuclear microsatellite loci to assess population genetic structure among sampled stems and among populations in the region. KEY RESULTS: The two island populations differed in their ability to establish seedlings despite having similar patterns in flowering frequency. Seedling mortality was high throughout the 10 yr, and cycling of ramets within genets was common. Long-term recruitment in this system appears to be primarily a result of vegetative growth via basal sprouts. Genetic structure was limited, both between islands and among populations in the region. CONCLUSIONS: Long-lived woody species that persist by vegetative reproduction may unexpectedly influence regional forest responses to climate change, particularly on the trailing edge of a species' distribution.


Assuntos
Variação Genética , Tilia/fisiologia , Mudança Climática , Genótipo , Georgia , Ilhas , Repetições de Microssatélites , Dinâmica Populacional , Estações do Ano , Tilia/genética , Tilia/crescimento & desenvolvimento
10.
Ontogenez ; 45(3): 162-9, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25720275

RESUMO

A series of dates of unfolding of the first leaves and duration of the season of vegetation in the silver birch (Betulapendula Roth. (B. verrucosa Ehrh.)), as well as the duration of flowering of the bird cherry (Padus avium), mountain ash (Sórbus aucupária), and small-leaved lime (Tilia cordata Mill.) for the period 1970-2010 in the central part of European Russia were studied in order to assess the trends. Differences in phenological responses to homogeneous climate changes in the trees of the same species from the northern and southern parts of the range were revealed. If spring events occur 3-7 days earlier in the northern part, no such effect is observed in the south. This fact can be interpreted as a manifestation of the different mechanisms of homeostasis in different populations determined by their biological characteristics (in particular, by the need to pass successfully the periods of organic rest and vegetation).


Assuntos
Betula/fisiologia , Mudança Climática , Fraxinus/fisiologia , Homeostase/fisiologia , Tilia/fisiologia , Árvores/fisiologia , Federação Russa
11.
J Theor Biol ; 340: 267-84, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24012489

RESUMO

Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements.


Assuntos
Folhas de Planta/fisiologia , Acer/fisiologia , Ailanthus/fisiologia , Elasticidade , Potenciais da Membrana , Modelos Biológicos , Modelos Teóricos , Fenômenos Fisiológicos Vegetais , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Quercus/fisiologia , Especificidade da Espécie , Tilia/fisiologia , Árvores/fisiologia , Água/química
12.
Tree Physiol ; 33(8): 817-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23999137

RESUMO

The functional role of internal water storage is increasingly well understood in tropical trees and conifers, while temperate broad-leaved trees have only rarely been studied. We examined the magnitude and dynamics of the use of stem water reserves for transpiration in five coexisting temperate broad-leaved trees with largely different morphology and physiology (genera Fagus, Fraxinus, Tilia, Carpinus and Acer). We expected that differences in water storage patterns would mostly reflect species differences in wood anatomy (ring vs. diffuse-porous) and wood density. Sap flux density was recorded synchronously at five positions along the root-to-branch flow path of mature trees (roots, three stem positions and branches) with high temporal resolution (2 min) and related to stem radius changes recorded with electronic point dendrometers. The daily amount of stored stem water withdrawn for transpiration was estimated by comparing the integrated flow at stem base and stem top. The temporal coincidence of flows at different positions and apparent time lags were examined by cross-correlation analysis. Our results confirm that internal water stores play an important role in the four diffuse-porous species with estimated 5-12 kg day(-1) being withdrawn on average in 25-28 m tall trees representing 10-22% of daily transpiration; in contrast, only 0.5-2.0 kg day(-1) was withdrawn in ring-porous Fraxinus. Wood density had a large influence on storage; sapwood area (diffuse- vs. ring-porous) may be another influential factor but its effect was not significant. Across the five species, the length of the time lag in flow at stem top and stem base was positively related to the size of stem storage. The stem stores were mostly exhausted when the soil matrix potential dropped below -0.1 MPa and daily mean vapor pressure deficit exceeded 3-5 hPa. We conclude that stem storage is an important factor improving the water balance of diffuse-porous temperate broad-leaved trees in moist periods, while it may be of low relevance in dry periods and in ring-porous species.


Assuntos
Acer/fisiologia , Betulaceae/fisiologia , Fagus/fisiologia , Fraxinus/fisiologia , Tilia/fisiologia , Água/metabolismo , Acer/anatomia & histologia , Betulaceae/anatomia & histologia , Secas , Fagus/anatomia & histologia , Fraxinus/anatomia & histologia , Alemanha , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal/fisiologia , Estações do Ano , Tilia/anatomia & histologia , Fatores de Tempo , Árvores , Madeira/anatomia & histologia , Madeira/fisiologia , Xilema/anatomia & histologia , Xilema/fisiologia
13.
Environ Pollut ; 178: 7-14, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23517817

RESUMO

Monitoring environmental quality in urban areas is an important issue offering possibilities to control and improve urban habitat quality as well as to avoid adverse effects on human health. A tree leaf reflectance-based bio-monitoring method was used to assess the urban habitat quality of two contrasting habitat classes in the city of Gent (Belgium). As test trees, two Tilia species were selected. Custom made Matlab code is applied to process the measurements of leaf reflectance. This enables the discrimination between polluted and less polluted habitats. The results elicit, that leaf reflectance in the PAR range, as well as the NDAI (Normalised Difference Asymmetry index) are species dependent while Dorsiventral Leaf Reflectance Correlation (DLRC) seems to be independent of species. Therefore the assessment of urban habitat quality is perfectly feasible using leaf reflectance, when taking account of the species specificity of tree leaf physiological and structural responses to habitat quality.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Folhas de Planta/química , Tilia/química , Poluentes Atmosféricos , Bélgica , Cidades , Tilia/fisiologia
14.
Tree Physiol ; 33(2): 202-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23185067

RESUMO

We investigated changes in chlorophyll a fluorescence from alternate leaf surfaces to assess the intraleaf light acclimation patterns in combination with natural variations in radiation, leaf angles, leaf mass per area (LMA), chlorophyll content (Chl) and leaf optical parameters. Measurements were conducted on bottom- and top-layer leaves of Tilia cordata Mill. (a shade-tolerant sub-canopy species, sampled at heights of 11 and 16 m) and Populus tremula L. (a light-demanding upper canopy species, sampled at canopy heights of 19 and 26 m). The upper canopy species P. tremula had a six times higher PSII quantum yield (Φ(II)) and ratio of open reaction centres (qP), and a two times higher LMA than T. cordata. These species-specific differences were also present when the leaves of both species were in similar light conditions. Leaf adaxial/abaxial fluorescence ratio was significantly larger in the case of more horizontal leaves. Populus tremula (more vertical leaves), had smaller differences in fluorescence parameters between alternate leaf sides compared with T. cordata (more horizontal leaves). However, optical properties on alternate leaf sides showed a larger difference for P. tremula. Intraspecifically, the measured optical parameters were better correlated with LMA than with leaf Chl. Species-specific differences in leaf anatomy appear to enhance the photosynthetic potential of leaf biochemistry by decreasing the interception of excess light in P. tremula and increasing the light absorptance in T. cordata. Our results indicate that intraleaf light absorption gradient, described here as leaf adaxial/abaxial side ratio of chlorophyll a fluorescence, varies significantly with changes in leaf light environment in a multi-layer multi-species tree canopy. However, this variation cannot be described merely as a simple function of radiation, leaf angle, Chl or LMA, and species-specific differences in light acclimation strategies should also be considered.


Assuntos
Clorofila/metabolismo , Luz , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Populus/fisiologia , Tilia/fisiologia , Aclimatação , Cloroplastos , Transporte de Elétrons , Fluorescência , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Populus/metabolismo , Populus/efeitos da radiação , Especificidade da Espécie , Tilia/metabolismo , Tilia/efeitos da radiação , Árvores
15.
Biofizika ; 56(1): 105-12, 2011.
Artigo em Russo | MEDLINE | ID: mdl-21442891

RESUMO

Based on the measurements of fluorescence of bark chloroplasts by means of PAM and PEA fluorometers, the information capacity of the methods for assessing the physiological state of Tilia cordata L. from the maximum quantum efficiency of PS II photochemistry (Fv/Fm) and the performance index (PI) has been compared. The measurements were performed on annual shoots of linden trees growing in different environment. It was shown that the chlorophyll content in the bark of shoots growing near the busy urban street was twice less compared with trees growing out of the city. On the trees from the unsafe environment, a small decrease in the relative fluorescence variable (Fv/Fm) was registered, and there was a significant statistical deviation of this value compared to control trees. It was found that the PI and its constituent parameters calculated on the basis of light fluorescence induction curve (PEA-method) are more informative and allow one to recognize changes in the primary energy transformation processes in PS II when they are comparatively small. The results of our work show that PI can be used as a sensitive and a rapid test to evaluate the physiological state of trees and other plant objects even under minor environmental changes.


Assuntos
Cidades , Ecossistema , Tilia/fisiologia , Clorofila/análise , Cloroplastos/química , Cloroplastos/fisiologia , Fluorometria , Casca de Planta/química , Casca de Planta/fisiologia , Tilia/química
16.
Plant Biol (Stuttg) ; 13 Suppl 1: 62-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21134088

RESUMO

Temperate deciduous forest trees flower in spring, a period that starts when the trees lack leaves and when weather is unpredictable, including frost events, and ends when the forest becomes green and vertical microclimatic gradients are established. This paper asks whether there are spatio-temporal patterns in the development of flowering in trees, and how they relate to reproductive processes. Using a crane, flowering phenology was studied in the crowns of ca. 200 trees of four species, from early spring (ash) through the period of leaf-unfolding (maples) to early summer (lime). Flowering levels in different crown regions were documented quantitatively and repeatedly during the flowering season and compared among individuals and among species. Early-flowering trees displayed a clear and consistent acropetalous and centrifugal flowering pattern, while this pattern disappeared in species that flowered after leaves unfolded. This pattern was superposed on the basic flowering rhythm of each species, and was influenced by effects of direct sunlight, acting at a small scale in early spring and at a large scale in early summer. As this acropetalous centrifugal pattern contrasts the microclimatic gradients that develop only after leaves unfold, it might indicate physiological processes in the 'awakening' of trees, as well as evolutionary processes that took place in temperate trees during adaptation to a temperate climate.


Assuntos
Acer/fisiologia , Flores/crescimento & desenvolvimento , Fraxinus/fisiologia , Tilia/fisiologia , Alemanha , Fenótipo , Reprodução , Estações do Ano , Luz Solar , Árvores/crescimento & desenvolvimento , Tempo (Meteorologia)
17.
Tree Physiol ; 30(10): 1253-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20688879

RESUMO

Emerging leaves in evergreen tree species are supplied with carbon (C) from the previous year's foliage. In deciduous trees, no older leaves are present, and the early phase of leaf development must rely on C reserves from other tissues. How soon developing leaves become autotrophic and switch from being C sinks to sources has rarely been studied in mature forest trees, and simultaneous comparisons of species are scarce. Using a canopy crane and a simple (13)CO(2)-pulse-labelling technique, we demonstrate that young leaves of mature trees in three European deciduous species (Fagus sylvatica L., Quercus petraea (Matt.) Liebl., Tilia platyphyllos Scop.) start assimilating CO(2) at a very early stage of development (10-50% expanded). One month after labelling, all leaves were still strongly (13)C enriched, suggesting that recent photosynthates had been incorporated into slow turnover pools such as cellulose or lignin and thus had contributed to leaf growth. In line with previous studies performed at the same site, we found stronger incorporation of recent photosynthates into growing tissues of T. platyphyllos compared with F. sylvatica and Q. petraea. Non-structural carbohydrate (NSC) concentrations analysed for one of the three study species (F. sylvatica) showed that sugar and starch pools rapidly increased during leaf development, suggesting that newly developed leaves soon produce more NSC than can be used for growth. In conclusion, our findings indicate that expanding leaves of mature deciduous trees become C autonomous at an early stage of development despite the presence of vast amounts of mobile carbohydrate reserves.


Assuntos
Folhas de Planta/fisiologia , Árvores/fisiologia , Análise de Variância , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Europa (Continente) , Fagus/fisiologia , Marcação por Isótopo , Quercus/fisiologia , Tilia/fisiologia , Árvores/crescimento & desenvolvimento
18.
Tree Physiol ; 30(5): 555-73, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20335160

RESUMO

Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.


Assuntos
Clima , Fotossíntese/fisiologia , Árvores/fisiologia , Acer/fisiologia , Envelhecimento/fisiologia , Betula/fisiologia , Folhas de Planta/fisiologia , Reprodução , Tilia/fisiologia
19.
Tree Physiol ; 27(8): 1207-15, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17472946

RESUMO

We examined the principal differences in photosynthetic characteristics between sun and shade foliage and determined the relative importance of biochemical and stomatal limitations during photosynthetic induction. Temperate-zone broadleaf and conifer tree species, ranging widely in shade tolerance, were investigated from one locality in the Czech Republic. The study species included strongly shade-tolerant Abies alba Mill. and Tilia cordata Mill., less shade-tolerant Fagus sylvatica L. and Acer pseudoplatanus L. and sun-demanding Picea abies (L.) Karst. In the fully activated photosynthetic state, sun foliage of all species had significantly higher maximum CO(2) assimilation rates, maximum stomatal conductance and maximum rates of carboxylation than shade foliage. Compared with shade leaves, sun leaves had significantly higher nocturnal stomatal conductances. In all species, shade foliage tended to have higher induction states 60 s after leaf illumination than sun foliage. Sun and shade foliage did not differ in the rate of disappearance of the transient biochemical limitation during the induction phase. Longer time periods were required to reach 90% photosynthetic induction and 90% stomatal induction in sun foliage than in shade foliage of the less shade-tolerant F. sylvatica and A. pseudoplatanus and in sun-demanding P. abies; however, in sun foliage of the strongly shade-tolerant species T. cordata and A. alba, the time needed for photosynthetic induction was similar to, or less than, that for shade foliage. Shade but not sun needles of P. abies and A. alba had significantly slower induction kinetics than the broadleaf tree species. Among species, the sun-demanding P. abies exhibited the shortest stomatal induction times in both sun and shade leaves. Independently of shade tolerance ranking, the transient stomatal and total limitations that characterize photosynthetic induction were relieved significantly earlier in shade foliage than in sun foliage. Sun foliage generally exhibited a hyperbolic photosynthetic induction response, whereas a sigmoidal induction response was more frequent in shade foliage. The different relative proportions of transient biochemical and stomatal limitations during photosynthetic induction in sun and shade foliage indicate an essential role of stomata in photosynthetic limitation during induction, mainly in shade foliage, with a consequent influence on the shape of the photosynthetic induction curve.


Assuntos
Aclimatação/fisiologia , Ecossistema , Luz , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Árvores/metabolismo , Abies/metabolismo , Abies/fisiologia , Acer/metabolismo , Acer/fisiologia , Dióxido de Carbono/metabolismo , República Tcheca , Fagus/metabolismo , Fagus/fisiologia , Cinética , Picea/metabolismo , Picea/fisiologia , Folhas de Planta/fisiologia , Tilia/metabolismo , Tilia/fisiologia , Fatores de Tempo , Árvores/fisiologia
20.
Tree Physiol ; 27(5): 679-88, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17267359

RESUMO

Response of whole-leaf hydraulic conductance (G(L)) in little-leaf linden (Tilia cordata Mill.) to temperature and photosynthetic photon flux (Q(P)) was estimated by the evaporative flux method under natural conditions in a mixed forest canopy. Mean midday G(L) in the lower- and upper-crown foliage was 1.14 and 3.06 mmol m(-2) s(-1) MPa(-1), respectively. Over the study period, leaf temperature (T(L)) explained about 67% of the variation in G(L), and Q(P) explained about 10%. Leaf water potential and crown position also affected G(L) significantly. About a third of the temperature effect was attributable to changes in the viscosity of water, and two thirds to changes in protoplast permeability (i.e., symplastic conductance). Leaf hydraulic conductance was highly sensitive to changes in Q(P) when Q(P) was less than 200 micromol m(-2) s(-1), and G(L) sensitivity decreased with increasing irradiance. Sensitivity of G(L) to variation in T(L) increased consistently with increasing temperature in the range of 16 to 29 degrees C. There were positive interactions between temperature and light in their effects on G(L): the light response was more pronounced at higher leaf temperatures. Because of frequent rains during the study period, the trees experienced no soil water deficit, and, within the range experienced, soil water potential had no effect on G(L). Leaf hydraulic conductance exhibited a seasonal pattern that could be explained primarily by temporal variability in mean air temperature and irradiance, in addition to which an age-related trend (P<0.001) of increasing G(L) from the end of June to the beginning of August was observed.


Assuntos
Luz , Folhas de Planta/fisiologia , Temperatura , Tilia/fisiologia , Água/fisiologia , Ecossistema , Estônia , Permeabilidade , Protoplastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA