Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1429, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082341

RESUMO

The passive transport of glucose and related hexoses in human cells is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT3 is a high-affinity glucose transporter primarily responsible for glucose entry in neurons. Changes in its expression have been implicated in neurodegenerative diseases and cancer. GLUT3 inhibitors can provide new ways to probe the pathophysiological role of GLUT3 and tackle GLUT3-dependent cancers. Through in silico screening of an ~ 8 million compounds library against the inward- and outward-facing models of GLUT3, we selected ~ 200 ligand candidates. These were tested for in vivo inhibition of GLUT3 expressed in hexose transporter-deficient yeast cells, resulting in six new GLUT3 inhibitors. Examining their specificity for GLUT1-5 revealed that the most potent GLUT3 inhibitor (G3iA, IC50 ~ 7 µM) was most selective for GLUT3, inhibiting less strongly only GLUT2 (IC50 ~ 29 µM). None of the GLUT3 inhibitors affected GLUT5, three inhibited GLUT1 with equal or twofold lower potency, and four showed comparable or two- to fivefold better inhibition of GLUT4. G3iD was a pan-Class 1 GLUT inhibitor with the highest preference for GLUT4 (IC50 ~ 3.9 µM). Given the prevalence of GLUT1 and GLUT3 overexpression in many cancers and multiple myeloma's reliance on GLUT4, these GLUT3 inhibitors may discriminately hinder glucose entry into various cancer cells, promising novel therapeutic avenues in oncology.


Assuntos
Descoberta de Drogas , Transportador de Glucose Tipo 3/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 3/antagonistas & inibidores , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/química , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 5/antagonistas & inibidores , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Compostos Heterocíclicos com 3 Anéis/química , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química
2.
Sci Rep ; 11(1): 13751, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215797

RESUMO

Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.


Assuntos
Descoberta de Drogas , Transportador de Glucose Tipo 2/antagonistas & inibidores , Transportador de Glucose Tipo 5/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Simulação por Computador , Diabetes Mellitus/tratamento farmacológico , Síndrome de Fanconi/tratamento farmacológico , Glucose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/ultraestrutura , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/ultraestrutura , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Conformação Proteica/efeitos dos fármacos , Interface Usuário-Computador
3.
J Biol Chem ; 293(6): 2115-2124, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29259131

RESUMO

Intestinal fructose uptake is mainly mediated by glucose transporter 5 (GLUT5/SLC2A5). Its closest relative, GLUT7, is also expressed in the intestine but does not transport fructose. For rat Glut5, a change of glutamine to glutamic acid at codon 166 (p.Q166E) has been reported to alter the substrate-binding specificity by shifting Glut5-mediated transport from fructose to glucose. Using chimeric proteins of GLUT5 and GLUT7, here we identified amino acid residues of GLUT5 that define its substrate specificity. The proteins were expressed in NIH-3T3 fibroblasts, and their activities were determined by fructose radiotracer flux. We divided the human GLUT5 sequence into 26 fragments and then replaced each fragment with the corresponding region in GLUT7. All fragments that yielded reduced fructose uptake were analyzed further by assessing the role of individual amino acid residues. Various positions in the first extracellular loop, in the fifth, seventh, eighth, ninth, and tenth transmembrane domains (TMDs), and in the regions between the ninth and tenth TMDs and tenth and 11th TMDs were identified as being important for proper fructose uptake. Although the p.Q167E change did not render the human protein into a glucose transporter, molecular dynamics simulations revealed a drastic change in the dynamics and a movement of the intracellular loop connecting the sixth and seventh TMDs, which covers the exit of the ligand. Finally, we generated a GLUT7-GLUT5 chimera consisting of the N-terminal part of GLUT7 and the C-terminal part of GLUT5. Although this chimera was inactive, we demonstrate fructose transport after introduction of four amino acids derived from GLUT5.


Assuntos
Aminoácidos/fisiologia , Frutose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Sequência de Aminoácidos/genética , Sequência de Aminoácidos/fisiologia , Animais , Proteínas Facilitadoras de Transporte de Glucose/química , Transportador de Glucose Tipo 5/química , Humanos , Camundongos , Células NIH 3T3 , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
4.
Sci Rep ; 7(1): 6197, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740135

RESUMO

Human GLUT5 is a fructose-specific transporter in the glucose transporter family (GLUT, SLC2 gene family). Its substrate-specificity and tissue-specific expression make it a promising target for treatment of diabetes, metabolic syndrome and cancer, but few GLUT5 inhibitors are known. To identify and characterize potential GLUT5 ligands, we developed a whole-cell system based on a yeast strain deficient in fructose uptake, in which GLUT5 transport activity is associated with cell growth in fructose-based media or assayed by fructose uptake in whole cells. The former method is convenient for high-throughput screening of potential GLUT5 inhibitors and activators, while the latter enables detailed kinetic characterization of identified GLUT5 ligands. We show that functional expression of GLUT5 in yeast requires mutations at specific positions of the transporter sequence. The mutated proteins exhibit kinetic properties similar to the wild-type transporter and are inhibited by established GLUT5 inhibitors N-[4-(methylsulfonyl)-2-nitrophenyl]-1,3-benzodioxol-5-amine (MSNBA) and (-)-epicatechin-gallate (ECG). Thus, this system has the potential to greatly accelerate the discovery of compounds that modulate the fructose transport activity of GLUT5.


Assuntos
Inibidores Enzimáticos/isolamento & purificação , Frutose/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Mutação , Transporte Biológico , Catequina/análogos & derivados , Catequina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Transportador de Glucose Tipo 5/antagonistas & inibidores , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Ensaios de Triagem em Larga Escala , Humanos , Cinética , Ligantes , Modelos Moleculares , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
5.
Chemistry ; 23(33): 8073-8081, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28346703

RESUMO

The importance of the hydrogen bonding interactions in the GLUT-hexose binding process (GLUT=hexose transporter) has been demonstrated by studying the binding of structurally modified d-fructose analogues to GLUTs, and in one case its transport into cells. The presence of a hydrogen bond donor at the C-3 position of 2,5-anhydro-d-mannitol derivatives is essential for effective binding to GLUT5 and transport into tumor cells. Surprisingly, installation of a group that can function only as a hydrogen bond acceptor at C-3 resulted in selective recognition by GLUT1 rather than GLUT5. A fluorescently labelled analogue clearly showed GLUT-mediated transport and low efflux properties of the probe. This study reveals that a single positional modification of a 2,5-anhydro-d-mannitol derivative is sufficient to switch its binding preference from GLUT5 to GLUT1, and uncovers general scaffolds that are suitable for the potential selective delivery of molecular payloads into tumor cells via GLUT transport machinery.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Hexoses/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Animais , Transporte Biológico , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Hexoses/química , Humanos , Ligação de Hidrogênio , Manitol/análogos & derivados , Manitol/química , Camundongos , Microscopia Confocal , Proteínas de Transporte de Monossacarídeos/química , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
6.
Nature ; 526(7573): 397-401, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26416735

RESUMO

The altered activity of the fructose transporter GLUT5, an isoform of the facilitated-diffusion glucose transporter family, has been linked to disorders such as type 2 diabetes and obesity. GLUT5 is also overexpressed in certain tumour cells, and inhibitors are potential drugs for these conditions. Here we describe the crystal structures of GLUT5 from Rattus norvegicus and Bos taurus in open outward- and open inward-facing conformations, respectively. GLUT5 has a major facilitator superfamily fold like other homologous monosaccharide transporters. On the basis of a comparison of the inward-facing structures of GLUT5 and human GLUT1, a ubiquitous glucose transporter, we show that a single point mutation is enough to switch the substrate-binding preference of GLUT5 from fructose to glucose. A comparison of the substrate-free structures of GLUT5 with occluded substrate-bound structures of Escherichia coli XylE suggests that, in addition to global rocker-switch-like re-orientation of the bundles, local asymmetric rearrangements of carboxy-terminal transmembrane bundle helices TM7 and TM10 underlie a 'gated-pore' transport mechanism in such monosaccharide transporters.


Assuntos
Frutose/metabolismo , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/metabolismo , Animais , Sítios de Ligação , Transporte Biológico , Bovinos , Membrana Celular/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Frutose/química , Glucose/química , Glucose/metabolismo , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 5/genética , Modelos Moleculares , Mutação Puntual/genética , Conformação Proteica , Ratos , Sais/química , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Simportadores/química , Simportadores/metabolismo
7.
Org Biomol Chem ; 11(30): 4909-20, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23784005

RESUMO

The SLC2 family of facilitative Glucose transporters (Gluts) contains 14 isoforms divided into three classes based on amino acid sequence. While the majority of these proteins transport glucose, a subset can transport fructose. Recently, fructose and the Gluts responsible for fructose uptake have received increased interest due to the correlation between high fructose consumption and early onset of metabolic syndrome. In addition, the up-regulation of Gluts in certain cancers has made possible the development of a number of fructose probes for imaging cancer. Although structure activity data has defined some aspects of fructose-specific uptake, a far more detailed clarification of the variables governing the onset and progression of fructose-correlated diseases is still needed. Here, we summarize what is known about molecular structure and fructose uptake as it relates to the correlation of fructose and disease.


Assuntos
Doença , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/metabolismo , Animais , Frutose/química , Frutose/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
8.
J Phys Chem B ; 113(7): 2212-20, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19166280

RESUMO

We propose a key role for the glucose transporter 1 (GLUT1) in mediating the observed changes in the dielectric properties of human erythrocyte membranes as determined by dielectric spectroscopy. Cytochalasin B, a GLUT1 transport inhibitor, abolished the membrane capacitance changes in glucose-exposed red cells. Surprisingly, D-fructose, known to be transported primarily by GLUT5, exerted similar membrane capacitance changes at increasing D-fructose concentrations. In order to evaluate whether the glucose-mediated membrane capacitance changes originated directly from intracellularly bound adenosine triphosphate (ATP) or other components of the glycolysis process, we studied the dielectric responses of swollen erythrocytes with a decreased ATP content and of nucleotide-filled ghosts. Resealed ghosts containing physiological concentrations of ATP yielded the same glucose-dependent capacitance changes as biconcave intact red blood cells, further supporting the finding that ATP is the effector of the glucose-mediated dielectric response where the ATP concentration is also the mediating factor in swollen red blood cells. The results suggest that ATP binding to GLUT1 elicits a membrane capacitance change that increases with the applied concentration gradient of D-glucose. A simplified model of the membrane capacitance alteration with glucose uptake is proposed.


Assuntos
Carboidratos/química , Eritrócitos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Carboidratos/fisiologia , Citocalasina B/farmacologia , Membrana Eritrocítica/metabolismo , Eritrócitos/química , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/metabolismo , Humanos , Modelos Moleculares , Valores de Referência , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA