Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
Diabetes ; 73(8): 1255-1265, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985991

RESUMO

Inducible pluripotent stem cell-derived human ß-like cells (BLCs) hold promise for both therapy and disease modeling, but their generation remains challenging and their functional analyses beyond transcriptomic and morphological assessments remain limited. Here, we validate an approach using multicellular and single-cell electrophysiological tools to evaluate function of BLCs from pioneer protocols that can be easily adapted to more differentiated BLCs. The multi-electrode arrays (MEAs) measuring the extracellular electrical activity revealed that BLCs, like primary ß-cells, are electrically coupled and produce slow potential (SP) signals that are closely linked to insulin secretion. We also used high-resolution single-cell patch clamp measurements to capture the exocytotic properties, and characterize voltage-gated sodium and calcium currents, and found that they were comparable with those in primary ß- and EndoC-ßH1 cells. The KATP channel conductance is greater than in human primary ß-cells, which may account for the limited glucose responsiveness observed with MEA. We used MEAs to study the impact of the type 2 diabetes-protective SLC30A8 allele (p.Lys34Serfs50*) and found that BLCs with this allele have stronger electrical coupling activity. Our data suggest that BLCs can be used to evaluate the functional impact of genetic variants on ß-cell function and coupling.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Transportador 8 de Zinco , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Transportador 8 de Zinco/genética , Transportador 8 de Zinco/metabolismo , Diferenciação Celular , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Técnicas de Patch-Clamp , Fenômenos Eletrofisiológicos
2.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062856

RESUMO

The 3 Screen ICA ELISA is a novel assay capable of simultaneously measuring autoantibodies to glutamic acid decarboxylase (GADA), insulinoma-associated antigen-2 (IA-2A), and zinc transporter 8 (ZnT8A), making it a valuable tool for screening type 1 diabetes. Despite its advantages, it cannot specify which individual autoantibodies are positive or negative. This study aimed to estimate individual positive autoantibodies based on the 3 Screen ICA titer. Six hundred seventeen patients with type 1 diabetes, simultaneously measured for 3 Screen ICA and three individual autoantibodies, were divided into five groups based on their 3 Screen ICA titer. The sensitivities and contribution rates of the individual autoantibodies were then examined. The study had a cross-sectional design. Sixty-nine percent (424 of 617) of patients with type 1 diabetes had 3 Screen ICA titers exceeding the 99th percentile cut-off level (20 index). The prevalence of GADA ranged from 80% to 100% in patients with a 3 Screen ICA over 30 index and 97% of patients with a 3 Screen ICA ≥300 index. Furthermore, the prevalence of all individual autoantibodies being positive was 0% for ≤80 index and as high as 92% for ≥300 index. Significant associations were observed in specific titer groups: the 20-29.9 index group when all the individual autoantibodies were negative, the 30-79.9 index group when positive for GADA alone or IA-2A alone, the 30-299.9 index group when positive for ZnT8A alone, the 80-299.9 index group when positive for both IA-2A and ZnT8A, the 300-499.9 index group when positive for both GADA and ZnT8A, and the ≥300 index group when positive for all individual autoantibodies. These results suggest that the 3 Screen ICA titer may be helpful in estimating individual positive autoantibodies.


Assuntos
Autoanticorpos , Diabetes Mellitus Tipo 1 , Glutamato Descarboxilase , Transportador 8 de Zinco , Humanos , Autoanticorpos/sangue , Autoanticorpos/imunologia , Masculino , Feminino , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Adulto , Transportador 8 de Zinco/imunologia , Glutamato Descarboxilase/imunologia , Estudos Transversais , Adolescente , Pessoa de Meia-Idade , Ensaio de Imunoadsorção Enzimática/métodos , Ilhotas Pancreáticas/imunologia , Adulto Jovem , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Criança
3.
Diabet Med ; 41(9): e15394, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38937948

RESUMO

AIM: This study aimed to evaluate characteristics of autoimmunity in individuals who have a type 2 diagnosis and are relatives of children with type 1 diabetes. METHODS: Pre-diagnosis samples (median 17 months before onset) from relatives who were later diagnosed with type 2 diabetes were measured for autoantibodies to glutamate decarboxylase 65 (GADA), islet antigen-2 (IA-2A), zinc transporter 8 (ZnT8A) and insulin (IAA) as well as the type 1 diabetes genetic risk score (GRS2). Associations between islet autoantibodies, insulin treatment and GRS2 were analysed using Fisher's exact and t-tests. RESULTS: Among 226 relatives (64% men; mean age at sampling 41 years; mean age 54 years at diagnosis), 32 (14%) were islet autoantibody-positive for at least one autoantibody more than a decade before diagnosis. Approximately half of these (n = 15) were treated with insulin. GADA-positivity was higher in insulin-treated relatives than in non-insulin-treated relatives (12/18 [67%] vs. 6/18 [33%], p < 0.001). IAA-positivity was observed in 13/32 (41%) of relatives with autoantibodies. GRS2 scores were increased in autoantibody-positive relatives (p = 0.032), but there was no clear evidence for a difference according to treatment (p = 0.072). CONCLUSION: This study highlights the importance of measuring islet autoantibodies, including IAA, in relatives of people with type 1 diabetes to avoid misdiagnosis.


Assuntos
Autoanticorpos , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Autoanticorpos/sangue , Masculino , Feminino , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/diagnóstico , Adulto , Pessoa de Meia-Idade , Criança , Ilhotas Pancreáticas/imunologia , Glutamato Descarboxilase/imunologia , Transportador 8 de Zinco/imunologia , Insulina/imunologia , Insulina/uso terapêutico , Adolescente , Família , Pré-Escolar , Predisposição Genética para Doença
4.
Arch Dis Child ; 109(10): 812-817, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38925883

RESUMO

OBJECTIVE: Type 1 diabetes (T1D) screening programmes testing islet autoantibodies (IAbs) in childhood can reduce life-threatening diabetic ketoacidosis. General population screening is required to detect the majority of children with T1D, since in >85% there is no family history. Age 3-5 years has been proposed as an optimal age for a single screen approach. DESIGN: Capillary samples were collected from children attending their preschool vaccination and analysed for IAbs to insulin, glutamic acid decarboxylase, islet antigen-2 and zinc transporter 8 using radiobinding/luciferase immunoprecipitation system assays. Acceptability was assessed using semistructured interviews and open-ended postcard questionnaires with parents. SETTING: Two primary care practices in Oxfordshire, UK. MAIN OUTCOME MEASURES: The ability to collect capillary blood to test IAbs in children at the routine preschool vaccination (3.5-4 years). RESULTS: Of 134 parents invited, 66 (49%) were recruited (median age 3.5 years (IQR 3.4-3.6), 26 (39.4%) male); 63 provided a sample (97% successfully), and one participant was identified with a single positive IAb. Parents (n=15 interviews, n=29 postcards) were uniformly positive about screening aligned to vaccination and stated they would have been less likely to take part had screening been a separate visit. Themes identified included preparedness for T1D and the long-term benefit outweighing short-term upset. The perceived volume of the capillary sample was a potential concern and needs optimising. CONCLUSIONS: Capillary IAb testing is a possible method to screen children for T1D. Aligning collection to the preschool vaccination visit can be convenient for families without the need for an additional visit.


Assuntos
Autoanticorpos , Diabetes Mellitus Tipo 1 , Programas de Rastreamento , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/diagnóstico , Autoanticorpos/sangue , Masculino , Pré-Escolar , Feminino , Programas de Rastreamento/métodos , Vacinação , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Ilhotas Pancreáticas/imunologia , Pais , Estudo de Prova de Conceito , Transportador 8 de Zinco/imunologia , Glutamato Descarboxilase/imunologia
5.
Metallomics ; 16(7)2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866719

RESUMO

Elevated manganese (Mn) accumulates in the brain and induces neurotoxicity. SLC30A10 is an Mn efflux transporter that controls body Mn levels. We previously reported that full-body Slc30a10 knockout mice (1) recapitulate the body Mn retention phenotype of humans with loss-of-function SLC30A10 mutations and (2) unexpectedly develop hypothyroidism induced by Mn accumulation in the thyroid, which reduces intra-thyroid thyroxine. Subsequent analyses of National Health and Nutrition Examination Survey data identified an association between serum Mn and subclinical thyroid changes. The emergence of thyroid deficits as a feature of Mn toxicity suggests that changes in thyroid function may be an underappreciated, but critical, modulator of Mn-induced disease. To better understand the relationship between thyroid function and Mn toxicity, here we further defined the mechanism of Mn-induced hypothyroidism using mouse and rat models. Slc30a10 knockout mice exhibited a profound deficit in thyroid iodine levels that occurred contemporaneously with increases in thyroid Mn levels and preceded the onset of overt hypothyroidism. Wild-type Mn-exposed mice also exhibited increased thyroid Mn levels, an inverse correlation between thyroid Mn and iodine levels, and subclinical hypothyroidism. In contrast, thyroid iodine levels were unaltered in newly generated Slc30a10 knockout rats despite an increase in thyroid Mn levels, and the knockout rats were euthyroid. Thus, Mn-induced thyroid dysfunction in genetic or Mn exposure-induced mouse models occurs due to a reduction in thyroid iodine subsequent to an increase in thyroid Mn levels. Moreover, rat and mouse thyroids have differential sensitivities to Mn, which may impact the manifestations of Mn-induced disease in these routinely used animal models.


Assuntos
Proteínas de Transporte de Cátions , Hipotireoidismo , Iodo , Manganês , Glândula Tireoide , Animais , Masculino , Camundongos , Ratos , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Hipotireoidismo/metabolismo , Hipotireoidismo/induzido quimicamente , Iodo/deficiência , Iodo/metabolismo , Manganês/metabolismo , Manganês/toxicidade , Camundongos Knockout , Ratos Sprague-Dawley , Glândula Tireoide/metabolismo , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia , Transportador 8 de Zinco/metabolismo , Transportador 8 de Zinco/genética
6.
SLAS Discov ; 29(5): 100166, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848895

RESUMO

Zinc is an essential trace element that is involved in many biological processes and in cellular homeostasis. In pancreatic ß-cells, zinc is crucial for the synthesis, processing, and secretion of insulin, which plays a key role in glucose homeostasis and which deficiency is the cause of diabetes. The accumulation of zinc in pancreatic cells is regulated by the solute carrier transporter SLC30A8 (or Zinc Transporter 8, ZnT8), which transports zinc from cytoplasm in intracellular vesicles. Allelic variants of SLC30A8 gene have been linked to diabetes. Given the physiological intracellular localization of SLC30A8 in pancreatic ß-cells and the ubiquitous endogenous expression of other Zinc transporters in different cell lines that could be used as cellular model for SLC30A8 recombinant over-expression, it is challenging to develop a functional assay to measure SLC30A8 activity. To achieve this goal, we have firstly generated a HEK293 cell line stably overexpressing SLC30A8, where the over-expression favors the partial localization of SLC30A8 on the plasma membrane. Then, we used the combination of this cell model, commercial FluoZin-3 cell permeant zinc dye and live cell imaging approach to follow zinc flux across SLC30A8 over-expressed on plasma membrane, thus developing a novel functional imaging- based assay specific for SLC30A8. Our novel approach can be further explored and optimized, paving the way for future small molecule medium-throughput screening.


Assuntos
Transportador 8 de Zinco , Zinco , Humanos , Transportador 8 de Zinco/genética , Transportador 8 de Zinco/metabolismo , Células HEK293 , Zinco/metabolismo , Membrana Celular/metabolismo , Células Secretoras de Insulina/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo
7.
Gene ; 927: 148704, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885821

RESUMO

The current study sought to investigate the associations of common genetic risk variants with gestational diabetes mellitus (GDM) risk in the north Indian population and to evaluate their utility in identifying GDM cases. A case-control study, including 300 pregnant women, was included, and clinical and pathological information was collected. The amplification-refractory mutation system (ARMS) was used for genotyping four single nucleotide polymorphisms (SNPs), namely FTO (rs9939609), PPARG2 (rs1801282), SLC30A8 (rs13266634), and TCF7L2 (rs12255372). The odds ratio and confidence interval were determined for each SNP in different genetic models. Further, attributable risk, population penetrance, and relative risk were also calculated. The risk allele A of FTO (rs9939609) poses a two times higher risk of GDM (p = 0.02, OR = 2.5). The CG and GG genotypes of PPARG2 (rs1801282) have half a lower risk of GDM. In SLC30A8 (rs13266634), the recessive model analysis showed a two times higher risk of having GDM, while the recessive model (TT vs. GG + GT) analysis in TCF7L2 (rs12255372) indicates a lower risk of GDM. Finally, the relative risk, population penetrance, and attributable risk for risk allele in all four variants was higher in GDM mothers. All four polymorphisms were found to be significantly associated with BMI, HbA1c, and insulin. Our study first time confirmed a significant association with GDM for four variants, FTO, PPARG2, SLC30A8, and TCF7L2, in the North Indian population.


Assuntos
Diabetes Gestacional , Predisposição Genética para Doença , Insulina , Polimorfismo de Nucleotídeo Único , Proteína 2 Semelhante ao Fator 7 de Transcrição , Transportador 8 de Zinco , Humanos , Feminino , Diabetes Gestacional/genética , Gravidez , Adulto , Estudos de Casos e Controles , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Insulina/metabolismo , Transportador 8 de Zinco/genética , Transportador 8 de Zinco/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , PPAR gama/genética , Índia
8.
J Biol Chem ; 300(6): 107378, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762179

RESUMO

The stepwise addition of monosaccharides to N-glycans attached to client proteins to generate a repertoire of mature proteins involves a concerted action of many glycosidases and glycosyltransferases. Here, we report that Golgi α-mannosidase II (GMII), a pivotal enzyme catalyzing the first step in the conversion of hybrid- to complex-type N-glycans, is activated by Zn2+ supplied by the early secretory compartment-resident ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in marked accumulation of hybrid-type and complex/hybrid glycans with concomitant reduction of complex- and high-mannose-type glycans. In cells lacking the ZNT5-6 and ZNT7 functions, the GMII activity is substantially decreased. In contrast, the activity of its homolog, lysosomal mannosidase (LAMAN), is not decreased. Moreover, we show that the growth of pancreatic cancer MIA PaCa-2 cells lacking ZNT5-6 and ZNT7 is significantly decreased in a nude mouse xenograft model. Our results indicate the integral roles of ZNT5-6 and ZNT7 in N-glycosylation and highlight their potential as novel target proteins for cancer therapy.


Assuntos
Proteínas de Transporte de Cátions , Complexo de Golgi , Zinco , Humanos , Glicosilação , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Animais , Zinco/metabolismo , Camundongos , Complexo de Golgi/metabolismo , Manosidases/metabolismo , Manosidases/genética , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Camundongos Nus , Transportador 8 de Zinco
9.
EBioMedicine ; 104: 105144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723553

RESUMO

BACKGROUND: Two or more autoantibodies against either insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A) or zinc transporter 8 (ZnT8A) denote stage 1 (normoglycemia) or stage 2 (dysglycemia) type 1 diabetes prior to stage 3 type 1 diabetes. Automated multiplex Antibody Detection by Agglutination-PCR (ADAP) assays in two laboratories were compared to single plex radiobinding assays (RBA) to define threshold levels for diagnostic specificity and sensitivity. METHODS: IAA, GADA, IA-2A and ZnT8A were analysed in 1504 (54% females) population based controls (PBC), 456 (55% females) doctor's office controls (DOC) and 535 (41% females) blood donor controls (BDC) as well as in 2300 (48% females) patients newly diagnosed (1-10 years of age) with stage 3 type 1 diabetes. The thresholds for autoantibody positivity were computed in 100 10-fold cross-validations to separate patients from controls either by maximizing the χ2-statistics (chisq) or using the 98th percentile of specificity (Spec98). Mean and 95% CI for threshold, sensitivity and specificity are presented. FINDINGS: The ADAP ROC curves of the four autoantibodies showed comparable AUC in the two ADAP laboratories and were higher than RBA. Detection of two or more autoantibodies using chisq showed 0.97 (0.95, 0.99) sensitivity and 0.94 (0.91, 0.97) specificity in ADAP compared to 0.90 (0.88, 0.95) sensitivity and 0.97 (0.94, 0.98) specificity in RBA. Using Spec98, ADAP showed 0.92 (0.89, 0.95) sensitivity and 0.99 (0.98, 1.00) specificity compared to 0.89 (0.77, 0.86) sensitivity and 1.00 (0.99, 1.00) specificity in the RBA. The diagnostic sensitivity and specificity were higher in PBC compared to DOC and BDC. INTERPRETATION: ADAP was comparable in two laboratories, both comparable to or better than RBA, to define threshold levels for two or more autoantibodies to stage type 1 diabetes. FUNDING: Supported by The Leona M. and Harry B. Helmsley Charitable Trust (grant number 2009-04078), the Swedish Foundation for Strategic Research (Dnr IRC15-0067) and the Swedish Research Council, Strategic Research Area (Dnr 2009-1039). AL was supported by the DiaUnion collaborative study, co-financed by EU Interreg ÖKS, Capital Region of Denmark, Region Skåne and the Novo Nordisk Foundation.


Assuntos
Autoanticorpos , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Feminino , Masculino , Criança , Pré-Escolar , Lactente , Transportador 8 de Zinco/imunologia , Sensibilidade e Especificidade , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Glutamato Descarboxilase/imunologia , Curva ROC , Programas de Rastreamento/métodos
10.
FASEB J ; 38(8): e23610, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661000

RESUMO

Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers. In the present study, we examined multiple variants that influence SLC30A8 allele-specific expression. Epigenomic mapping has previously identified an islet-selective enhancer cluster at the SLC30A8 locus, hosting multiple T2D risk and cASE associations, which is spatially associated with the SLC30A8 promoter and additional neighboring genes. Here, we show that deletion of variant-bearing enhancer regions using CRISPR-Cas9 in human-derived EndoC-ßH3 cells lowers the expression of SLC30A8 and several neighboring genes and improves glucose-stimulated insulin secretion. While downregulation of SLC30A8 had no effect on beta cell survival, loss of UTP23, RAD21, or MED30 markedly reduced cell viability. Although eQTL or cASE analyses in human islets did not support the association between these additional genes and diabetes risk, the transcriptional regulator JQ1 lowered the expression of multiple genes at the SLC30A8 locus and enhanced stimulated insulin secretion.


Assuntos
Diabetes Mellitus Tipo 2 , Elementos Facilitadores Genéticos , Células Secretoras de Insulina , Transportador 8 de Zinco , Humanos , Transportador 8 de Zinco/genética , Transportador 8 de Zinco/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Sobrevivência Celular/genética , Variação Genética , Insulina/metabolismo , Linhagem Celular
11.
Pediatr Neonatol ; 65(4): 395-398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38267283

RESUMO

BACKGROUND: The ZnT8 autoantibody is used to independently diagnose type 1 diabetes (T1D) and as a prediction factor in high-risk populations. This is the first report in Taiwan on the prevalence, diagnostic utility, and clinical characteristics of zinc transporter 8 autoantibody (ZnT8A) in children with T1D. METHODS: We performed a retrospective analysis of 268 children (130 boys, 138 girls) newly diagnosed with T1D at three hospitals in North Taiwan from February 1994 to August 2021. RESULTS: ZnT8A was detected in 117 patients (43.7 %). The combined diagnostic rate of the four antibodies, including glutamic acid decarboxylase autoantibody (GADA), islet antigen 2 autoantibody (IA2A), insulin autoantibody (IAA), and ZnT8A, can reach 86.19 % while that of the original three antibodies is 84.3 %. IA2A (64.9 %) showed the highest positive rate, followed by GADA (64.2 %), ZnT8A (43.7 %), and IAA (22.0 %). Of the 268 patients, five (1.9 %) were only ZnT8A+. All antibodies were positive in 19 (7.1 %) people, whereas 37 others (13.8 %) had all antibodies negative. ZnT8A has the strongest relationship with IA2A. 5 patients had ZnT8A positive only. 5/(37 + 5) (about 12 %) T1D patients were diagnosed by ZnT8A testing. CONCLUSIONS: ZnT8A testing can diagnose up to 12 % more patients with T1D along with three other antibodies. Furthermore, since the ZnT8A titer decreased over time, it should be tested within six months of onset in Taiwanese patients with T1D.


Assuntos
Autoanticorpos , Diabetes Mellitus Tipo 1 , Transportador 8 de Zinco , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/sangue , Transportador 8 de Zinco/imunologia , Masculino , Feminino , Taiwan/epidemiologia , Criança , Autoanticorpos/sangue , Estudos Retrospectivos , Pré-Escolar , Prevalência , Adolescente , Lactente
12.
Clin Exp Immunol ; 215(3): 215-224, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38150393

RESUMO

BACKGROUND: Zinc transporter 8 autoantibodies (ZnT8A) are thought to appear close to type 1 diabetes (T1D) onset and can identify high-risk multiple (≥2) autoantibody positive individuals. Radiobinding assays (RBA) are widely used for ZnT8A measurement but have limited sustainability. We sought to develop a novel, high-performance, non-radioactive luciferase immunoprecipitation system (LIPS) assay to replace RBA. METHODS: A custom dual C-terminal ZnT8 (aa268-369; R325/W325) heterodimeric antigen, tagged with a NanoluciferaseTM (Nluc-ZnT8) reporter, and LIPS assay was developed. Assay performance was evaluated by testing sera from new onset T1D (n = 573), healthy schoolchildren (n = 521), and selected first-degree relatives (FDRs) from the Bart's Oxford family study (n = 617; 164 progressed to diabetes). RESULTS: In new-onset T1D, ZnT8A levels by LIPS strongly correlated with RBA (Spearman's r = 0.89; P < 0.0001), and positivity was highly concordant (94.3%). At a high specificity (95%), LIPS and RBA had comparable assay performance [LIPS pROC-AUC(95) 0.032 (95% CI: 0.029-0.036); RBA pROC-AUC(95) 0.031 (95% CI: 0.028-0.034); P = 0.376]. Overall, FDRs found positive by LIPS or RBA had a comparable 20-year diabetes risk (52.6% and 59.7%, respectively), but LIPS positivity further stratified T1D risk in FDRs positive for at least one other islet autoantibody detected by RBA (P = 0.0346). CONCLUSION: This novel, high-performance, cheaper, quicker, higher throughput, low blood volume Nluc-ZnT8 LIPS assay is a safe, non-radioactive alternative to RBA with enhanced sensitivity and ability to discriminate T1D progressors. This method offers an advanced approach to current strategies to screen the general population for T1D risk for immunotherapy trials and to reduce rates of diabetic ketoacidosis at diagnosis.


Assuntos
Proteínas de Transporte de Cátions , Diabetes Mellitus Tipo 1 , Humanos , Criança , Autoanticorpos , Transportador 8 de Zinco , Diabetes Mellitus Tipo 1/diagnóstico , Lábio , Luciferases/metabolismo , Imunoprecipitação
13.
Sci Rep ; 13(1): 17122, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816730

RESUMO

Single nucleotide polymorphisms of the TCF7L2, HHEX, SLC30A8, MTNR1B, SLC2A2 and GLIS3 genes are well established candidate genes for cardiometabolic diseases (CMDs) across different ethnic populations. We investigated their association with CMDs in a mixed ancestry population of South Africa. rs10830963, rs1111875, rs11920090, rs13266634, rs7034200 and rs7903146 SNPs were genotyped by quantitative real time PCR in 1650 participants and Hardy-Weinberg equilibrium (HWE) analyses performed on the SNPs. Diabetes, obesity, hypertension and cardiometabolic traits were compared across genotypes of SNPs in HWE. Linear and logistic regressions adjusting for age, gender and body mass index were used to determine the risk of T2DM, obesity and hypertension. rs7903146 (p = 0.055), rs1111875 (p = 0.465), rs13266634 (p = 0.828), and rs10830963 (p = 0.158) were in HWE. The rs10830963 recessive genotype was able to predict FPG, insulin and HOMA-IR, while the rs1111875 recessive genotype was able to predict total cholesterol, triglyceride, LDL cholesterol and FPG. The rs7903146 recessive genotype was able to predict SBP and LDL cholesterol. The recessive genotypes of MTNRIB and HHEX SNPs were associated with T2DM traits in the study population and could partially explain the high prevalence of T2DM. Further studies are required to confirm these findings and establish candidate genes in the African population.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Polimorfismo de Nucleotídeo Único , África do Sul/epidemiologia , Predisposição Genética para Doença , LDL-Colesterol/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Genótipo , Obesidade/epidemiologia , Obesidade/genética , Hipertensão/epidemiologia , Hipertensão/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Transportador 8 de Zinco/genética , Fatores de Transcrição/genética
14.
J Cancer Res Clin Oncol ; 149(18): 16429-16440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37707576

RESUMO

PURPOSE: Zinc is an essential micronutrient involving in multiple enzymatic reactions of human metabolism and biological functions affecting the cancer development. However, the relationship between dietary zinc intake and colorectal cancer (CRC) risk has been unclear. Herein, our study investigated the relationship between dietary zinc intake and CRC risk, and examined how the SLC30A8 rs3802177 genetic variant affects this association. METHODS: A total of 1431 CRC cases and 2704 controls were selected to investigate the relationship between dietary zinc intake and CRC risk. After excluding individuals without genotype data, 1097 CRC cases and 1559 controls were used to evaluate the interaction between dietary zinc intake and the rs3802177 polymorphism in CRC risk. The odds ratios (ORs) and 95% confidence intervals (CIs) were measured using unconditional logistic regression models. RESULTS: Higher dietary zinc intake was inversely associated with the risk of CRC in the total population [adjusted OR (aOR) = 0.80, 95% CI 0.66-0.96, p for trend = 0.018]. In the codominant model, G+ carriers of the SLC30A8 rs3802177 with higher consumption of zinc were observed to have a significantly lower risk of CRC in all participants (p for interaction = 0.020). In females, GG carriers with higher zinc intake showed a stronger protective effect against the development of CRC (p for interaction = 0.008). CONCLUSIONS: In summary, our findings suggest an inverse association between dietary zinc intake and CRC risk, and this relationship may be modified by SLC30A8 rs3802177 polymorphism.


Assuntos
Neoplasias Colorretais , Feminino , Humanos , Estudos de Casos e Controles , Modelos Logísticos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Zinco , República da Coreia/epidemiologia , Fatores de Risco , Transportador 8 de Zinco
15.
Front Endocrinol (Lausanne) ; 14: 1171933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396167

RESUMO

Introduction: Common variants in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8 (expressed largely in pancreatic islet alpha and beta cells), are associated with altered risk of type 2 diabetes. Unexpectedly, rare loss-of-function (LoF) variants in the gene, described in heterozygous individuals only, are protective against the disease, even though knockout of the homologous SLC30A8 gene in mice leads to unchanged or impaired glucose tolerance. Here, we aimed to determine how one or two copies of the mutant R138X allele in the mouse SLC30A8 gene impacts the homeostasis of zinc at a whole-body (using non-invasive 62Zn PET imaging to assess the acute dynamics of zinc handling) and tissue/cell level [using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the long-term distribution of zinc and manganese in the pancreas]. Methods: Following intravenous administration of [62Zn]Zn-citrate (~7 MBq, 150 µl) in wild-type (WT), heterozygous (R138X+/-), and homozygous (R138X+/+) mutant mice (14-15 weeks old, n = 4 per genotype), zinc dynamics were measured over 60 min using PET. Histological, islet hormone immunohistochemistry, and elemental analysis with LA-ICP-MS (Zn, Mn, P) were performed on sequential pancreas sections. Bulk Zn and Mn concentration in the pancreas was determined by solution ICP-MS. Results: Our findings reveal that whereas uptake into organs, assessed using PET imaging of 62Zn, is largely unaffected by the R138X variant, mice homozygous of the mutant allele show a substantial lowering (to 40% of WT) of total islet zinc, as anticipated. In contrast, mice heterozygous for this allele, thus mimicking human carriers of LoF alleles, show markedly increased endocrine and exocrine zinc content (1.6-fold increase for both compared to WT), as measured by LA-ICP-MS. Both endocrine and exocrine manganese contents were also sharply increased in R138X+/- mice, with smaller increases observed in R138X+/+ mice. Discussion: These data challenge the view that zinc depletion from the beta cell is the likely underlying driver for protection from type 2 diabetes development in carriers of LoF alleles. Instead, they suggest that heterozygous LoF may paradoxically increase pancreatic ß-cell zinc and manganese content and impact the levels of these metals in the exocrine pancreas to improve insulin secretion.


Assuntos
Proteínas de Transporte de Cátions , Diabetes Mellitus Tipo 2 , Animais , Humanos , Camundongos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Manganês/metabolismo , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Hormônios Pancreáticos/metabolismo , Tomografia por Emissão de Pósitrons , Zinco/metabolismo , Transportador 8 de Zinco/genética
16.
Front Endocrinol (Lausanne) ; 14: 1159714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324267

RESUMO

Background: The solute carrier family 30 A8 zinc transporter (SLC30A8) plays a crucial role in insulin secretion. This study aimed to investigate the impact of SLC30A8 gene polymorphisms on gestational diabetes mellitus (GDM). Methods: The research objective was to select 500 patients with GDM and 502 control subjects. Rs13266634 and rs2466293 were genotyped using the SNPscan™ genotyping assay. Statistical tests, such as the chi-square test, t-test, logistic regression, ANOVA, and meta-analysis, were conducted to determine the differences in genotypes, alleles, and their associations with GDM risk. Results: Statistically significant differences were observed in age, pregestational BMI, SBP, DBP, and parity between individuals with GDM and healthy subjects (P < 0.05). After adjusting for these factors, rs2466293 remained significantly associated with an increased risk of GDM in overall subjects (GG+AG vs. AA: OR = 1.310; 95% CI: 1.005-1.707; P = 0.046, GG vs. AA: OR = 1.523; 95% CI: 1.010-2.298; P = 0.045 and G vs. A: OR = 1.249; 95% CI: 1.029-1.516; P = 0.024). Rs13266634 was still found to be significantly associated with a decreased risk of GDM in individuals aged ≥ 30 years (TT vs. CT+CC: OR = 0.615; 95% CI: 0.392-0.966; P = 0.035, TT vs. CC: OR = 0.503; 95% CI: 0.294-0.861; P = 0.012 and T vs. C: OR =0.723; 95% CI: 0.557-0.937; P = 0.014). Additionally, the haplotype CG was found to be associated with a higher risk of GDM (P < 0.05). Furthermore, pregnant women with the CC or CT genotype of rs13266634 exhibited significantly higher mean blood glucose levels than those with the TT genotype (P < 0.05). Our findings were further validated by the results of a meta-analysis. Conclusion: The SLC30A8 rs2466293 polymorphism was found to be associated with an increased risk of GDM, while rs13266634 was associated with a decreased risk of GDM in individuals aged ≥ 30 years. These findings provide a theoretical basis for GDM testing.


Assuntos
Diabetes Gestacional , Transportador 8 de Zinco , Feminino , Humanos , Gravidez , Diabetes Gestacional/epidemiologia , Diabetes Gestacional/genética , População do Leste Asiático , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Transportador 8 de Zinco/genética
18.
J Trace Elem Med Biol ; 79: 127217, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37224745

RESUMO

OBJECTIVES: Zinc, which is found in high concentrations in the ß-cells of the pancreas, is also a critical component for the endocrine functions of the pancreas. SLC30A8/ZnT8 is the carrier protein responsible for the transport of zinc from the cytoplasm to the insulin granules. The aim of this study was to investigate how dietary zinc status affects pancreatic beta cell activation and ZnT8 levels in infant male rats born to zinc-deficient mothers. METHODS: The study was performed on male pups born to mothers fed a zinc-deficient diet. A total of 40 male rats were divided into 4 equal groups. Group 1: In addition to maternal zinc deficiency, this group was fed a zinc-deficient diet. Group 2: In addition to maternal zinc deficiency, this group was fed a standard diet. Group 3: In addition to maternal zinc deficiency, this group was fed a standard diet and received additional zinc supplementation. Group 4: Control group. Pancreas ZnT8 levels were determined by ELISA method and insulin-positive cell ratios in ß-cells by immunohistochemistry. RESULTS: The highest pancreatic ZnT8 levels and anti-insulin positive cell ratios in the current study were obtained in Group 3 and Group 4. In our study, the lowest pancreatic ZnT8 levels were obtained in Group 1 and Group 2, and the lowest pancreatic anti-insulin positive cell ratios were obtained in Group 1. CONCLUSION: The results of the present study; in rats fed a zinc-deficient diet after maternal zinc deficiency has been established shows that ZnT8 levels and anti-insulin positive cell ratios in pancreatic tissue, which is significantly suppressed, reach control values with intraperitoneal zinc supplementation.


Assuntos
Proteínas de Transporte de Cátions , Células Secretoras de Insulina , Ilhotas Pancreáticas , Ratos , Masculino , Animais , Células Secretoras de Insulina/metabolismo , Zinco/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ilhotas Pancreáticas/metabolismo , Transportador 8 de Zinco/metabolismo , Insulina/metabolismo
19.
Biochem Genet ; 61(6): 2203-2221, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37103601

RESUMO

Genetics plays a role in the development of gestational diabetes mellitus (GDM), which poses serious risks to pregnant women and their children. Several studies have demonstrated a link between GDM susceptibility and rs13266634 C/T polymorphism in SLC30A8 gene and rs1111875 C/T and rs5015480 C/T, which are located near the linkage disequilibrium block containing the IDE, HHEX, and KIF11 genes. However, the results are conflicting. Therefore, we aimed to investigate the association between susceptibility to GDM and HHEX and SLC30A8 gene polymorphisms. PubMed, Web of Science, EBSCO, CNKI, Wanfang Data, VIP, and SCOPUS were used to search for research articles. The quality of the selected literature was evaluated using the Newcastle-Ottawa scale. A meta-analysis was performed using Stata 15.1. Allelic, dominant, recessive, homozygote, and heterozygote models were used for the analysis. Nine articles with 15 studies were included. (1) Four studies about HHEX rs1111875 showed that the C allele was associated with the susceptibility to GDM; (2) three studies on HHEX rs5015480 indicated that the C allele in rs5015480 was significantly associated with GDM; (3) eight studies about SLC30A8 rs13266634 showed that the C allele was significantly associated with the susceptibility to GDM; and (4) a subgroup analysis showed that the rs5015480 polymorphism in HHEX and rs13266634 polymorphism in SLC30A8 gene were associated with GDM susceptibility in Asians. The meta-analysis provided evidence that the C allele in rs1111875 and rs5015480 in HHEX and rs13266634 in SLC30A8 can increase the risk of GDM.PROSPERO registration number CRD42022342280.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Criança , Humanos , Feminino , Gravidez , Diabetes Gestacional/genética , Genótipo , Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Alelos , Predisposição Genética para Doença , Transportador 8 de Zinco/genética , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética
20.
Metallomics ; 15(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36990693

RESUMO

Loss-of-function mutations in SLC30A10 induce hereditary manganese (Mn)-induced neuromotor disease in humans. We previously identified SLC30A10 to be a critical Mn efflux transporter that controls physiological brain Mn levels by mediating hepatic and intestinal Mn excretion in adolescence/adulthood. Our studies also revealed that in adulthood, SLC30A10 in the brain regulates brain Mn levels when Mn excretion capacity is overwhelmed (e.g. after Mn exposure). But, the functional role of brain SLC30A10 under physiological conditions is unknown. We hypothesized that, under physiological conditions, brain SLC30A10 may modulate brain Mn levels and Mn neurotoxicity in early postnatal life because body Mn excretion capacity is reduced in this developmental stage. We discovered that Mn levels of pan-neuronal/glial Slc30a10 knockout mice were elevated in specific brain regions (thalamus) during specific stages of early postnatal development (postnatal day 21), but not in adulthood. Furthermore, adolescent or adult pan-neuronal/glial Slc30a10 knockouts exhibited neuromotor deficits. The neuromotor dysfunction of adult pan-neuronal/glial Slc30a10 knockouts was associated with a profound reduction in evoked striatal dopamine release without dopaminergic neurodegeneration or changes in striatal tissue dopamine levels. Put together, our results identify a critical physiological function of brain SLC30A10-SLC30A10 in the brain regulates Mn levels in specific brain regions and periods of early postnatal life, which protects against lasting deficits in neuromotor function and dopaminergic neurotransmission. These findings further suggest that a deficit in dopamine release may be a likely cause of early-life Mn-induced motor disease.


Assuntos
Proteínas de Transporte de Cátions , Manganês , Humanos , Adulto , Animais , Camundongos , Adolescente , Manganês/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Transportador 8 de Zinco/genética , Dopamina , Encéfalo/metabolismo , Camundongos Knockout , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA