Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.378
Filtrar
1.
Commun Biol ; 7(1): 596, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762629

RESUMO

Apicomplexan parasites harbor a complex endomembrane system as well as unique secretory organelles. These complex cellular structures require an elaborate vesicle trafficking system, which includes Rab GTPases and their regulators, to assure the biogenesis and secretory of the organelles. Here we exploit the model apicomplexan organism Toxoplasma gondii that encodes a family of Rab GTPase Activating Proteins, TBC (Tre-2/Bub2/Cdc16) domain-containing proteins. Functional profiling of these proteins in tachyzoites reveals that TBC9 is the only essential regulator, which is localized to the endoplasmic reticulum (ER) in T. gondii strains. Detailed analyses demonstrate that TBC9 is required for normal distribution of proteins targeting to the ER, and the Golgi apparatus in the parasite, as well as for the normal formation of daughter inner membrane complexes (IMCs). Pull-down assays show a strong protein interaction between TBC9 and specific Rab GTPases (Rab11A, Rab11B, and Rab2), supporting the role of TBC9 in daughter IMC formation and early vesicular transport. Thus, this study identifies the only essential TBC domain-containing protein TBC9 that regulates early vesicular transport and IMC formation in T. gondii and potentially in closely related protists.


Assuntos
Retículo Endoplasmático , Proteínas Ativadoras de GTPase , Proteínas de Protozoários , Toxoplasma , Proteínas rab de Ligação ao GTP , Toxoplasma/metabolismo , Toxoplasma/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Retículo Endoplasmático/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Complexo de Golgi/metabolismo , Transporte Proteico , Animais , Vesículas Transportadoras/metabolismo
2.
PLoS Biol ; 22(5): e3002634, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713739

RESUMO

Toxoplasma gondii resides in its intracellular niche by employing a series of specialized secretory organelles that play roles in invasion, host cell manipulation, and parasite replication. Rab GTPases are major regulators of the parasite's secretory traffic that function as nucleotide-dependent molecular switches to control vesicle trafficking. While many of the Rab proteins have been characterized in T. gondii, precisely how these Rabs are regulated remains poorly understood. To better understand the parasite's secretory traffic, we investigated the entire family of Tre2-Bub2-Cdc16 (TBC) domain-containing proteins, which are known to be involved in vesicle fusion and secretory protein trafficking. We first determined the localization of all 18 TBC domain-containing proteins to discrete regions of the secretory pathway or other vesicles in the parasite. Second, we use an auxin-inducible degron approach to demonstrate that the protozoan-specific TgTBC9 protein, which localizes to the endoplasmic reticulum (ER), is essential for parasite survival. Knockdown of TgTBC9 results in parasite growth arrest and affects the organization of the ER and mitochondrial morphology. TgTBC9 knockdown also results in the formation of large lipid droplets (LDs) and multi-membranous structures surrounded by ER membranes, further indicating a disruption of ER functions. We show that the conserved dual-finger active site in the TBC domain of the protein is critical for its GTPase-activating protein (GAP) function and that the Plasmodium falciparum orthologue of TgTBC9 can rescue the lethal knockdown. We additionally show by immunoprecipitation and yeast 2 hybrid analyses that TgTBC9 preferentially binds Rab2, indicating that the TBC9-Rab2 pair controls ER morphology and vesicular trafficking in the parasite. Together, these studies identify the first essential TBC protein described in any protozoan and provide new insight into intracellular vesicle trafficking in T. gondii.


Assuntos
Retículo Endoplasmático , Proteínas de Protozoários , Via Secretória , Toxoplasma , Proteína rab2 de Ligação ao GTP , Toxoplasma/metabolismo , Toxoplasma/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Retículo Endoplasmático/metabolismo , Proteína rab2 de Ligação ao GTP/metabolismo , Proteína rab2 de Ligação ao GTP/genética , Domínios Proteicos , Transporte Proteico , Gotículas Lipídicas/metabolismo , Animais , Humanos
3.
Nat Commun ; 15(1): 2999, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589375

RESUMO

Ribose-5-phosphate (R5P) is a precursor for nucleic acid biogenesis; however, the importance and homeostasis of R5P in the intracellular parasite Toxoplasma gondii remain enigmatic. Here, we show that the cytoplasmic sedoheptulose-1,7-bisphosphatase (SBPase) is dispensable. Still, its co-deletion with transaldolase (TAL) impairs the double mutant's growth and increases 13C-glucose-derived flux into pentose sugars via the transketolase (TKT) enzyme. Deletion of the latter protein affects the parasite's fitness but is not lethal and is correlated with an increased carbon flux via the oxidative pentose phosphate pathway. Further, loss of TKT leads to a decline in 13C incorporation into glycolysis and the TCA cycle, resulting in a decrease in ATP levels and the inability of phosphoribosyl-pyrophosphate synthetase (PRPS) to convert R5P into 5'-phosphoribosyl-pyrophosphate and thereby contribute to the production of AMP and IMP. Likewise, PRPS is essential for the lytic cycle. Not least, we show that RuPE-mediated metabolic compensation is imperative for the survival of the ΔsbpaseΔtal strain. In conclusion, we demonstrate that multiple routes can flexibly supply R5P to enable parasite growth and identify catalysis by TKT and PRPS as critical enzymatic steps. Our work provides novel biological and therapeutic insights into the network design principles of intracellular parasitism in a clinically-relevant pathogen.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Difosfatos/metabolismo , Ribosemonofosfatos/metabolismo , Glicólise , Via de Pentose Fosfato
4.
mSphere ; 9(4): e0000724, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38567972

RESUMO

Bruno Martorelli Di Genova works in parasitology, focusing on Toxoplasma gondii metabolism. In this mSphere of Influence article, he reflects on how the articles "Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani" and "Yeast-Based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites" impacted him, informing his research strategies and understanding of metabolic flexibility in Toxoplasma gondii.


Assuntos
Leishmania donovani , Plasmodium falciparum , Purinas , Toxoplasma , Purinas/metabolismo , Toxoplasma/metabolismo , Leishmania donovani/metabolismo , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Humanos
5.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473741

RESUMO

Iron is an indispensable nutrient for the survival of Toxoplasma gondii; however, excessive amounts can lead to toxicity. The parasite must overcome the host's "nutritional immunity" barrier and compete with the host for iron. Since T. gondii can infect most nucleated cells, it encounters increased iron stress during parasitism. This study assessed the impact of iron stress, encompassing both iron depletion and iron accumulation, on the growth of T. gondii. Iron accumulation disrupted the redox balance of T. gondii while enhancing the parasite's ability to adhere in high-iron environments. Conversely, iron depletion promoted the differentiation of tachyzoites into bradyzoites. Proteomic analysis further revealed proteins affected by iron depletion and identified the involvement of phosphotyrosyl phosphatase activator proteins in bradyzoite formation.


Assuntos
Parasitos , Toxoplasma , Animais , Toxoplasma/metabolismo , Proteômica , Diferenciação Celular
6.
Nat Commun ; 15(1): 2698, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538595

RESUMO

Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.


Assuntos
Toxoplasma , Vacúolos , Animais , Humanos , Camundongos , Interferons/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Toxoplasma/metabolismo , Vacúolos/metabolismo
7.
Methods Mol Biol ; 2776: 43-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502497

RESUMO

Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria, caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but is metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.


Assuntos
Apicoplastos , Parasitos , Plasmodium , Toxoplasma , Animais , Humanos , Apicoplastos/genética , Apicoplastos/metabolismo , Simbiose , Toxoplasma/genética , Toxoplasma/metabolismo
8.
Methods Mol Biol ; 2776: 197-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502506

RESUMO

Apicomplexan parasites are unicellular eukaryotes responsible for major human diseases such as malaria and toxoplasmosis, which cause massive social and economic burden. Toxoplasmosis, caused by Toxoplasma gondii, is a global chronic infectious disease affecting ~1/3 of the world population and is a major threat for any immunocompromised patient. To date, there is no efficient vaccine against these parasites and existing treatments are threatened by rapid emergence of parasite resistance. Throughout their life cycle, Apicomplexa require large amount of nutrients, especially lipids for propagation and survival. Understanding lipid acquisition is key to decipher host-parasite metabolic interactions. Parasite membrane biogenesis relies on a combination of (a) host lipid scavenging, (b) de novo lipid synthesis in the parasite, and (c) fluxes of lipids between host and parasite and within. We recently uncovered that parasite need to store the host-scavenged lipids to avoid their toxic accumulation and to mobilize them for division. How can parasites orchestrate the many lipids fluxes essential for survival? Here, we developed metabolomics approaches coupled to stable isotope labelling to track, monitor, and quantify fatty acid and lipids fluxes between the parasite, its human host cell, and its extracellular environment to unravel the complex lipid fluxes in any physiological environment the parasite could meet.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Humanos , Parasitos/metabolismo , Plastídeos/metabolismo , Ácidos Graxos/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Proteínas de Protozoários/metabolismo
9.
mBio ; 15(4): e0042724, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501871

RESUMO

Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in ß-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal ß-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.


Assuntos
Malária , Toxoplasma , Toxoplasmose , Humanos , Toxoplasma/metabolismo , Metabolismo dos Lipídeos , Saccharomyces cerevisiae/metabolismo , Toxoplasmose/parasitologia , Ácidos Graxos/metabolismo , Nutrientes , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
10.
mBio ; 15(4): e0286423, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38456679

RESUMO

Intracellular infectious agents, like the malaria parasite, Plasmodium falciparum, face the daunting challenge of how to invade a host cell. This problem may be even harder when the host cell in question is the enucleated red blood cell, which lacks the host machinery co-opted by many pathogens for internalization. Evolution has provided P. falciparum and related single-celled parasites within the phylum Apicomplexa with a collection of organelles at their apical end that mediate invasion. This apical complex includes at least two sets of secretory organelles, micronemes and rhoptries, and several structural features like apical rings and a putative pore through which proteins may be introduced into the host cell during invasion. We perform cryogenic electron tomography (cryo-ET) equipped with Volta Phase Plate on isolated and vitrified merozoites to visualize the apical machinery. Through tomographic reconstruction of cellular compartments, we see new details of known structures like the rhoptry tip interacting directly with a rosette resembling the recently described rhoptry secretory apparatus (RSA), or with an apical vesicle docked beneath the RSA. Subtomogram averaging reveals that the apical rings have a fixed number of repeating units, each of which is similar in overall size and shape to the units in the apical rings of tachyzoites of Toxoplasma gondii. Comparison of these polar rings in Plasmodium and Toxoplasma parasites also reveals them to have a structurally conserved assembly pattern. These results provide new insight into the essential and structurally conserved features of this remarkable machinery used by apicomplexan parasites to invade their respective host cells. IMPORTANCE: Malaria is an infectious disease caused by parasites of the genus Plasmodium and is a leading cause of morbidity and mortality globally. Upon infection, Plasmodium parasites invade and replicate in red blood cells, where they are largely protected from the immune system. To enter host cells, the parasites employ a specialized apparatus at their anterior end. In this study, advanced imaging techniques like cryogenic electron tomography (cryo-ET) and Volta Phase Plate enable unprecedented visualization of whole Plasmodium falciparum merozoites, revealing previously unknown structural details of their invasion machinery. Key findings include new insights into the structural conservation of apical rings shared between Plasmodium and its apicomplexan cousin, Toxoplasma. These discoveries shed light on the essential and conserved elements of the invasion machinery used by these pathogens. Moreover, the research provides a foundation for understanding the molecular mechanisms underlying parasite-host interactions, potentially informing strategies for combating diseases caused by apicomplexan parasites.


Assuntos
Malária , Parasitos , Plasmodium , Toxoplasma , Animais , Plasmodium falciparum/metabolismo , Tomografia com Microscopia Eletrônica , Proteínas de Protozoários/metabolismo , Parasitos/metabolismo , Interações Hospedeiro-Parasita , Toxoplasma/metabolismo
11.
Elife ; 122024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502570

RESUMO

The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here, we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii. Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to have evolved from a putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexans.


Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Camundongos , Toxoplasma/metabolismo , Parasitos/metabolismo , Apicoplastos/metabolismo , Ácidos Graxos/metabolismo , Compostos Orgânicos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
12.
Trends Parasitol ; 40(5): 401-415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531711

RESUMO

Microtubules (MTs) play a vital role as key components of the eukaryotic cytoskeleton. The phylum Apicomplexa comprises eukaryotic unicellular parasitic organisms defined by the presence of an apical complex which consists of specialized secretory organelles and tubulin-based cytoskeletal elements. One apicomplexan parasite, Toxoplasma gondii, is an omnipresent opportunistic pathogen with significant medical and veterinary implications. To ensure successful infection and widespread dissemination, T. gondii heavily relies on the tubulin structures present in the apical complex. Recent advances in high-resolution imaging, coupled with reverse genetics, have offered deeper insights into the composition, functionality, and dynamics of these tubulin-based structures. The apicomplexan tubulins differ from those of their mammalian hosts, endowing them with unique attributes and susceptibility to specific classes of inhibitory compounds.


Assuntos
Citoesqueleto , Toxoplasma , Tubulina (Proteína) , Toxoplasma/metabolismo , Toxoplasma/genética , Toxoplasma/fisiologia , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Citoesqueleto/metabolismo , Animais , Microtúbulos/metabolismo , Humanos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
13.
Nat Commun ; 15(1): 1840, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418447

RESUMO

The cytoskeletal protein actin plays a critical role in the pathogenicity of the intracellular parasite, Toxoplasma gondii, mediating invasion and egress, cargo transport, and organelle inheritance. Advances in live cell imaging have revealed extensive filamentous actin networks in the Apicomplexan parasite, but there are conflicting data regarding the biochemical and biophysical properties of Toxoplasma actin. Here, we imaged the in vitro assembly of individual Toxoplasma actin filaments in real time, showing that native, unstabilized filaments grow tens of microns in length. Unlike skeletal muscle actin, Toxoplasma filaments intrinsically undergo rapid treadmilling due to a high critical concentration, fast monomer dissociation, and rapid nucleotide exchange. Cryo-EM structures of jasplakinolide-stabilized and native (i.e. unstabilized) filaments show an architecture like skeletal actin, with differences in assembly contacts in the D-loop that explain the dynamic nature of the filament, likely a conserved feature of Apicomplexan actin. This work demonstrates that evolutionary changes at assembly interfaces can tune the dynamic properties of actin filaments without disrupting their conserved structure.


Assuntos
Parasitos , Toxoplasma , Animais , Actinas/metabolismo , Toxoplasma/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto/metabolismo , Parasitos/metabolismo
14.
mBio ; 15(3): e0330223, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376248

RESUMO

Toxoplasma gondii is an intracellular parasite that can activate the NLRP1 inflammasome leading to macrophage pyroptosis in Lewis rats, but the underlying mechanism is not well understood. In this study, we performed a genome-wide CRISPR screen and identified the dense granule proteins GRA35, GRA42, and GRA43 as the Toxoplasma effectors mediating cell death in Lewis rat macrophages. GRA35 localizes on the parasitophorous vacuole membrane, where it interacts with the host E3 ubiquitin ligase ITCH. Inhibition of proteasome activity or ITCH knockout prevented pyroptosis in Toxoplasma-infected Lewis rat macrophages, consistent with the "NLRP1 functional degradation model." However, there was no evidence that ITCH directly ubiquitinates or interacts with rat NLRP1. We also found that GRA35-ITCH interaction affected Toxoplasma fitness in IFNγ-activated human fibroblasts, likely due to ITCH's role in recruiting ubiquitin and the parasite-restriction factor RNF213 to the parasitophorous vacuole membrane. These findings identify a new role of host E3 ubiquitin ligase ITCH in mediating effector-triggered immunity, a critical concept that involves recognizing intracellular pathogens and initiating host innate immune responses.IMPORTANCEEffector-triggered immunity represents an innate immune defense mechanism that plays a crucial role in sensing and controlling intracellular pathogen infection. The NLRP1 inflammasome in the Lewis rats can detect Toxoplasma infection, which triggers proptosis in infected macrophages and eliminates the parasite's replication niche. The work reported here revealed that host E3 ubiquitin ligase ITCH is able to recognize and interact with Toxoplasma effector protein GRA35 localized on the parasite-host interface, leading to NLRP1 inflammasome activation in Lewis rat macrophages. Furthermore, ITCH-GRA35 interaction contributes to the restriction of Toxoplasma in human fibroblasts stimulated by IFNγ. Thus, this research provides valuable insights into understanding pathogen recognition and restriction mediated by host E3 ubiquitin ligase.


Assuntos
Toxoplasma , Animais , Humanos , Ratos , Adenosina Trifosfatases , Imunidade Inata , Inflamassomos , Proteínas NLR , Proteínas de Protozoários/metabolismo , Ratos Endogâmicos Lew , Toxoplasma/metabolismo , Ubiquitina-Proteína Ligases
15.
Parasit Vectors ; 17(1): 65, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360646

RESUMO

BACKGROUND: Cryptosporidium spp. are common protozoa causing diarrhea in humans and animals. There are currently only one FDA-approved drug and no vaccines for cryptosporidiosis, largely due to the limited knowledge of the molecular mechanisms involved in the invasion of the pathogens. Previous studies have shown that GP60, which is cleaved into GP40 and GP15 after expression, is an immunodominant mucin protein involved in the invasion of Cryptosporidium. The protein is highly O-glycosylated, and recombinant proteins expressed in prokaryotic systems are non-functional. Therefore, few studies have investigated the function of GP40 and GP15. METHODS: To obtain recombinant GP40 with correct post-translational modifications, we used CRISPR/Cas9 technology to insert GP40 and GP15 into the UPRT locus of Toxoplasma gondii, allowing heterologous expression of Cryptosporidium proteins. In addition, the Twin-Strep tag was inserted after GP40 for efficient purification of GP40. RESULTS: Western blotting and immunofluorescent microscopic analyses both indicated that GP40 and GP15 were stably expressed in T. gondii mutants. GP40 localized not only in the cytoplasm of tachyzoites but also in the parasitophorous vacuoles, while GP15 without the GPI anchor was expressed only in the cytoplasm. In addition, a large amount of recTgGP40 was purified using Strep-TactinXT supported by a visible band of ~ 50 kDa in SDS-PAGE. CONCLUSIONS: The establishment of a robust and efficient heterologous expression system of GP40 in T. gondii represents a novel approach and concept for investigating Cryptosporidium mucins, overcoming the limitations of previous studies that relied on unstable transient transfection, which involved complex steps and high costs.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Toxoplasma , Humanos , Animais , Cryptosporidium parvum/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Mucinas/metabolismo , Glicoproteínas
16.
mSphere ; 9(3): e0077023, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38349168

RESUMO

The apicomplexans Toxoplasma gondii and Plasmodium are intracellular parasites that reside within a host-derived compartment termed the parasitophorous vacuole (PV). During infection, the parasites must acquire critical host resources and transport them across their PV for development. However, the mechanism by which host resources are trafficked to and across the PV remains uncertain. Here, we investigated host ADP ribosylation factors (Arfs), a class of proteins involved in vesicular trafficking that may be exploited by T. gondii and Plasmodium berghei for nutrient acquisition. Using overexpressed Arf proteins coupled with immunofluorescence microscopy, we found that all Arfs were internalized into the T. gondii PV, with most vacuoles containing at least one punctum of Arf protein by the end of the lytic cycle. We further characterized Arf1, the most abundant Arf inside the T. gondii PV, and observed that active recycling between its GDP/GTP-bound state influenced Arf1 internalization independent of host guanine nucleotide exchange factors (GEFs). In addition, Arf1 colocalized with vesicle coat complexes and exogenous sphingolipids, suggesting a role in nutrient acquisition. While Arf1 and Arf4 were not observed inside the PV during P. berghei infection, our gene depletion studies showed that liver stage development and survival depended on the expression of Arf4 and the host GEF, GBF1. Collectively, these observations indicate that apicomplexans use distinct mechanisms to subvert the host vesicular trafficking network and efficiently replicate. The findings also pave the way for future studies to identify parasite proteins critical to host vesicle recruitment and the components of vesicle cargo. IMPORTANCE: The parasites Toxoplasma gondii and Plasmodium live complex intracellular lifestyles where they must acquire essential host nutrients while avoiding recognition. Although previous work has sought to identify the specific nutrients scavenged by apicomplexans, the mechanisms by which host materials are transported to and across the parasite vacuole membrane are largely unknown. Here, we examined members of the host vesicular trafficking network to identify specific pathways subverted by T. gondii and Plasmodium berghei. Our results indicate that T. gondii selectively internalizes host Arfs, a class of proteins involved in intracellular trafficking. For P. berghei, host Arfs were restricted by the parasite's vacuole membrane, but proteins involved in vesicular trafficking were identified as essential for liver stage development. A greater exploration into how and why apicomplexans subvert host vesicular trafficking could help identify targets for host-directed therapeutics.


Assuntos
Plasmodium , Toxoplasma , Toxoplasma/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Proteínas/metabolismo , Vacúolos/metabolismo
17.
mSphere ; 9(3): e0009224, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38411121

RESUMO

Toxoplasma gondii is an apicomplexan parasite that is the cause of toxoplasmosis, a potentially lethal disease for immunocompromised individuals. During in vivo infection, the parasites encounter various growth environments, such as hypoxia. Therefore, the metabolic enzymes in the parasites must adapt to such changes to fulfill their nutritional requirements. Toxoplasma can de novo biosynthesize some nutrients, such as heme. The parasites heavily rely on their own heme production for intracellular survival. Notably, the antepenultimate step within this pathway is facilitated by coproporphyrinogen III oxidase (CPOX), which employs oxygen to convert coproporphyrinogen III to protoporphyrinogen IX through oxidative decarboxylation. Conversely, some bacteria can accomplish this conversion independently of oxygen through coproporphyrinogen dehydrogenase (CPDH). Genome analysis found a CPDH ortholog in Toxoplasma. The mutant Toxoplasma lacking CPOX displays significantly reduced growth, implying that T. gondii CPDH (TgCPDH) potentially functions as an alternative enzyme to perform the same reaction as CPOX under low-oxygen conditions. In this study, we demonstrated that TgCPDH exhibits CPDH activity by complementing it in a heme synthesis-deficient Salmonella mutant. Additionally, we observed an increase in TgCPDH expression in Toxoplasma when it grew under hypoxic conditions. However, deleting TgCPDH in both wild-type and heme-deficient parasites did not alter their intracellular growth under both ambient and low-oxygen conditions. This research marks the first report of a CPDH-like protein in eukaryotic cells. Although TgCPDH responds to hypoxic conditions and possesses enzymatic activity, our findings revealed that it does not directly affect acute Toxoplasma infections in vitro and in vivo. IMPORTANCE: Toxoplasma gondii is a ubiquitous parasite capable of infecting a wide range of warm-blooded hosts, including humans. During its life cycle, these parasites must adapt to varying environmental conditions, including situations with low-oxygen levels, such as intestine and spleen tissues. Our research, in conjunction with studies conducted by other laboratories, has revealed that Toxoplasma primarily relies on its own heme production during acute infections. Intriguingly, in addition to this classical heme biosynthetic pathway, the parasites encode a putative oxygen-independent coproporphyrinogen dehydrogenase (CPDH), suggesting its potential contribution to heme production under varying oxygen conditions, a feature typically observed in simpler organisms like bacteria. Notably, so far, CPDH has only been identified in some bacteria for heme biosynthesis. Our study discovered that Toxoplasma harbors a functional enzyme displaying CPDH activity, which alters its expression in the parasites when they face fluctuating oxygen levels in their surroundings.


Assuntos
Toxoplasma , Humanos , Toxoplasma/metabolismo , Coproporfirinogênios/metabolismo , Heme , Coproporfirinogênio Oxidase/genética , Hipóxia , Oxigênio/metabolismo
18.
mBio ; 15(4): e0028324, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38407123

RESUMO

Toxoplasma gondii is a widespread intracellular protozoan pathogen infecting virtually all warm-blooded animals. This parasite acquires host-derived resources to support its replication inside a membrane-bound parasitophorous vacuole within infected host cells. Previous research has discovered that Toxoplasma actively endocytoses host proteins and transports them to a lysosome-equivalent structure for digestion. However, few molecular determinants required for trafficking of host-derived material within the parasite were known. A recent study (Q.-Q. Wang, M. Sun, T. Tang, D.-H. Lai, et al., mBio 14:e01309-23, 2023, https://doi.org/10.1128/mbio.01309-23) identified a critical role for membrane anchoring of proteins via prenylation in the trafficking of endocytosed host proteins by Toxoplasma, including an essential Toxoplasma ortholog of Rab1B. The authors also found that TgRab1 is crucial for protein trafficking of the rhoptry secretory organelles, indicating a dual role in endocytic and exocytic protein trafficking. This study sets the stage for further dissecting endomembrane trafficking in Toxoplasma, along with potentially exploiting protein prenylation as a target for therapeutic development.


Assuntos
Toxoplasma , Animais , Toxoplasma/metabolismo , Prenilação de Proteína , Proteínas/metabolismo , Organelas/metabolismo , Transporte Proteico
19.
Mol Biol Cell ; 35(4): ar57, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416592

RESUMO

Intracellular cargo transport is a ubiquitous cellular process in all eukaryotes. In many cell types, membrane bound cargo is associated with molecular motors which transport cargo along microtubule and actin tracks. In Toxoplasma gondii (T. gondii), an obligate intracellular parasite in the phylum Apicomplexa, organization of the endomembrane pathway depends on actin and an unconventional myosin motor, myosin F (MyoF). Loss of MyoF and actin disrupts vesicle transport, organelle positioning, and division of the apicoplast, a nonphotosynthetic plastid organelle. How this actomyosin system contributes to these cellular functions is still unclear. Using live-cell imaging, we observed that MyoF-EmeraldFP (MyoF-EmFP) displayed a dynamic and filamentous-like organization in the parasite cytosol, reminiscent of cytosolic actin filament dynamics. MyoF was not associated with the Golgi, apicoplast or dense granule surfaces, suggesting that it does not function using the canonical cargo transport mechanism. Instead, we found that loss of MyoF resulted in a dramatic rearrangement of the actin cytoskeleton in interphase parasites accompanied by significantly reduced actin dynamics. However, actin organization during parasite replication and motility was unaffected by the loss of MyoF. These findings revealed that MyoF is an actin organizing protein in Toxoplasma and facilitates cargo movement using an unconventional transport mechanism.


Assuntos
Parasitos , Toxoplasma , Animais , Actinas/metabolismo , Toxoplasma/metabolismo , Miosinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Parasitos/metabolismo
20.
Microbiol Mol Biol Rev ; 88(1): e0016422, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38299836

RESUMO

SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.


Assuntos
Criptosporidiose , Cryptosporidium , Parasitos , Plasmodium , Toxoplasma , Animais , Humanos , Toxoplasma/metabolismo , Imunidade , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA