Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Rep ; 12(1): 1429, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082341

RESUMO

The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma's reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.


Assuntos
Descoberta de Drogas , Transportador de Glucose Tipo 3/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 3/antagonistas & inibidores , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/química , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 5/antagonistas & inibidores , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Compostos Heterocíclicos com 3 Anéis/química , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química
2.
Sci Rep ; 11(1): 13751, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215797

RESUMO

Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.


Assuntos
Descoberta de Drogas , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 5/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Simulação por Computador , Diabetes Mellitus/tratamento farmacológico , Síndrome de Fanconi/tratamento farmacológico , Glucose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/ultraestrutura , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/ultraestrutura , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Conformação Proteica/efeitos dos fármacos , Interface Usuário-Computador
3.
Biomed Res Int ; 2021: 5550180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763471

RESUMO

Diabetes mellitus is the most common chronic disorder and leading cause of renal, neurological, and gastrointestinal manifestations in developed and developing countries. Despite of many drugs and combinational therapies, the complications of diabetes are still listed due to severe consequences of those drugs. In past few years, plant-derived drugs draw special attention due to their higher efficacy and fewer side-effects. Momordica charantia also known as bitter melon is referred as an antidiabetic and hypoglycemic plant in native populations of Asia and East Africa. In current study, an in silico approach was used to evaluate the interactions and binding patterns of plant-derived peptides devised from a hypoglycemic protein adMc1 of M. charantia as potential inhibitor of DPP-IV, SGLT1, and GLUT2 receptor proteins. The study has described a novel approach to investigate hypoglycemic peptides to cure diabetes. A total of eighty tetra-, penta-, and hexapeptides were devised from conserved regions of adMc1 homologs. The molecular docking approach using MOE software was employed to reveal inhibiting potentials of devised peptides against three selected proteins. Out of 30 shortlisted ligands six peptides (i.e. SMCG, DECC, TTIT, RTTI, ARNL and TVEV) accomplished the criteria of being good drug candidates against selected receptor proteins following the drugability assessment test. The overall results are acceptable on the basis of ADMET profiling for being good drug candidates against selected proteins.


Assuntos
Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/química , Transportador de Glucose Tipo 2 , Hipoglicemiantes/química , Momordica charantia/química , Peptídeos/química , Proteínas de Plantas/química , Transportador 1 de Glucose-Sódio , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 2/química , Humanos , Hipoglicemiantes/uso terapêutico , Peptídeos/uso terapêutico , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/química
4.
Fish Physiol Biochem ; 46(3): 1039-1052, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32062828

RESUMO

Glucose and fructose play a central role in the metabolism and cellular homeostasis of organisms. Their absorption is co-mediated by two families of glucose transporters, Na+-coupled glucose co-transporters (SGLTs) and facilitative Na+-independent sugar carriers (GLUTs), in the intestine. However, limited information has been available on these transporters in fish. Therefore, we studied glut2, sglt1, and sglt4 genes in grass carp (Ctenopharyngodon idellus). The full-length cDNAs of glut2 was 2308 bp, with an open reading frame (ORF) of 503 amino acids (AAs). The full-length cDNAs of sglt1 was 2890 bp, with an ORF of 658 AAs. Additionally, the full-length cDNAs of sglt4 was 2090 bp, with an ORF encoding 659 AAs. The three deduced AA sequences showed high homology between grass carp and other cyprinid fish species. Based on homology modeling, three-dimensional models of GLUT2, SGLT1, and SGLT4 proteins were created and transmembrane domains were noted. glut2, sglt1, and sglt4 were abundantly expressed in the anterior and mid intestine. In particular, glut2 was markedly expressed in liver (P < 0.05). Additionally, the results indicated that different stocking densities (0.9 or 5.9 kg m-2) did not alter intestinal section-dependent expression patterns of the three transporter genes. However, high stocking density impacted segmental mRNA expression levels. This work demonstrated that mRNA expression of sugar transporter genes in the fish intestine was segment specific, and crowding stress may affect the activity of intestinal sugar transporters. These results provided new insights into the relationship between crowding stress and intestinal sugar transporters in fish.


Assuntos
Carpas/genética , Proteínas de Peixes/genética , Transportador de Glucose Tipo 2/genética , Proteínas de Transporte de Sódio-Glucose/genética , Sequência de Aminoácidos , Animais , Aquicultura/métodos , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Proteínas de Peixes/química , Frutose , Glucose , Transportador de Glucose Tipo 2/química , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Filogenia , Proteínas de Transporte de Sódio-Glucose/química
5.
Chembiochem ; 21(1-2): 45-52, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31553512

RESUMO

Glucose addiction is observed in cancer and other diseases that are associated with hyperproliferation. The development of compounds that restrict glucose supply and decrease glycolysis has great potential for the development of new therapeutic approaches. Addressing facilitative glucose transporters (GLUTs), which are often upregulated in glucose-dependent cells, is therefore of particular interest. This article reviews a selection of potent, isoform-selective GLUT inhibitors and their biological characterization. Potential therapeutic applications of GLUT inhibitors in oncology and other diseases that are linked to glucose addiction are discussed.


Assuntos
Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 3/antagonistas & inibidores , Transportador de Glucose Tipo 4/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Glucose/antagonistas & inibidores , Glucose/metabolismo , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 3/química , Transportador de Glucose Tipo 4/química , Humanos , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
6.
Hum Mutat ; 40(7): 983-995, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30950137

RESUMO

Deleterious variants in SLC2A2 cause Fanconi-Bickel Syndrome (FBS), a glycogen storage disorder, whereas less common variants in SLC2A2 associate with numerous metabolic diseases. Phenotypic heterogeneity in FBS has been observed, but its causes remain unknown. Our goal was to functionally characterize rare SLC2A2 variants found in FBS and metabolic disease-associated variants to understand the impact of these variants on GLUT2 activity and expression and establish genotype-phenotype correlations. Complementary RNA-injected Xenopus laevis oocytes were used to study mutant transporter activity and membrane expression. GLUT2 homology models were constructed for mutation analysis using GLUT1, GLUT3, and XylE as templates. Seventeen FBS variants were characterized. Only c.457_462delCTTATA (p.Leu153_Ile154del) exhibited residual glucose uptake. Functional characterization revealed that only half of the variants were expressed on the plasma membrane. Most less common variants (except c.593 C>A (p.Thr198Lys) and c.1087 G>T (p.Ala363Ser)) exhibited similar GLUT2 transport activity as the wild type. Structural analysis of GLUT2 revealed that variants affect substrate-binding, steric hindrance, or overall transporter structure. The mutant transporter that is associated with a milder FBS phenotype, p.Leu153_Ile154del, retained transport activity. These results improve our overall understanding of the underlying causes of FBS and impact of GLUT2 function on various clinical phenotypes ranging from rare to common disease.


Assuntos
Síndrome de Fanconi/genética , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/metabolismo , Mutação , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Síndrome de Fanconi/metabolismo , Feminino , Estudos de Associação Genética , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Humanos , Modelos Moleculares , Oócitos/metabolismo , Xenopus
7.
J Pediatr Endocrinol Metab ; 31(2): 195-204, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29329106

RESUMO

BACKGROUND: Neonatal diabetes mellitus (NDM) is a rare disorder worldwide where diabetes is diagnosed in the first 6 months of life. However, Oman has a relatively high incidence of NDM. METHODS: In this study, we investigated the genetic etiologies underlying NDM and their prevalence in Oman. We collected a cohort of 24 NDM patients, with and without genetic diagnosis, referred to our center from 2007 to 2015. All patients without a genetic diagnosis were tested for mutations in 23 NDM-associated genes using a custom-targeted next-generation sequencing (NGS) panel and methylation analysis of the 6q24 locus. RESULTS: A genetic abnormality was detected in 15/24 (62.5%) of our Omani NDM patients. We report the detection of 6q24 methylation abnormalities and KCNJ11 mutations for the first time in Omani NDM patients. Unlike Western populations where NDM is predominantly due to mutations in the KCNJ11, ABCC8 and INS genes, NDM due to homozygous GCK gene mutations were most prevalent in Oman, having been observed in seven out of 15 NDM patients in whom we established the genetic etiology. This reflects the high degree of consanguinity which makes recessive conditions more likely. CONCLUSIONS: The results of this study are likely to impact any future strategy to introduce genetic testing for NDM disorders within the national healthcare system in Oman.


Assuntos
Diabetes Mellitus/genética , Transportador de Glucose Tipo 2/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Cromossomos Humanos Par 6/metabolismo , Estudos de Coortes , Consanguinidade , Metilação de DNA , Análise Mutacional de DNA , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Éxons , Feminino , Quinases do Centro Germinativo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/metabolismo , Humanos , Lactente , Recém-Nascido , Subunidade alfa de Receptor de Interleucina-2/química , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Omã/epidemiologia , Linhagem , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Prevalência , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo
8.
J Agric Food Chem ; 65(16): 3295-3304, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28391691

RESUMO

Pro-Hyp (PO) accounts for many beneficial biological effects of collagen hydrolysates for skin and bone health. The objective of this study was to conjugate PO with glucosamine (GlcN) to create a novel glycopeptide Pro-Hyp-CONH-GlcN (POGlcN) and then to investigate the potential involvement of multiple transepithelial transport pathways for this glycopeptide. Nuclear magnetic resonance results revealed the amide nature of this glycopeptide with α and ß configurations derived from GlcN. This glycopeptide was very resistant to simulated gastrointestinal digestion. Also, it showed a rate of transepithelial transport [permeability coefficient (Papp) of (2.82 ± 0.15) × 10-6 cm/s] across the Caco-2 cell monolayer superior to those of parental dipeptide PO and GlcN [Papp values of (1.45 ± 0.17) × 10-6 and (1.87 ± 0.15) × 10-6 cm/s, respectively]. A transport mechanism experiment indicated that the improved transport efficiency of POGlcN is attributed to the introduction of glucose transporters.


Assuntos
Transportador de Glucose Tipo 2/metabolismo , Glicopeptídeos/metabolismo , Simportadores/metabolismo , Transporte Biológico , Células CACO-2 , Glucose/metabolismo , Transportador de Glucose Tipo 2/química , Glicopeptídeos/química , Humanos , Intestinos , Transportador 1 de Peptídeos , Simportadores/química
9.
BMC Genomics ; 16: 312, 2015 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-25927203

RESUMO

BACKGROUND: Cattle breeding populations are susceptible to the propagation of recessive diseases. Individual sires generate tens of thousands of progeny via artificial insemination. The frequency of deleterious alleles carried by such sires may increase considerably within few generations. Deleterious alleles manifest themselves often by missing homozygosity resulting from embryonic/fetal, perinatal or juvenile lethality of homozygotes. RESULTS: A scan for homozygous haplotype deficiency in 25,544 Fleckvieh cattle uncovered four haplotypes affecting reproductive and rearing success. Exploiting whole-genome resequencing data from 263 animals facilitated to pinpoint putatively causal mutations in two of these haplotypes. A mutation causing an evolutionarily unlikely substitution in SUGT1 was perfectly associated with a haplotype compromising insemination success. The mutation was not found in homozygous state in 10,363 animals (P=1.79×10(-5)) and is thus likely to cause lethality of homozygous embryos. A frameshift mutation in SLC2A2 encoding glucose transporter 2 (GLUT2) compromises calf survival. The mutation leads to premature termination of translation and activates cryptic splice sites resulting in multiple exon variants also with premature translation termination. The affected calves exhibit stunted growth, resembling the phenotypic appearance of Fanconi-Bickel syndrome in humans (OMIM 227810), which is also caused by mutations in SLC2A2. CONCLUSIONS: Exploiting comprehensive genotype and sequence data enabled us to reveal two deleterious alleles in SLC2A2 and SUGT1 that compromise pre- and postnatal survival in homozygous state. Our results provide the basis for genome-assisted approaches to avoiding inadvertent carrier matings and to improving reproductive and rearing success in Fleckvieh cattle.


Assuntos
Proteínas de Ciclo Celular/genética , Síndrome de Fanconi/genética , Transportador de Glucose Tipo 2/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Síndrome de Fanconi/patologia , Síndrome de Fanconi/veterinária , Mutação da Fase de Leitura , Genoma , Genótipo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/metabolismo , Haplótipos , Homozigoto , Humanos , Inseminação Artificial , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Fenótipo , Sítios de Splice de RNA , Alinhamento de Sequência
10.
Protein Expr Purif ; 70(1): 81-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19883765

RESUMO

The major bottleneck to the application of high-resolution techniques such as crystallographic X-ray diffraction and spectroscopic analyses to resolve the structure of mammalian membrane proteins has been the ectopic expression and purification of sufficient quantities of non-denatured proteins. This has been especially problematic for members of the major facilitator superfamily, which includes the family of mammalian glucose transporters. A simple and rapid method is described for the purification of milligram quantities of recombinant GLUT1 and GLUT4, two of the most intensively studied GLUT isoforms, after ectopic expression in Pichia pastoris. The proteins obtained were >95% pure and exhibited functional transport and ligand-binding activities.


Assuntos
Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/isolamento & purificação , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/isolamento & purificação , Pichia/metabolismo , Animais , Humanos , Pichia/genética , Ratos , Difração de Raios X
11.
Biophys J ; 94(10): 3912-23, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18234816

RESUMO

Carrier-mediated water cotransport is currently a favored explanation for water movement against an osmotic gradient. The vestibule within the central pore of Na(+)-dependent cotransporters or GLUT2 provides the necessary precondition for an osmotic mechanism, explaining this phenomenon without carriers. Simulating equilibrative glucose inflow via the narrow external orifice of GLUT2 raises vestibular tonicity relative to the external solution. Vestibular hypertonicity causes osmotic water inflow, which raises vestibular hydrostatic pressure and forces water, salt, and glucose into the outer cytosolic layer via its wide endofacial exit. Glucose uptake via GLUT2 also raises oocyte tonicity. Glucose exit from preloaded cells depletes the vestibule of glucose, making it hypotonic and thereby inducing water efflux. Inhibiting glucose exit with phloretin reestablishes vestibular hypertonicity, as it reequilibrates with the cytosolic glucose and net water inflow recommences. Simulated Na(+)-glucose cotransport demonstrates that active glucose accumulation within the vestibule generates water flows simultaneously with the onset of glucose flow and before any flow external to the transporter caused by hypertonicity in the outer cytosolic layers. The molar ratio of water/glucose flow is seen now to relate to the ratio of hydraulic and glucose permeability rather than to water storage capacity of putative water carriers.


Assuntos
Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/ultraestrutura , Glucose/química , Modelos Químicos , Proteínas de Transporte de Sódio-Glucose/química , Proteínas de Transporte de Sódio-Glucose/ultraestrutura , Água/química , Simulação por Computador , Difusão , Modelos Moleculares , Pressão Osmótica , Pressão , Conformação Proteica
12.
J Cell Physiol ; 213(3): 834-43, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17786952

RESUMO

Sugar consumption and subsequent sugar metabolism are known to regulate the expression of genes involved in intestinal sugar absorption and delivery. Here we investigate the hypothesis that sugar-sensing detectors in membranes facing the intestinal lumen or the bloodstream can also modulate intestinal sugar absorption. We used wild-type and GLUT2-null mice, to show that dietary sugars stimulate the expression of sucrase-isomaltase (SI) and L-pyruvate kinase (L-PK) by GLUT2-dependent mechanisms, whereas the expression of GLUT5 and SGLT1, did not rely on the presence of GLUT2. By providing sugar metabolites, sugar transporters, including GLUT2, fuelled a sensing pathway. In Caco2/TC7 enterocytes, we could disconnect the sensing triggered by detector from that produced by metabolism, and found that GLUT2 generated a metabolism-independent pathway to stimulate the expression of SI and L-PK. In cultured enterocytes, both apical and basolateral fructose could increase the expression of GLUT5, conversely, basolateral sugar administration could stimulate the expression of GLUT2. Finally, we located the sweet-taste receptors T1R3 and T1R2 in plasma membranes, and we measured their cognate G alpha Gustducin mRNA levels. Furthermore, we showed that a T1R3 inhibitor altered the fructose-induced expression of SGLT1, GLUT5, and L-PK. Intestinal gene expression is thus controlled by a combination of at least three sugar-signaling pathways triggered by sugar metabolites and membrane sugar receptors that, according to membrane location, determine sugar-sensing polarity. This provides a rationale for how intestine adapts sugar delivery to blood and dietary sugar provision.


Assuntos
Polaridade Celular , Enterócitos/metabolismo , Hexoses/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Sacarose/metabolismo , Edulcorantes/metabolismo , Animais , Células CACO-2 , Clonagem Molecular , Frutose/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Jejuno/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Oligo-1,6-Glucosidase/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Sacarase/genética , Transfecção
13.
FEBS Lett ; 580(30): 6789-96, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17141226

RESUMO

The glycerophosphoinositols are ubiquitous phosphoinositide metabolites involved in the control of several cell functions. They exert their actions both intracellularly and by rapidly equilibrating across the plasma membrane when added to cells, implying the existence of a transporter for their membrane permeation. Such a transporter, GIT1, has been cloned in yeast. By PSI-BLAST analysis, we have identified the Glut2 transporter as a human-genome candidate ortholog of GIT1. This was supported directly through the use of inhibitors, siRNAs and competition studies of specific uptake of GroPIns in HeLa cells over-expressing human Glut2. These data identify Glut2 as a GroPIns transporter in mammals, and define a physiologically relevant cell-permeation mechanism.


Assuntos
Transportador de Glucose Tipo 2/metabolismo , Fosfatos de Inositol/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Glucosamina/metabolismo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Humanos , Floretina/metabolismo , Ligação Proteica , Interferência de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
J Exp Biol ; 209(Pt 22): 4490-502, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17079719

RESUMO

cDNAs of putative glucose transporters, GLUT4 and GLUT2, were cloned from Atlantic cod (Gadus morhua). The GLUT4 cDNA encodes a 503 amino acid and the GLUT2 cDNA a 506 amino acid protein. Phylogenetic analysis, amino acid sequence alignment, and tissue distribution support categorizing them as homologues of mammalian GLUT4 and 2. GLUT4 clusters with GLUT4s from fish and other vertebrates. It shows 84% amino acid identity to GLUT4 from coho salmon and brown trout and 65% identity with other vertebrates. It is most highly expressed in heart, strongly expressed in red and white skeletal muscle and present at lower levels in gill, gonad, intestine, and kidney. GLUT2 clusters with GLUT2 from rainbow trout and other vertebrates. It shows 75% amino acid identity with rainbow trout and 62% identity with chicken GLUT2. In Atlantic cod, GLUT2 is most highly expressed in liver with lower levels noted in intestine and kidney. Food deprivation for 2 months was used as a vehicle to monitor GLUT expression at different blood glucose levels. Starvation resulted in a decrease in blood glucose and liver glycogen that recovered following 20 days of re-feeding. GLUT4 expression in heart was decreased with starvation and increased with re-feeding. GLUT4 mRNA level in heart correlated with blood glucose. It is suggested that this relationship is related to insulin responsiveness. GLUT4 expression in white muscle increased with starvation and decreased with re-feeding. It is proposed that this is due to the necessity to maintain high levels of the glucose transporter protein in the face of starvation-associated proteolysis. GLUT2 expression in liver correlated with blood glucose, consistent with higher rates of glucose transport from liver to blood in the fed state than in the food-deprived state. Glycerol-3-phosphate dehydrogenase (GPDH) cDNA was also cloned. It encodes a 351 amino acid protein, which is 73-90% identical to GPDH from numerous other fish species. GPDH is ubiquitously expressed. Expression in heart decreased with starvation and increased with refeeding, whereas expression in liver did not change with starvation. In other studies, gene expression was monitored at nine time points from fertilization of eggs to larval development. GLUT4 is detectable in fertilized eggs and is fully expressed by the halfway to hatching point. GLUT2 is not evident at fertilization, is detectable at halfway to hatching, and fully expressed at hatching. GPDH expression was evident from fertilization.


Assuntos
Glicemia/metabolismo , Gadus morhua/genética , Regulação da Expressão Gênica no Desenvolvimento , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 4/genética , Glicerolfosfato Desidrogenase/genética , Inanição/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Gadus morhua/crescimento & desenvolvimento , Gadus morhua/metabolismo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 4/química , Glicerolfosfato Desidrogenase/química , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Reação em Cadeia da Polimerase , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA