Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Biomed Khim ; 70(2): 73-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711406

RESUMO

Thiram is a dithiocarbamate derivative, which is used as a fungicide for seed dressing and spraying during the vegetation period of plants, and also as an active vulcanization accelerator in the production of rubber-based rubber products. In this study the content of reactive oxygen species (ROS) and the state of the glutathione system have been investigated in the oral fluid and gum tissues of adult male Wistar rats treated with thiram for 28 days during its administration with food at a dose of 1/50 LD50. Thiram induced formation of ROS in the oral cavity; this was accompanied by an imbalance in the ratio of reduced and oxidized forms of glutathione due to a decrease in glutathione and an increase in its oxidized form as compared to the control. Thiram administration caused an increase in the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione transferase, and glutathione reductase). However, the time-course of enzyme activation in the gum tissues and oral fluid varied in dependence on the time of exposure to thiram. In the oral fluid of thiram-treated rats changes in the antioxidant glutathione system appeared earlier. The standard diet did not allow the glutathione pool to be fully restored to physiological levels after cessation of thiram intake. The use of exogenous antioxidants resviratrol and an Echinacea purpurea extract led to the restoration of redox homeostasis in the oral cavity.


Assuntos
Antioxidantes , Fungicidas Industriais , Glutationa , Ratos Wistar , Espécies Reativas de Oxigênio , Tiram , Animais , Masculino , Ratos , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/toxicidade , Tiram/toxicidade , Antioxidantes/farmacologia , Boca/metabolismo , Boca/efeitos dos fármacos , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glutationa Peroxidase/metabolismo
2.
Pestic Biochem Physiol ; 201: 105847, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685209

RESUMO

Thiram, a widely used organic pesticide in agriculture, exhibits both bactericidal and insecticidal effects. However, prolonged exposure to thiram has been linked to bone deformities and cartilage damage, contributing to the development of tibial dyschondroplasia (TD) in broilers and posing a significant threat to global agricultural production. TD, a prevalent nutritional metabolic disease, manifests as clinical symptoms like unstable standing, claudication, and sluggish movement in affected broilers. In recent years, there has been growing recognition of the regulatory role of long non-coding RNA (lncRNA) in tibial cartilage formation among broilers through diverse signaling pathways. This study employs in vitro experimental models, growth performance analysis, and clinical observation to assess broilers' susceptibility to thiram pollution. Transcriptome sequencing analysis revealed a significant elevation in the expression of lncRNA MSTRG.74.1 in both the con group and the thiram-induced in vitro group. The results showed that lncRNA MSTRG.74.1 plays a pivotal role in influencing the proliferation and abnormal differentiation of chondrocytes. This regulation occurs through the negative modulation of apoptotic genes, including Bax, Cytc, Bcl2, Apaf1, and Caspase3, along with genes Atg5, Beclin1, LC3b, and protein p62. Moreover, the overexpression of lncRNA MSTRG.74.1 was found to regulate broiler chondrocyte development by upregulating BNIP3. In summary, this research sheds light on thiram-induced abnormal chondrocyte proliferation in TD broilers, emphasizing the significant regulatory role of the lncRNA MSTRG.74.1-BNIP3 axis, which will contribute to our understanding of the molecular mechanisms underlying TD development in broilers exposed to thiram.


Assuntos
Proliferação de Células , Galinhas , Condrócitos , RNA Longo não Codificante , Tiram , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tiram/toxicidade , Proliferação de Células/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Osteocondrodisplasias/patologia , Apoptose/efeitos dos fármacos
3.
Sci Total Environ ; 928: 172305, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593872

RESUMO

Thiram is a member of the dithiocarbamate family and is widely used in agriculture, especially in low-income countries. Its residues lead to various diseases, among which tibial dyschondroplasia (TD) in broiler chickens is the most common. Recent studies have also demonstrated that thiram residues may harm human health. Our previous study showed that the activity of the mTOR (mammalian target of rapamycin) signaling pathway has changed after thiram exposure. In the current study, we investigated the effect of autophagy via the mTOR signaling pathway after thiram exposure in vitro and in vivo. Our results showed that thiram inhibited the protein expression of mTOR signaling pathway-related genes such as p-4EBP1 and p-S6K1. The analysis showed a significant increase in the expression of key autophagy-related proteins, including LC3, ULK1, ATG5, and Beclin1. Further investigation proved that the effects of thiram were mediated through the downregulation of mTOR. The mTOR agonist MHY-1485 reverse the upregulation of autophagy caused by thiram in vitro. Moreover, our experiment using knockdown of TSC1 resulted in chondrocytes expressing lower levels of autophagy. In conclusion, our results demonstrate that thiram promotes autophagy via the mTOR signaling pathway in chondrogenesis, providing a potential pharmacological target for the prevention of TD.


Assuntos
Autofagia , Galinhas , Osteocondrodisplasias , Doenças das Aves Domésticas , Transdução de Sinais , Serina-Treonina Quinases TOR , Tiram , Animais , Tiram/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/veterinária , Doenças das Aves Domésticas/induzido quimicamente , Proteína 1 do Complexo Esclerose Tuberosa/genética , Tíbia/efeitos dos fármacos , Herbicidas/toxicidade
4.
Ecotoxicol Environ Saf ; 275: 116260, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564867

RESUMO

Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.


Assuntos
Microbioma Gastrointestinal , Osteocondrodisplasias , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Galinhas , Leucina , Proteína Relacionada ao Hormônio Paratireóideo , Disbiose
5.
Ecotoxicol Environ Saf ; 270: 115879, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157796

RESUMO

Thiram, a typical fungicide pesticide, is widely used in agricultural production. The presence of thiram residues is not only due to over-utilization, but is also primarily attributed to long-term accumulation. However, there is a paucity of information regarding the impact of prolonged utilization of thiram at low doses on the gut microbiota, particularly with respect to gut fungi. Our objective is to explore the effect of thiram on broilers from the perspective of gut microbiota, which includes both bacteria and fungi. We developed a long-term low-dose thiram model to simulate thiram residue and employed 16 S rRNA and ITS gene sequencing to investigate the diversity and profile of gut microbiota between group CC (normal diet) and TC (normal diet supplemented with 5 mg/kg thiram). The results revealed that low doses of thiram had a detrimental effect on broiler's growth performance, resulting in an approximate reduction of 669.33 g in their final body weight at day 45. Our findings indicated that low-dose thiram had a negative impact on the gut bacterial composition, leading to a notable reduction in the abundance of Merdibacter, Paenibacillus, Macrococcus, Fournierella, and Anaeroplasma (p < 0.05) compared to the CC group. Conversely, the relative level of Myroides was significantly increased (p < 0.05) in response to thiram exposure. In gut fungi, thiram significantly enhanced the diversity and richness of gut fungal populations (p < 0.05), as evidenced by the notable increase in alpha indices, i.e. ACE (CC: 346.49 ± 117.27 vs TC: 787.27 ± 379.14, p < 0.05), Chao 1 (CC: 317.63 ± 69.13 vs TC: 504.85 ± 104.50, p < 0.05), Shannon (CC: 1.28 ± 1.19 vs TC: 5.39 ± 2.66, p < 0.05), Simpson (CC: 0.21 ± 0.21 vs TC: 0.78 ± 0.34, p < 0.05). Furthermore, the abundance of Ascomycota, Kickxellomycota, and Glomeromycota were significantly increased (p < 0.05) by exposure to thiram, conversely, the level of Basidiomycota was decreased (p < 0.05) in the TC group compared to the CC group. Overall, this study demonstrated that low doses of thiram induced significant changes in the composition and abundance of gut microbiota in broilers, with more pronounced changes observed in the gut fungal community as compared to the gut bacterial community. Importantly, our findings further emphasize the potential risks associated with low dose thiram exposure and have revealed a novel discovery indicating that significant alterations in gut fungi may serve as the crucial factor contributing to the detrimental effects exerted by thiram residues.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Animais , Tiram/toxicidade , Galinhas/genética , RNA Ribossômico 16S/genética , Fungicidas Industriais/toxicidade , Bactérias/genética
6.
Ecotoxicol Environ Saf ; 268: 115689, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992645

RESUMO

Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.


Assuntos
Osteocondrodisplasias , Tiram , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Galinhas , Condrócitos/patologia , Caspase 9/genética , Coxeadura Animal , Apoptose , Neovascularização Patológica/induzido quimicamente , Proliferação de Células
7.
J Hazard Mater ; 452: 131278, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004440

RESUMO

Metal ions and pesticides are extensively used in many industries and agriculture. However, they cause significant environmental pollution and various adverse health effects. Therefore, the development of sensitive and selective techniques to detect them is necessary for human health and the ecosystem. In this paper, we report a novel red-emitting fluorescence probe with a large Stokes shift (∼220 nm) based on rhodamine and isophorone units. The probe shows a ratiometric fluorescence response toward Hg2+ ions; however, Cu2+ ions quench the red fluorescence signal. The decomposition of the probe-Cu2+ complex allows detection of Thiram followed by recovery of the red fluorescence signal of the probe. In addition, the probe shows a good linear response to Hg2+, Cu2+, and Thiram, with detection limits of 122.0 nM, 29.0 nM, and 72.0 nM, respectively. The practical applicability of the probe has been successfully tested in real samples. Moreover, smartphone detection and light-responsive capsule fabrication have been established, for easy and quick detection. The probe possesses very low cytotoxicity and allows visualization of Hg2+ and Cu2+ ions in HeLa cells. Therefore, the present probe is expected to be an effective tool assisting in easy, quick, and reliable detection of Thiram, Hg2+, and Cu2+ ions.


Assuntos
Fungicidas Industriais , Mercúrio , Humanos , Tiram/toxicidade , Fungicidas Industriais/toxicidade , Solo , Células HeLa , Ecossistema , Íons , Corantes Fluorescentes , Mercúrio/toxicidade , Mercúrio/análise , Espectrometria de Fluorescência
8.
Environ Sci Pollut Res Int ; 30(12): 34188-34202, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36508105

RESUMO

Tibial dyschondroplasia (TD) is a developmental cartilaginous disease due to thiram toxicity. The abnormity of chondrocytes and insufficient angiogenesis within the growth plate are the major factors leading to the occurrence of TD in most cases. In the current study, we evaluated the beneficial effects of ginsenoside (Rg1) against thiram-induced TD for knowing the possible underlying mechanisms in broiler chickens through in vivo and in vitro assessment. Arbor acres broilers (1-day-old, n = 120) were randomly divided for the in vivo evaluation. The control broilers were fed under normal conditions during the whole experiment cycle (18 days). The TD broilers were fed with 50 mg/kg thiram, while the treatment group was given 40 mg/kg of Rg1. According to our findings, thiram caused a decrease in production performance and tibia parameters (p < 0.05), which were significantly reversed by Rg1 administration. In addition, the results from the histological evaluation showed that the proliferative zone had a smaller number of blood vessels, surrounded by inviable chondrocytes, proving apoptosis during the occurrence of TD, while Rg1 treatment significantly increased blood vessels and decreased apoptotic cells. Furthermore, it was found that Rg1 effectively ameliorated the angiogenesis by regulation of HIF-1α/VEGFA/VEGFR2 signaling pathway and the chondrocytes' apoptosis via the mitochondrial pathway. Hence, these findings suggest that Rg1 might be a perfect choice in the prevention and treatment of TD via regulating chondrocytes apoptosis and angiogenesis. Also, it might be a potential therapeutic drug for humans to overcome different bone disorders, involving chondrocytes.


Assuntos
Ginsenosídeos , Osteocondrodisplasias , Humanos , Animais , Tiram/toxicidade , Galinhas , Ginsenosídeos/efeitos adversos , Condrócitos/patologia , Apoptose , Osteocondrodisplasias/veterinária
9.
J Hazard Mater ; 444(Pt A): 130368, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423455

RESUMO

Pesticide thiram is widely used in agriculture and has been demonstrated to cause tibial dyschondroplasia (TD) in birds. However, the underlying mechanism remains unclear. This work used multi-omics analysis to evaluate the molecular pathways of TD in broilers that were exposed to low level of thiram. Integrative analysis of transcriptomic, proteomic, and metabolomic revealed thiram activity in enhancing pathological ECM remodeling via attenuating the glycolysis pathway and activating the hexosamine and glucuronic acid pathways. Intriguingly, we found hyperglycemia as a crucial factor for ECM overproduction, which resulted in the development of TD. We further demonstrated that high glucose levels are caused by islet secretion dysfunction in thiram-treated broilers. A combination of factors, including lipid disorder, low-grade inflammation, and gut flora disturbance, might contribute to the dysregulation of insulin secretion. The current work revealed the underlying toxicological mechanisms of thiram-induced tibial dyschondroplasia through blood glucose disorder via the gut-pancreas axis in chickens for the first time, which makes it easier to figure out the health risks of pesticides for worldwide policy decisions.


Assuntos
Hiperglicemia , Osteocondrodisplasias , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Galinhas , Proteômica , Pâncreas
10.
Environ Sci Pollut Res Int ; 30(3): 7874-7885, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36048383

RESUMO

Thiram (tetramethylthiuramdisulfide) or thiram sulphide is a dithiocarbamate group of non-systemic group of fungicide which are applied for seed treatment, control of the crop pests, to repel animals, etc. Moreover, thiram has also been responsible to cause moderate skin sensitivity and eye irritation. Higher exposure to thiram might also lead to developmental damages to newborn and neurotoxic effects to non-target organisms. Advancing to prevent such toxic effects and prevention of soil fertility from thiram and thiram-like chemicals is indispensable. The analytical High-Performance Thin-Layer Chromatography (HPTLC) is a simple, quick and a reliable method was proposed and validated for the detection and quantification of various small molecules for many years. This manuscript represents the solution to use microbes to degrade the thiram present in the soil and for that, HPTLC based method to study thiram degradation by Pseudomonas has been designed. Herein, a HPTLC protocol formalised to reveal the detection and quantification of thiram within the range of 100 to 700 ng/spot on TLC plate. The same concentration was then used for calculating percent microbial degradation of thiram from the culture broth. To perform the microbial degradation of thiram, Pseudomonas otitidis strain TD-8 and Pseudomonas stutzeri strain TD-18 were taken as thiram degrader microbial strain. The efficacy of TD-8 to degrade thiram was identified to be 81 and 99% when grown in presence of thiram for 4 days and 8 days, respectively, while TD-18 strain's efficacy to degrade thiram was found to be 57% and 99% when grown in presence of thiram for 4 days and 8 days, respectively.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Tiram/toxicidade , Cromatografia em Camada Fina/métodos , Fungicidas Industriais/toxicidade , Solo
11.
Ecotoxicol Environ Saf ; 245: 114134, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183428

RESUMO

Thiram is a dithiocarbamate pesticide widely used in agriculture as a fungicide for storing grains to prevent fungal diseases. However, its residues have threatened the safety of human beings and the stability of the ecosystem by causing different disease conditions, e.g., tibial dyschondroplasia (TD), which results in a substantial economic loss for the poultry industry. So, the research on TD has a great concern for the industry and the overall GDP of a country. In current study, we investigated whether different concentrations (300, 500, and 700 mg/kg) of sodium butyrate alleviated TD induced under acute thiram exposure by regulating osteogenic gene expression, promoting chondrocyte differentiation, and altering the gut microbial community. According to the findings, sodium butyrate restored clinical symptoms in broilers, improved growth performance, bone density, angiogenesis, and chondrocyte morphology and arrangement. It could activate the signal transduction of the Wnt/ß-catenin pathway, regulate the expression of GSK-3ß and ß-catenin, and further promote the production of osteogenic transcription factors Runx2 and OPN for restoration of lameness. In addition, the 16S rRNA sequencing revealed a significantly different community composition among the groups. The TD group increased the abundance of the harmful bacteria Proteobacteria, Subdoligranulum, and Erysipelatoclostridium. The sodium butyrate enriched many beneficial bacteria, such as Bacteroidetes, Verrucomicrobia, Faecalibacterium, Barnesiella, Rikenella, and Butyricicoccus, etc., especially at the concentration of 500 mg/kg. The mentioned concentration significantly limited the intestinal disorders under thiram exposure, and restored bone metabolism.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Osteocondrodisplasias , Praguicidas , Doenças das Aves Domésticas , Animais , Ácido Butírico/toxicidade , Galinhas/genética , Subunidade alfa 1 de Fator de Ligação ao Core , Disbiose , Ecossistema , Fungicidas Industriais/toxicidade , Glicogênio Sintase Quinase 3 beta , Humanos , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Praguicidas/toxicidade , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/metabolismo , RNA Ribossômico 16S/genética , Tiram/toxicidade , beta Catenina
12.
Ecotoxicol Environ Saf ; 247: 114225, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288636

RESUMO

Thiram is a dithiocarbamate pesticide extensively used as a fungicide to preserve crops and seeds. Long-term exposure to thiram causes potential harm to the health of human beings and animals. So far, most of the researches on thiram focused on erythrocyte toxicity, immune system, kidney damage, and tibial dyschondroplasia; however, there is less data on cardiac toxicity. In this study, we examined cardiac histopathology, inflammatory factors, oxidative stress indicators, and apoptosis markers in the heart of broilers that were exposed to thiram. According to our findings, the continuous exposure to thiram caused pathological changes and abnormal function of myocardial tissues with increased level of inducible nitric oxide synthase (iNOS), inflammatory factors (IL-6, IL-8, TNF-α and NF-κB), and decreased level of anti-inflammatory factor (IL-10). In addition, thiram significantly upregulated the protein expression of cleaved-caspase 3, cleaved-PARP, and caused cardiomyocyte apoptosis. Meanwhile, the expression of heat shock proteins (HSP60, HSP70, HSP90) markedly decreased in the thiram-treated groups. An excessive accumulation of peroxidation products (MDA, H2O2), a decrease in T-AOC, and antioxidant activity enzymes (T-SOD, GST and GPX) were also noticed, all of which led to oxidative stress and activation of Nrf2 signal pathway by up-regulating key target genes (HO-1 and SODs). Thiram-induced metabolites were further identified via non-targeted metabonomic analysis. Correlation analysis revealed eighteen differentially expressed metabolites, closely related to cardiac injury. Importantly, thiram primarily affected the taurine and hypotaurine metabolism, pyrimidine metabolism as well as glycerol metabolism. Collectively, our study suggests that thiram could cause cardiotoxicity by interfering with taurine and hypotaurine metabolism, pyrimidine metabolism, and glycerolipid metabolism, which further induce oxidative stress via triggering Nrf2 signal pathway. This study may provide new evidence for the molecular mechanism of cardiotoxicity caused by thiram and resonate the alarm for animals and workers who have been exposed to thiram for a long time.


Assuntos
Fator 2 Relacionado a NF-E2 , Tiram , Animais , Humanos , Tiram/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Galinhas/metabolismo , Cardiotoxicidade , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Apoptose , Taurina , Pirimidinas/metabolismo
13.
Biomed Res Int ; 2022: 6209047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872845

RESUMO

Materials and Methods: Three hundred sixty (n = 360) broiler chickens were equally divided into control (C) and thiram (T) groups. Furthermore, the C and T groups were dividedinto 8-, 9-, 11-, and 13-day-old chickens. Results: Clinically, it was observed that broiler chickens of group T had abnormal posture, gait, and lameness, and histopathological results revealed dead and abnormal chondrocytes of T group on day 6. Real-time qPCR results showed that HDAC1, MTA1, H4, and PCNA genes were significantly expressed (P < 0.05). HDAC1 was upregulated on days 1, 2, 4, and 6 (P < 0.01); MTA1 was upregulated on days 1 and 2 (P < 0.01); H4 was upregulated on days 2 and 4 (P < 0.01), and PCNA was downregulated on days 1, 2, and 4 (P < 0.01). Furthermore, IHC results of HDAC1 protein were significantly (P < 0.01) expressed in proliferative zone of day 1 and hypertrophic zone of day 6. MTA1 protein was significantly (P < 0.01) expressed on days 1, 2, and 6 in all zones, except prehypertrophic zone of day 2. Conclusion: In conclusion, the mRNA expressions of HDAC1, MTA1, H4, and PCNA were differentially expressed in the chondrocytes of thiram-induced TD chickens. HDAC1 and MTA1 protein expression found involved and responsible in the abnormal chondrocytes' proliferation of broiler chicken.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Proliferação de Células/genética , Galinhas/genética , Lâmina de Crescimento/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Tiram/toxicidade , Tíbia/patologia
14.
Vet Immunol Immunopathol ; 247: 110415, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35344810

RESUMO

Thiram, a well-known sulfur containing organic compound is frequently and extensively used in agriculture because of high biological activity to control different pests. In certain cases, due to long persistence in the environment pesticides and other environmental contaminants induce undesirable toxic impacts to public health and environment. To ascertain the potential mechanisms of toxicity of thiram on different immune organs of broilers, a total of 100 one-day-old chicks were obtained and randomly divided into two groups including thiram group (50 mg/kg) and untreated control group. Thymus and spleen tissues were collected at the age of 14 days from the experimental birds. At necropsy level, thymus was congested, enlarged and hyperemic while spleen had no obvious lesions. The results on mechanisms (apoptosis and autophagy) of immunotoxicity showed significantly increased expression of bax, caspase3, cytc, ATG5, beclin1 and p62 in spleen of treated mice. Results indicated significantly decreased expression of m-TOR and bcl2 to activate apoptosis and autophagy. The expressions of bax, p53 and m-TOR were up-regulated in the thymus while the expressions of ATG5 and Beclin1 were down-regulated to mediate cell apoptosis and inhibit autophagy. The results on different metabolome investigation showed that the sphingolipid metabolism in the thymus of chicks exposed to thiram was disrupted resulting in up-regulation of metabolites related to cell membrane components such as SM, galactosylceramide and lactosylceramide. The results of our experimental research suggest that thiram can interfere with the sphingolipid metabolism in thymus and angiogenesis, inhibit the proliferation of vascular endothelial cells to induce potential toxic effects in chicken.


Assuntos
Osteocondrodisplasias , Doenças dos Roedores , Animais , Proteína Beclina-1 , Galinhas , Células Endoteliais , Camundongos , Osteocondrodisplasias/patologia , Osteocondrodisplasias/veterinária , Doenças dos Roedores/patologia , Esfingolipídeos , Baço/patologia , Tiram/toxicidade , Tíbia/patologia , Proteína X Associada a bcl-2
15.
Chemosphere ; 295: 133928, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149006

RESUMO

Thiram is used in large quantities in agriculture and may contaminate the environment by improper handling or storage in chemical plants and warehouses. A review of the literature has shown that thiram can affect different organs in animals and its toxic mechanisms can be elucidated in more detail at molecular level. We have summarized several impacts of thiram on animals: the effects of the perspectives of oxidative stress, mitochondrial damage, autophagy, apoptosis, and the IHH/PTHrP pathway on regulating abnormal skeletal development in particular tibial dyschondroplasia and kyphosis; angiogenesis inhibition was investigated from the perspective of angiogenesis factor inhibition, PI3K/AKT signaling pathway and CD147; the inhibition effect of thiram on fibroblasts and erythrocytes via the perspective of oxidative stress, mitochondrial damage and inhibition of growth factors in animal skin fibroblasts and erythrocytes; studied fertilized egg size, reduced fertility, neurodegeneration, and immune damage from the perspectives of CYP51 inhibition and dopamine-b-hydroxylase inhibition in the reproductive system, vitamin D deficiency in the nervous system, and inflammatory damage in the immune system; embryonic dysplasia in terms of thyroid hormone repression in animal embryonic development and repression of the SOX9a transcription factor. The elucidation of the mechanisms of toxicity of thiram on various organs of animals at molecular level will enable a more detailed understanding of the mechanisms of toxicity of thiram in animals and will facilitate the exploration of the treatment of thiram poisoning at molecular level.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Galinhas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doenças das Aves Domésticas/metabolismo , Tiram/toxicidade
16.
Environ Sci Pollut Res Int ; 28(48): 68288-68299, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34268698

RESUMO

Tibial dyschondroplasia (TD) is a common skeletal disease occurred in growth plate of fast-growing broilers. Thiram is a sort of chemical used for pesticide and fungicide. The excessive use of thiram increased the threat to animal and human health. In this study, we aimed to investigate the therapeutic mechanism of chlorogenic acid (CGA) on thiram-induced tibial dyschondroplasia. Broiler chickens were divided into three different groups, e.g., control, TD, and CGA. CGA was administrated after the induction of TD from 4th day to 7th day. Biochemical analysis was performed to detect the content of calcium (Ca) and phosphorus (P). Histological changes and degradation of extracellular matrix were observed through hematoxylin-eosin (H & E) and Masson staining. To further determine the mechanism, TUNEL staining and western blot were also performed to detect the apoptosis changes in growth plate of all groups. The results showed the disproportionation of Ca and P content and upregulation of apoptosis during the development of TD. But, after the administration of CGA, the ratio of Ca:P was upregulated, and the apoptosis was also downregulated. The current study shows the toxic effect of thiram on chickens and suggests that CGA is associated with a mechanism that plays a significant role in apoptosis induced by thiram in poultry industry.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Apoptose , Galinhas , Ácido Clorogênico , Humanos , Osteocondrodisplasias/induzido quimicamente , Tiram/toxicidade
17.
Ecotoxicol Environ Saf ; 213: 112059, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647747

RESUMO

Tibial dyschondroplasia (TD) is a metabolic disease of young poultry that affects bone andcartilage's growth. It mostly occurs in broilers due to thiram toxicity in the feed. In this disease, tibial cartilage is not yet ripe for ossification, but it also results in lameness, death, and moral convictions of commercial poultry due to numerous apoptotic changes on cell level. These changes serve a cardinal role in this situation. Many potential problems indicate that chlorogenic acid (CGA) performs an extensive role in controlling apoptosis's perception. However, the actual role of CGA in TD affected chondrocytes in-vitro is still unidentified. The current study investigates the imperceptible insight of CGA on chondrocyte's apoptosis via B-cell lymphoma 2 (Bcl-2), Bcl-2 associated x-protein (Bax), and Caspase-3 with CD147 signalling. The expression of these markers was investigated by Immunofluorescence, western blot analysis, and reverse transcription-quantitative polymerase chain (RT-qPCR). Chondrocytes from the growth plate of tibia were isolated, cultured, and processed. A sub-lethal thiram (2.5 µg/mL) was used to induce cytotoxicity and then treated with an optimum dose (40 µg/ mL) of CGA. According to the results, thiram distorted chondrocyte cells with enhanced apoptotic rate. But, in case of CGA, high expression of CD147 enhanced cell viability of chondrocytes, accompanied by downregulation of Bax/Caspase-3 signalling with the upregulation of Bcl-2. The first possibility has ruled out in the present study by the observation that the cells apoptosis marker, Caspase-3 showed a significant change in CD147 overexpressing cells. Conversely, immunodepletion of CD147 with enhanced cleavage of Caspase-3, indicating the activation of apoptosis in chondrocytes cells. Therefore, these findings suggest a novel insight about CD147 in thiram induced TD about the regulation of Bcl-2/Bax/Caspase-3 apoptosis-signalling axis.


Assuntos
Basigina/metabolismo , Fungicidas Industriais/toxicidade , Tiram/toxicidade , Animais , Apoptose , Caspase 2 , Caspase 3/metabolismo , Diferenciação Celular , Sobrevivência Celular , Galinhas/metabolismo , Ácido Clorogênico , Condrócitos/metabolismo , Cisteína Endopeptidases , Lâmina de Crescimento/patologia , Osteocondrodisplasias/tratamento farmacológico , Tíbia/patologia , Regulação para Cima , Proteína X Associada a bcl-2/metabolismo
18.
Ecotoxicol Environ Saf ; 206: 111400, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010593

RESUMO

Fungicide thiram, a representative dithiocarbamate pesticide can cause potential health hazards to humans and animal health due to the residues in various agricultural products. However, the effects of thiram on lipid metabolism by perturbing gut microbiota of chickens are not clear. Our study was aimed to explore the protective of polysaccharide extracted from Morinda officinalis (MOP) on acute thiram-exposed chickens, and to analyze the association between alteration of gut microbiota and lipid metabolism. Three hundred chicks are fed with a normal diet, thiram-treated diet (100 mg/kg), and a thiram-treated diet supplemented with 250, 500, or 1000 mg/kg MOP was used in this study, respectively. The results showed that thiram exposure prominently elevated liver index, changed liver function by histopathological examination and serum biochemistry diagnoses, and increased blood lipid parameters. Meanwhile, the expression level of some key genes in hepatic lipid metabolism dysregulated significantly in the thiram-exposed chickens. Furthermore, 16S rRNA gene sequencing indicated that thiram exposure can significantly alter the richness, diversity, and composition of the broiler fecal microbiota, and the relative abundance of Firmicutes and Proteobacteria was also affected at the phylum level. In addition, some microbial populations including Lactobacillus, Ruminococcus, Oscillospira, Blautia, and Butyricicoccus significantly decreased at the genus level, whereas the Klebsiella was opposite. Correlation analysis further revealed a significant association between microorganisms and lipid metabolism-related parameters. Optimistically, 500 mg/kg MOP can alleviate the damage of thiram in the gut and liver. Together, these data suggest that thiram exposure causes the imbalance of the gut microbiota and hepatic lipid metabolism disorder in chickens.


Assuntos
Galinhas/metabolismo , Fungicidas Industriais/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tiram/toxicidade , Animais , Fezes/microbiologia , Fígado/metabolismo , Testes de Função Hepática , Morinda/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia , RNA Ribossômico 16S/metabolismo
19.
Ecotoxicol Environ Saf ; 206: 111194, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32866894

RESUMO

Tibial Dyschondroplasia (TD) is a prevailing skeletal disorder that mainly affects rapidly growing avian species. It results in reduced bone strength, lameness and an increase risk of fragility fractures. Total flavonoids of Rhizoma drynariae (TFRD) have been used as an effective treatment of different bone diseases in humans. The current in vitro study was conducted to explore the therapeutic effect of TFRD on thiram-induced cytotoxicity in avian growth plate cells via bone morphogenetic protein-2/runt related transcription factor-2 (BMP-2/Runx2) and Indian hedgehog/Parathyroid hormone-related peptide (IHH/PTHrP) expressions. Chondrocytes were isolated, cultured and refined from chicken's tibial growth plates in a special medium. Then chondrocytes were treated with sublethal thiram having less concentration (2.5 µg/mL) to induce cytotoxicity of chondrocyte, and then treated with providential doses (100 µg/mL) of TFRD. Thiram caused distorted morphology of chondrocytes, nuclei appeared disintegration or lysed along with decreased expressions of BMP-2/Runx2 and IHH/PTHrP. TFRD administration not only enhanced the viability of chondrocytes by itself, but also well restored the damage caused by thiram on growth plate chondrocytes by significantly up-regulating the expressions of BMP-2/Runx2 and IHH/PTHrP. Therefore, this study provides a novel insight into the further treatment of TD and other skeletal ailments and lays the foundation for prevention and treatment.


Assuntos
Proteína Morfogenética Óssea 2/genética , Condrócitos/efeitos dos fármacos , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Polypodiaceae/química , Tiram/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Condrócitos/metabolismo , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Flavonoides/isolamento & purificação , Lâmina de Crescimento/citologia , Lâmina de Crescimento/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Cultura Primária de Células , Rizoma , Regulação para Cima
20.
Res Vet Sci ; 131: 244-253, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32438067

RESUMO

Tibial dyschondroplasia (TD) is a skeletal deformity disease in broilers that occurs when vascularization in the growth plate (GP) is below normal. Although, blood vessels have been reported to contribute significantly in bone formation. Therefore, in the current study, we have examined the mRNA expression of angiogenesis-related genes in erythrocytes of thiram induced TD chickens by qRT-PCR and performed histopathological analysis to determine regulatory effect of recombinant Glutathione-S-Transferase A3 (rGSTA3) protein in response to the destructive effect of thiram following the injection of rGSTA3 protein. Histopathology results suggested that, blood vessels of GPs were damaged in thiram induced TD chicken group (D), it also affected the area and density of blood vessels. In the 20 and 50 µg·kg-1 of rGSTA3 protein-administered groups, E and F vessels appeared to be normal and improved on day 6 and 15. Furthermore, qRT-PCR results showed that rGSTA3 protein significantly (P < .05) up-regulated the expression of the most important angiogenesis-related integrin family genes ITGA2, ITGA5, ITGB2, ITGB3, ITGAV. The expression level of other genes including TBXA2R, FYN, IQGAP2, IL1R1, GIT1, RAP1B, RPL17, RAC2, MAML3, PTPN11, VAV1, PTCH1, NCOR2, CLU and ITGB3 up-regulated on dosage of rGSTA3 protein. In conclusion, angiogenesis is destroyed in thiram induced TD broilers, and rGSTA3 protein injection improved the vascularization of GPs by upregulating the angiogenesis related genes most importantly integrin family genes ITGAV, ITGA2, ITGB2, ITGB3, ITGA5.


Assuntos
Galinhas , Glutationa Transferase/farmacologia , Osteocondrodisplasias/veterinária , Doenças das Aves Domésticas/induzido quimicamente , Proteínas Recombinantes/farmacologia , Tiram/toxicidade , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/química , Lâmina de Crescimento/efeitos dos fármacos , Integrinas/genética , Integrinas/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/prevenção & controle , Proteínas Recombinantes/metabolismo , Tíbia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA