Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.350
Filtrar
1.
Methods Mol Biol ; 2792: 41-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861077

RESUMO

Glutamate:glyoxylate aminotransferase (GGAT; EC 2.6.1.4) and serine:glyoxylate aminotransferase activities (SGAT; EC 2.6.1.45) are central photorespiratory reactions within plant peroxisomes. Both enzymatic reactions convert glyoxylate, a product of glycolate oxidase, to glycine, a substrate of the mitochondrial glycine decarboxylase complex. The GGAT reaction uses glutamate as an amino group donor and also produces α-ketoglutarate, which is recycled to glutamate in plastids by ferredoxin-dependent glutamate synthase. Using serine, a product of mitochondrial serine hydroxymethyltransferase, as an amino group donor, the SGAT reaction also produces hydroxypyruvate, a substrate of hydroxypyruvate reductase. The activities of these photorespiratory aminotransferases can be measured using indirect, coupled, spectrophotometric assays, detailed herein.


Assuntos
Espectrofotometria , Transaminases , Transaminases/metabolismo , Espectrofotometria/métodos , Glioxilatos/metabolismo , Ácido Glutâmico/metabolismo , Ensaios Enzimáticos/métodos , Respiração Celular
2.
Proc Natl Acad Sci U S A ; 121(26): e2405524121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885378

RESUMO

Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.


Assuntos
Evolução Molecular , Filogenia , Transaminases , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo , Domínio Catalítico/genética , Nitrogênio/metabolismo
3.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1882-1894, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38914498

RESUMO

1,4-cyclohexanedimethylamine (1,4-BAC) is an important monomer for bio-based materials, it finds wide applications in various fields including organic synthesis, medicine, chemical industry, and materials. At present, its synthesis primarily relies on chemical method, which suffer from issues such as expensive metal catalyst, harsh reaction conditions, and safety risks. Therefore, it is necessary to explore greener alternatives for its synthesis. In this study, a two-bacterium three-enzyme cascade conversion pathway was successfully developed to convert 1,4-cyclohexanedicarboxaldehyde to 1,4-cyclohexanedimethylamine. This pathway used Escherichia coli derived aminotransferase (EcTA), Saccharomyces cerevisiae derived glutamate dehydrogenase (ScGlu-DH), and Candida boidinii derived formate dehydrogenase (CbFDH). Through structure-guided protein engineering, a beneficial mutant, EcTAF91Y, was obtained, exhibiting a 2.2-fold increase in specific activity and a 1.9-fold increase in kcat/Km compared to that of the wild type. By constructing recombinant strains and optimizing reaction conditions, it was found that under the optimal conditions, a substrate concentration of 40 g/L could produce (27.4±0.9) g/L of the product, corresponding to a molar conversion rate of 67.5%±2.1%.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/metabolismo , Escherichia coli/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Transaminases/metabolismo , Transaminases/genética , Engenharia de Proteínas , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Formiato Desidrogenases/metabolismo , Formiato Desidrogenases/genética , Candida/enzimologia , Candida/metabolismo , Cicloexilaminas/metabolismo
4.
J Cell Mol Med ; 28(11): e18485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864694

RESUMO

Genome-wide approaches, such as whole-exome sequencing (WES), are widely used to decipher the genetic mechanisms underlying inter-individual variability in disease susceptibility. We aimed to dissect inborn monogenic determinants of idiopathic liver injury in otherwise healthy children. We thus performed WES for 20 patients presented with paediatric-onset recurrent elevated transaminases (rELT) or acute liver failure (ALF) of unknown aetiology. A stringent variant screening was undertaken on a manually-curated panel of 380 genes predisposing to inherited human diseases with hepatobiliary involvement in the OMIM database. We identified rare nonsynonymous variants in nine genes in six patients (five rELT and one ALF). We next performed a case-level evaluation to assess the causal concordance between the gene mutated and clinical symptoms of the affected patient. A genetic diagnosis was confirmed in four rELT patients (40%), among whom two carried novel mutations in ACOX2 or PYGL, and two had previously-reported morbid variants in ABCB4 or PHKA2. We also detected rare variants with uncertain clinical significance in CDAN1, JAG1, PCK2, SLC27A5 or VPS33B in rELT or ALF patients. In conclusion, implementation of WES improves diagnostic yield and enables precision management in paediatric cases of liver injury with unknown aetiology, in particular recurrent hypertransaminasemia.


Assuntos
Sequenciamento do Exoma , Predisposição Genética para Doença , Mutação , Humanos , Masculino , Criança , Feminino , Pré-Escolar , Lactente , Adolescente , Falência Hepática Aguda/genética , Falência Hepática Aguda/diagnóstico , Transaminases/genética , Hepatopatias/genética , Hepatopatias/diagnóstico
5.
Theor Appl Genet ; 137(6): 123, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722407

RESUMO

KEY MESSAGE: BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.


Assuntos
Brassica , Folhas de Planta , Transaminases , Ceras , Alelos , Brassica/genética , Mutação , Fenótipo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Polimorfismo de Nucleotídeo Único , Transaminases/genética , Ceras/química , Ceras/metabolismo
6.
J Biotechnol ; 390: 28-38, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38768686

RESUMO

Nutrient signaling pathways play a pivotal role in regulating the balance among metabolism, growth and stress response depending on the available food supply. They are key factors for the biotechnological success of the yeast Saccharomyces cerevisiae during food-producing fermentations. One such pathway is Retrograde Response, which controls the alpha-ketoglutarate supply required for the synthesis of amino acids like glutamate and lysine. Repressor MKS1 is linked with the TORC1 complex and negatively regulates this pathway. Deleting MKS1 from a variety of industrial strains causes glycerol to increase during winemaking, brewing and baking. This increase is accompanied by a reduction in ethanol production during grape juice fermentation in four commercial wine strains. Interestingly, this does not lead volatile acidity to increase because acetic acid levels actually lower. Aeration during winemaking usually increases acetic acid levels, but this effect reduces in the MKS1 mutant. Despite the improvement in the metabolites of oenological interest, it comes at a cost given that the mutant shows slower fermentation kinetics when grown in grape juice, malt and laboratory media and using glucose, sucrose and maltose as carbon sources. The deletion of RTG2, an activator of Retrograde Response that acts as an antagonist of MKS1, also results in a defect in wine fermentation speed. These findings suggest that the deregulation of this pathway causes a fitness defect. Therefore, manipulating repressor MKS1 is a promising approach to modulate yeast metabolism and to produce low-ethanol drinks.


Assuntos
Etanol , Fermentação , Glicerol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vinho , Glicerol/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Etanol/metabolismo , Vinho/microbiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulação para Cima , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Regulação Fúngica da Expressão Gênica , Transaminases
7.
J Am Chem Soc ; 146(23): 16306-16313, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38804633

RESUMO

Transaminases are choice biocatalysts for the synthesis of chiral primary amines, including amino acids bearing contiguous stereocenters. In this study, we employ lysine as a "smart" amine donor in transaminase-catalyzed dynamic kinetic resolution reactions to access ß-branched noncanonical arylalanines. Our mechanistic investigation demonstrates that, upon transamination, the lysine-derived ketone byproduct readily cyclizes to a six-membered imine, driving the equilibrium in the desired direction and thus alleviating the need to load superstoichiometric quantities of the amine donor or deploy a multienzyme cascade. Lysine also shows good overall compatibility with a panel of wild-type transaminases, a promising hint of its application as a smart donor more broadly. Indeed, by this approach, we furnished a broad scope of ß-branched arylalanines, including some bearing hitherto intractable cyclopropyl and isopropyl substituents, with high yields and excellent selectivities.


Assuntos
Aminas , Aminoácidos , Lisina , Transaminases , Transaminases/metabolismo , Transaminases/química , Aminas/química , Lisina/química , Aminoácidos/química , Aminoácidos/síntese química , Biocatálise , Estrutura Molecular
8.
Urolithiasis ; 52(1): 74, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727838

RESUMO

Primary hyperoxaluria type 2 (PH2) is a rare hereditary disease that causes nephrolithiasis, nephrocalcinosis and kidney failure. This study aimed to investigate the clinical features and mutational spectrum of Chinese patients with PH2. A retrospective cohort study was performed on PH2 patients admitted to our center over seven years. We also systematically reviewed all the articles on Chinese PH2 patients published from January 2000 to May 2023 and conducted a meta-analysis. A total of 25 PH2 patients (10 from our center and 15 from published studies) were included in this study. The median age of onset in patients from our center was 8.50 (1.00, 24.00) years, and 50% were male. Among the full cohort of 25 Chinese patients, the median age of onset was 8.00 (0.40, 26.00) years, and 64% of them were male. Seven patients progressed to end-stage kidney disease, with a median age of 27.50 (12, 31) years. The cumulative renal survival rates were 100%, 91.67%, 45.83% and 30.56% at 10, 20, 30 and 40 years of age, respectively. A total of 18 different variants were identified, and c.864_865del was the dominant variant, accounting for 57.69% of the total alleles. Patients who were heterozygous for c.864_865del were more susceptible to nephrocalcinosis than those who were homozygous for c.864_865del and those harboring other mutations (83.33% versus 33.3% and 0%, respectively) (p = 0.025). The clinical features and mutational spectrum of Chinese PH2 patients were described. This study helps to expand awareness of the phenotypes and genotypes of Chinese PH2 patients and contributes to the improvement of diagnostic and treatment strategies for PH2 patients.


Assuntos
Hiperoxalúria Primária , Mutação , Humanos , Hiperoxalúria Primária/genética , Masculino , Feminino , Estudos Retrospectivos , Criança , Adulto , Adolescente , Adulto Jovem , China/epidemiologia , Pré-Escolar , Povo Asiático/genética , Lactente , Nefrocalcinose/genética , Nefrocalcinose/epidemiologia , Idade de Início , Falência Renal Crônica/genética , População do Leste Asiático , Transaminases
9.
Microb Cell Fact ; 23(1): 132, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711050

RESUMO

BACKGROUND: 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS: In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION: We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.


Assuntos
Vias Biossintéticas , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Engenharia Metabólica/métodos , Glicóis/metabolismo , Lisina/metabolismo , Lisina/biossíntese , Álcool Desidrogenase/metabolismo , Transaminases/metabolismo , Transaminases/genética , Carboxiliases/metabolismo
10.
Appl Environ Microbiol ; 90(5): e0057224, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38700332

RESUMO

Multi-resistant bacteria are a rapidly emerging threat to modern medicine. It is thus essential to identify and validate novel antibacterial targets that promise high robustness against resistance-mediating mutations. This can be achieved by simultaneously targeting several conserved function-determining protein-protein interactions in enzyme complexes from prokaryotic primary metabolism. Here, we selected two evolutionary related glutamine amidotransferase complexes, aminodeoxychorismate synthase and anthranilate synthase, that are required for the biosynthesis of folate and tryptophan in most prokaryotic organisms. Both enzymes rely on the interplay of a glutaminase and a synthase subunit that is conferred by a highly conserved subunit interface. Consequently, inhibiting subunit association in both enzymes by one competing bispecific inhibitor has the potential to suppress bacterial proliferation. We comprehensively verified two conserved interface hot-spot residues as potential inhibitor-binding sites in vitro by demonstrating their crucial role in subunit association and enzymatic activity. For in vivo target validation, we generated genomically modified Escherichia coli strains in which subunit association was disrupted by modifying these central interface residues. The growth of such strains was drastically retarded on liquid and solid minimal medium due to a lack of folate and tryptophan. Remarkably, the bacteriostatic effect was observed even in the presence of heat-inactivated human plasma, demonstrating that accessible host metabolite concentrations do not compensate for the lack of folate and tryptophan within the tested bacterial cells. We conclude that a potential inhibitor targeting both enzyme complexes will be effective against a broad spectrum of pathogens and offer increased resilience against antibiotic resistance. IMPORTANCE: Antibiotics are indispensable for the treatment of bacterial infections in human and veterinary medicine and are thus a major pillar of modern medicine. However, the exposure of bacteria to antibiotics generates an unintentional selective pressure on bacterial assemblies that over time promotes the development or acquisition of resistance mechanisms, allowing pathogens to escape the treatment. In that manner, humanity is in an ever-lasting race with pathogens to come up with new treatment options before resistances emerge. In general, antibiotics with novel modes of action require more complex pathogen adaptations as compared to chemical derivates of existing entities, thus delaying the emergence of resistance. In this contribution, we use modified Escherichia coli strains to validate two novel targets required for folate and tryptophan biosynthesis that can potentially be targeted by one and the same bispecific protein-protein interaction inhibitor and promise increased robustness against bacterial resistances.


Assuntos
Antranilato Sintase , Antibacterianos , Escherichia coli , Antranilato Sintase/metabolismo , Antranilato Sintase/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Transaminases/metabolismo , Transaminases/genética , Transaminases/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Triptofano/metabolismo , Inibidores Enzimáticos/farmacologia
11.
Cell Mol Life Sci ; 81(1): 203, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698289

RESUMO

Nitrogen metabolism of M. tuberculosis is critical for its survival in infected host cells. M. tuberculosis has evolved sophisticated strategies to switch between de novo synthesis and uptake of various amino acids from host cells for metabolic demands. Pyridoxal phosphate-dependent histidinol phosphate aminotransferase-HspAT enzyme is critically required for histidine biosynthesis. HspAT is involved in metabolic synthesis of histidine, phenylalanine, tyrosine, tryptophan, and novobiocin. We showed that M. tuberculosis Rv2231c is a conserved enzyme with HspAT activity. Rv2231c is a monomeric globular protein that contains α-helices and ß-sheets. It is a secretory and cell wall-localized protein that regulates critical pathogenic attributes. Rv2231c enhances the survival and virulence of recombinant M. smegmatis in infected RAW264.7 macrophage cells. Rv2231c is recognized by the TLR4 innate immune receptor and modulates the host immune response by suppressing the secretion of the antibacterial pro-inflammatory cytokines TNF, IL-12, and IL-6. It also inhibits the expression of co-stimulatory molecules CD80 and CD86 along with antigen presenting molecule MHC-I on macrophage and suppresses reactive nitrogen species formation, thereby promoting M2 macrophage polarization. Recombinant M. smegmatis expressing Rv2231c inhibited apoptosis in macrophages, promoting efficient bacterial survival and proliferation, thereby increasing virulence. Our results indicate that Rv2231c is a moonlighting protein that regulates multiple functions of M. tuberculosis pathophysiology to increase its virulence. These mechanistic insights can be used to better understand the pathogenesis of M. tuberculosis and to design strategies for tuberculosis mitigation.


Assuntos
Macrófagos , Mycobacterium tuberculosis , Transaminases , Camundongos , Mycobacterium tuberculosis/patogenicidade , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Animais , Células RAW 264.7 , Virulência , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transaminases/metabolismo , Transaminases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mycobacterium smegmatis/patogenicidade , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/enzimologia , Citocinas/metabolismo , Receptor 4 Toll-Like/metabolismo , Humanos , Imunidade Inata , Interações Hospedeiro-Patógeno/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
12.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656254

RESUMO

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Assuntos
Endorribonucleases , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glucose , Glutamina , Fosfoglicerato Desidrogenase , Monoéster Fosfórico Hidrolases , Proteínas Serina-Treonina Quinases , Serina , Transaminases , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Serina/biossíntese , Transdução de Sinais
13.
Drug Saf ; 47(7): 699-710, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642292

RESUMO

INTRODUCTION: On-treatment excursions of liver laboratory test values in clinical trials involving subjects with underlying liver disease are relevant for the efficacy and safety assessment of drug products and biologics. Existing visualization and analysis tools do not efficiently provide an integrated view of these excursions when baseline liver tests are abnormal. OBJECTIVE: The aim of this study was to develop a composite plot that enables visualization of on-treatment changes in liver test results both as multiples of the upper limit of normal defined by each laboratory's reference population (×ULN) and multiples of the subjects' baseline (×BLN) values. METHODS: The composite plot approach combines biochemical evaluation for drug-induced severe hepatotoxicity (eDISH) plots sequentially applied to subjects' baseline and peak on-treatment liver test results normalized by ULN and integrates them into a four-panel shift plot of peak on-treatment values normalized by BLN. RESULTS: The composite plot enabled efficient assessment of improvement in liver test values during treatment compared with pretreatment in subjects treated with the investigational drug (or the natural history of placebo-treated subjects) and identified outlier subjects for potential drug-induced liver injury. CONCLUSION: For studies in subjects with abnormal baseline values, the composite plot has potential application in the assessment of beneficial and concerning on-treatment modifications in liver test values in reference to the individual subject's baseline and population threshold values.


Assuntos
Bilirrubina , Doença Hepática Induzida por Substâncias e Drogas , Testes de Função Hepática , Humanos , Bilirrubina/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Testes de Função Hepática/métodos , Ensaios Clínicos como Assunto , Transaminases/sangue
14.
Arch Biochem Biophys ; 756: 110011, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649133

RESUMO

Structure-function relationships are key to understanding enzyme mechanisms, controlling enzyme activities, and designing biocatalysts. Here, we investigate the functions of arginine residues in the active sites of pyridoxal-5'-phosphate (PLP)-dependent non-canonical d-amino acid transaminases, focusing on the analysis of a transaminase from Haliscomenobacter hydrossis. Our results show that the tandem of arginine residues R28* and R90, which form the conserved R-[RK] motif in non-canonical d-amino acid transaminases, not only facilitates effective substrate binding but also regulates the catalytic properties of PLP. Non-covalent interactions between residues R28*, R90, and Y147 strengthen the hydrogen bond between Y147 and PLP, thereby maintaining the reactivity of the cofactor. Next, the R90 residue contributes to the stability of the holoenzyme. Finally, the R90I substitution induces structural changes that lead to substrate promiscuity, as evidenced by the effective binding of substrates with and without the α-carboxylate group. This study sheds light on the structural determinants of the activity of non-canonical d-amino acid transaminases. Understanding the structural basis of the active site plasticity in the non-canonical transaminase from H. hydrossis, which is characterized by effective conversion of d-amino acids and α-keto acids, may help to tailor it for industrial applications.


Assuntos
Arginina , Domínio Catalítico , Fosfato de Piridoxal , Transaminases , Transaminases/metabolismo , Transaminases/química , Arginina/química , Arginina/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Especificidade por Substrato , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares
15.
Bioorg Chem ; 147: 107382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640720

RESUMO

Amino acid transferase is a family of enzymes used to catalyze and separate chiral amino acids. However, due to the low efficiency, by-products and reverse reactions occur in cascade reactions. Therefore, in the research, phenylglycine aminotransferase and aspartate aminotransferase were self-assembled in vitro by leucine zipper. The self-assembled enzyme system with d-phenylglycine and α-ketoglutarate as substrates were used for the chiral transformation reaction. By studying the enzyme combination, kinetic reaction stability and catalytic efficiency, it was found that the self-assembled enzyme showed improved stability and better affinity to the substrate than the control and achieved only ee value of 17.86% for the control at the substrate ratio was 1:2. In contrast, the self-assembled enzyme basically catalyzed the complete conversion of d-Phg to l-Phg, with the ee value as 99%. These results demonstrated the feasibility of the leucine zipper and the conversion of d-phenylglycine to the l-type by fusion enzyme.


Assuntos
Glicina , Zíper de Leucina , Transaminases , Glicina/química , Glicina/análogos & derivados , Transaminases/metabolismo , Transaminases/química , Estereoisomerismo , Estrutura Molecular , Cinética , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/química , Biocatálise
16.
Mol Biol Rep ; 51(1): 547, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642187

RESUMO

BACKGROUND: Yeast biosynthesizes fusel alcohols in fermentation through amino acid catabolism via the Ehrlich pathway. ARO8 and ARO9 genes are involved in the first step of the Ehrlich pathway, while ADH2 and ADH5 genes are involved in the last step. In this study, we describe RT-qPCR methods to determine the gene expression level of genes (ARO8, ARO9, ADH2, ADH5) found in Saccharomyces cerevisiae (Sc) and Metschnikowia pulcherrima (Mp) strains growth pasteurized white grape juice. METHODS AND RESULTS: We used RNA extraction and cDNA synthesis protocols. The RT-qPCR efficiency of primer pairs was evaluated by generating a standard curve through serial dilution of yeast-derived cDNA. Method performance criteria were determined for each RT-qPCR assay. Then, we evaluated the gene expression levels of the four genes in all samples. RNA extraction and cDNA synthesis from yeast samples demonstrated the method's capability to generate high-yield, high-purity nucleic acids, supporting further RT-qPCR analysis. The highest normalized gene expression levels of ARO8 and ARO9 were observed in SC1, SC4, and SC5 samples. No significant difference in ADH2 gene expression among Mp strains was observed during the examination of ADH2 and ADH5 genes (p < 0.05). We observed no expression of the ADH5 gene in Mp strains except MP6 strain. The expression of ADH2 and ADH5 genes was higher in Sc strains compared to Mp strains. CONCLUSIONS: The results suggest that the proposed RT-qPCR methods can measure gene expression of ARO8, ARO9, ADH2, and ADH5 in Sc and Mp strains growing in pasteurized white grape juice.


Assuntos
Metschnikowia , Saccharomyces cerevisiae , Vitis , Saccharomyces cerevisiae/metabolismo , Vitis/genética , Vitis/metabolismo , DNA Complementar/metabolismo , Transaminases/genética , Fermentação , RNA/metabolismo
17.
Mol Nutr Food Res ; 68(8): e2300720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581348

RESUMO

SCOPE: The global prevalence of obesity has significantly increased, presenting a major health challenge. High-fat diet (HFD)-induced obesity is closely related to the disease severity of psoriasis, but the mechanism is not fully understood. METHODS AND RESULTS: The study utilizes the HFD-induced obesity model along with an imiquimod (IMQ)-induced psoriasis-like mouse model (HFD-IMQ) to conduct transcriptomics and metabolomic analyses. HFD-induced obese mice exhibits more severe psoriasis-like lesions compared to normal diet (ND)-IMQ mice. The expression of genes of the IL-17 signaling pathway (IL-17A, IL-17F, S100A9, CCL20, CXCL1) is significantly upregulated, leading to an accumulation of T cells and neutrophils in the skin. Moreover, the study finds that there is an inhibition of the branched-chain amino acids (BCAAs) catabolism pathway, and the key gene branched-chain amino transferase 2 (Bcat2) is significantly downregulated, and the levels of leucine, isoleucine, and valine are elevated in the HFD-IMQ mice. Furthermore, the study finds that the peroxisome proliferator-activated receptor gamma (PPAR γ) is inhibited, while STAT3 activity is promoted in HFD-IMQ mice. CONCLUSION: HFD-induced obesity significantly amplifies IL-17 signaling and exacerbates psoriasis, with a potential role played by Bcat2-mediated BCAAs metabolism. The study suggests that BCAA catabolism and PPAR γ-STAT3 exacerbate inflammation in psoriasis with obesity.


Assuntos
Aminoácidos de Cadeia Ramificada , Dieta Hiperlipídica , Obesidade , Psoríase , Transaminases , Animais , Masculino , Camundongos , Aminoácidos de Cadeia Ramificada/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Imiquimode , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-17/genética , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade/complicações , PPAR gama/metabolismo , PPAR gama/genética , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais , Pele/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transaminases/metabolismo
18.
Dev Comp Immunol ; 156: 105183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636699

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is the most important virus that threatens sericulture industry. At present, there is no effective treatment for BmNPV infection in silkworms, and lncRNA plays an important role in biological immune response and host-virus interaction, but there are relatively few studies in silkworms. In this study, the four midgut tissue samples of the resistance strain NB (NB) and susceptible strain 306 (306) and the NB and 306 continuously infected with BmNPV for 96 h are used for whole transcriptome sequencing to analyze the differences in the genetic background of NB and 306 and the differences after inoculation of BmNPV, and the significantly different mRNA, miRNA and lnRNA between NB and 306 after BmNPV inoculation were screened. By comparing NB and 306, 2651 significantly different mRNAs, 57 significantly different miRNAs and 198 significantly different lncRNAs were screened. By comparing NB and 306 after BmNPV inoculation, 2684 significantly different mRNAs, 39 significantly different miRNAs and 125 significantly different lncRNAs were screened. According to the significantly different mRNA, miRNA and lncRNA screened from NB and 306 and NB and 306 after virus inoculation, the mRNA-miRNA-lncRNA regulatory network was constructed before and after virus inoculation, and the BmBCAT-Bomo_chr7_8305-MSTRG.3236.2 regulatory axis was screened from them, and it was found that BmBCAT was not Bomo_chr7_8305 regulated in the genetic background, after viral infection, MSTRG.3236.2 competes for binding Bomo_chr7_8305 regulates BmBCAT. The whole transcriptome sequencing results were verified by qPCR and the time-series expression analysis was performed to prove the reliability of the regulatory network. The BmBCAT-Bomo_chr7_8305-MSTRG.3236.2 regulatory axis may play a potential role in the interaction between silkworms and BmNPV. These results provide new insights into the interaction mechanism between silkworms and BmNPV.


Assuntos
Bombyx , MicroRNAs , Nucleopoliedrovírus , RNA Longo não Codificante , Transaminases , Bombyx/virologia , Bombyx/imunologia , Bombyx/genética , Animais , Nucleopoliedrovírus/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transaminases/metabolismo , Transaminases/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
19.
PLoS One ; 19(4): e0302209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662679

RESUMO

BACKGROUND: Circulating aminotransferases (ALT and AST) have been used as biomarkers for liver injury. The causal relationships between aminotransferases and metabolic syndrome remain ambiguous. METHODS: We conducted bidirectional and multivariable Mendelian randomization (MR) analyses between aminotransferases and traits related to metabolic syndrome using genetic variants obtained from genome-wide association studies (GWASs). MR-PRESSO tests were adopted to remove outliers and eliminate pleiotropy. MR steiger tests were conducted to ensure the correct direction of the causal effects. RESULTS: Both aminotransferases were risk factors for essential hypertension. ALT is a risk factor for type 2 diabetes. The bidirectional causal relationship between ALT and hyperglycemia, serum lipids, and obesity was demonstrated. The effect of fasting glucose on AST was demonstrated, while type 2 diabetes did not affect AST. The effect of HDL-C on ALT and the effect of triglycerides on AST were found in multivariable MR analyses. CONCLUSIONS: Our bidirectional MR analyses suggest that ALT and AST are causally associated with several metabolic syndrome-related traits, especially hypertension and type 2 diabetes. These findings highlight the potential role of aminotransferases as biomarkers and therapeutic targets for metabolic syndrome.


Assuntos
Alanina Transaminase , Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Síndrome Metabólica , Síndrome Metabólica/genética , Humanos , Alanina Transaminase/sangue , Diabetes Mellitus Tipo 2/genética , Aspartato Aminotransferases/sangue , Fatores de Risco , Hipertensão/genética , Biomarcadores/sangue , Transaminases/genética , Transaminases/sangue , Polimorfismo de Nucleotídeo Único
20.
Genet Test Mol Biomarkers ; 28(4): 151-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38657121

RESUMO

Introduction: Approximately 80% of primary hyperoxaluria cases are caused by primary hyperoxaluria type 1 (PH1, OMIM# 259900), which is characterized by pathogenic variants in the AGXT gene, resulting in deficiency of the liver-specific enzyme alanine-glyoxylate aminotransferase (AGT). This leads to increased production of oxalate, which cannot be effectively eliminated from the body, resulting in its accumulation primarily in the kidneys and other organs. Subjects and Methods: This study included 17 PH1 Egyptian patients from 12 unrelated families, recruited from the Inherited Kidney Disease Outpatient Clinic and the Dialysis Units, Cairo University Hospitals, during the period from January 2018 to December 2019, aiming to identify the pathogenic variants in the AGXT gene. Results: Six different variants were detected. These included three frameshift and three missense variants, all found in homozygosity within the respective families. The most common variant was c.121G>A;p.(Gly41Arg) detected in four families, followed by c.725dup;p.(Asp243GlyfsTer12) in three families, c.33dup;p.(Lys12Glnfs156) in two families, and c.731T >C;p.(Ile244Thr), c.33delC;p.(Lys12Argfs34), and c.568G>A;p.(Gly190Arg) detected in one family each. Conclusion: Consanguineous Egyptian families with history of renal stones or renal disease suspicious of primary hyperoxaluria should undergo AGXT genetic sequencing, specifically targeting exons 1 and 7, as variants in these two exons account for >75% of disease-causing variants in Egyptian patients with confirmed PH1.


Assuntos
Hiperoxalúria Primária , Transaminases , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Egito , Mutação da Fase de Leitura/genética , Homozigoto , Hiperoxalúria Primária/genética , Mutação , Mutação de Sentido Incorreto/genética , Transaminases/genética , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA