Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.277
Filtrar
1.
BMC Pulm Med ; 24(1): 237, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745191

RESUMO

BACKGROUND: Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS: Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS: Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS: Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Transplante de Pulmão , Metformina , Necroptose , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Metformina/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Ratos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Necroptose/efeitos dos fármacos , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/complicações , Estresse Oxidativo/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo
2.
Int J Colorectal Dis ; 39(1): 65, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700747

RESUMO

PURPOSE: Remote ischemic preconditioning (RIPC) reportedly reduces ischemia‒reperfusion injury (IRI) in various organ systems. In addition to tension and technical factors, ischemia is a common cause of anastomotic leakage (AL) after rectal resection. The aim of this pilot study was to investigate the potentially protective effect of RIPC on anastomotic healing and to determine the effect size to facilitate the development of a subsequent confirmatory trial. MATERIALS AND METHODS: Fifty-four patients with rectal cancer (RC) who underwent anterior resection were enrolled in this prospectively registered (DRKS0001894) pilot randomized controlled triple-blinded monocenter trial at the Department of Surgery, University Medicine Mannheim, Mannheim, Germany, between 10/12/2019 and 19/06/2022. The primary endpoint was AL within 30 days after surgery. The secondary endpoints were perioperative morbidity and mortality, reintervention, hospital stay, readmission and biomarkers of ischemia‒reperfusion injury (vascular endothelial growth factor, VEGF) and cell death (high mobility group box 1 protein, HMGB1). RIPC was induced through three 10-min cycles of alternating ischemia and reperfusion to the upper extremity. RESULTS: Of the 207 patients assessed, 153 were excluded, leaving 54 patients to be randomized to the RIPC or the sham-RIPC arm (27 each per arm). The mean age was 61 years, and the majority of patients were male (37:17 (68.5:31.5%)). Most of the patients underwent surgery after neoadjuvant therapy (29/54 (53.7%)) for adenocarcinoma (52/54 (96.3%)). The primary endpoint, AL, occurred almost equally frequently in both arms (RIPC arm: 4/25 (16%), sham arm: 4/26 (15.4%), p = 1.000). The secondary outcomes were comparable except for a greater rate of reintervention in the sham arm (9 (6-12) vs. 3 (1-5), p = 0.034). The median duration of endoscopic vacuum therapy was shorter in the RIPC arm (10.5 (10-11) vs. 38 (24-39) days, p = 0.083), although the difference was not statistically significant. CONCLUSION: A clinically relevant protective effect of RIPC on anastomotic healing after rectal resection cannot be assumed on the basis of these data.


Assuntos
Fístula Anastomótica , Precondicionamento Isquêmico , Neoplasias Retais , Humanos , Neoplasias Retais/cirurgia , Masculino , Projetos Piloto , Feminino , Fístula Anastomótica/etiologia , Fístula Anastomótica/prevenção & controle , Pessoa de Meia-Idade , Precondicionamento Isquêmico/métodos , Idoso , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/etiologia , Resultado do Tratamento
3.
Rev Int Androl ; 22(1): 1-7, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38735871

RESUMO

It was aimed to evaluate whether gallic acid (GA) have a beneficial effect in the testicular ischemia/reperfusion injury (IRI) model in rats for the first time. Testicular malondialdehyde, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, catalase, high mobility group box 1 protein, nuclear factor kappa B, tumor necrosis factoralpha, interleukin-6, myeloperoxidase, 78-kDa glucose-regulated protein, activating transcription factor 6, CCAAT-enhancer-binding protein homologous protein and caspase-3 levels were determined using colorimetric methods. The oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis levels increased statistically significantly in the IRI group compared with the sham operated group (p < 0.05). GA application improved these damage significantly (p < 0.05). Moreover, it was found that the results of histological examinations supported the biochemical results to a statistically significant extent. Our findings suggested that GA may be evaluated as a protective agent against testicular IRI.


Assuntos
Estresse do Retículo Endoplasmático , Ácido Gálico , Proteína HMGB1 , NF-kappa B , Estresse Oxidativo , Traumatismo por Reperfusão , Torção do Cordão Espermático , Testículo , Masculino , Animais , Ácido Gálico/farmacologia , Ácido Gálico/administração & dosagem , Ratos , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , NF-kappa B/metabolismo , Proteína HMGB1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley
4.
Rev Int Androl ; 22(1): 29-37, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38735875

RESUMO

A significant clinical condition known as testicular torsion leads to permanent ischemic damage to the testicular tissue and consequent loss of function in the testicles. In this study, it was aimed to evaluate the protective effects of Astaxanthin (ASTX) on testicular damage in rats with testicular torsion/detorsion in the light of biochemical and histopathological data. Spraque Dawley rats of 21 were randomly divided into three groups; sham, testicular torsion/detorsion (TTD) and astaxanthin + testicular torsion/detorsion (ASTX + TTD). TTD and ASTX + TTD groups underwent testicular torsion for 2 hours and then detorsion for 4 hours. Rats in the ASTX + TTD group were given 1 mg/kg/day astaxanthin by oral gavage for 7 days before torsion. Following the detorsion process, oxidative stress parameters and histopathological changes in testicular tissue were evaluated. Malondialdehyde (MDA) and total oxidant status (TOS) levels were significantly decreased in the ASTX group compared to the TTD group, while superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS) levels were increased (p < 0.05). Moreover, histopathological changes were significantly reduced in the group given ASTX (p < 0.0001). It was determined that ASTX administration increased Beclin-1 immunoreactivity in ischemic testicular tissue, while decreasing caspase-3 immunoreactivity (p < 0.0001). Our study is the first to investigate the antiautophagic and antiapoptotic properties of astaxanthin after testicular torsion/detorsion based on the close relationship of Beclin-1 and caspase-3 in ischemic tissues. Our results clearly demonstrate the protective effects of ASTX against ischemic damage in testicular tissue. In ischemic testicular tissue, ASTX contributes to the survival of cells by inducing autophagy and inhibiting the apoptosis.


Assuntos
Antioxidantes , Autofagia , Estresse Oxidativo , Ratos Sprague-Dawley , Torção do Cordão Espermático , Testículo , Xantofilas , Masculino , Animais , Xantofilas/farmacologia , Xantofilas/administração & dosagem , Autofagia/efeitos dos fármacos , Ratos , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Malondialdeído/metabolismo , Distribuição Aleatória , Traumatismo por Reperfusão/prevenção & controle , Superóxido Dismutase/metabolismo , Glutationa/metabolismo
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731866

RESUMO

Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.


Assuntos
Fígado Gorduroso , Transplante de Fígado , Preservação de Órgãos , Traumatismo por Reperfusão , Doadores de Tecidos , Humanos , Traumatismo por Reperfusão/prevenção & controle , Transplante de Fígado/métodos , Transplante de Fígado/efeitos adversos , Preservação de Órgãos/métodos , Fígado Gorduroso/patologia , Fígado/patologia , Soluções para Preservação de Órgãos , Animais , Perfusão/métodos
6.
Eur Rev Med Pharmacol Sci ; 28(6): 2501-2508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567610

RESUMO

OBJECTIVE: This study aimed to analyze the histopathological and biochemical effects of dexmedetomidine on the rat uteri exposed to experimental ischemia-reperfusion injury. MATERIALS AND METHODS: Twenty-four female rats were randomly divided into three groups. Group 1 was defined as the control group. An experimental uterine ischemia-reperfusion model was created in Group 2. Group 3 was assigned as the treatment group. Similar uterine ischemia-reperfusion models were created for the rats in Group 3, and then, unlike the other groups, 100 µg/kg of dexmedetomidine was administered intraperitoneally immediately after the onset of reperfusion. In blood biochemical analysis, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA), interleukin 1beta (IL-1ß), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels were measured. In the histopathological analyses, endometrial epithelial glandular changes (leukocytosis, cell degeneration) and endometrial stromal changes (congestion, edema) were analyzed using the tissue damage scoring system. RESULTS: It was observed that IL-1ß, IL-6, and TNF-α levels were significantly suppressed in Group 3 compared to Group 2 (p=0.001, p<0.001 and p=0.001, respectively). MDA level was noted as the highest in Group 2. The MDA value in Group 3 was measured at 5.37±0.82, which was significantly decreased compared to Group 2 (p<0.001). An increase in antioxidant enzyme activities (SOD and GSH-PX) was observed in Group 3 compared to Group 2 (p=0.001 and p=0.006, respectively). In our histopathological analysis, a significant improvement in endometrial epithelial glandular and endometrial stromal changes was revealed in Group 3 compared to Group 2 (p<0.001). CONCLUSIONS: In our study, it has been documented that dexmedetomidine protects the uterine tissue against ischemia-reperfusion injury.


Assuntos
Dexmedetomidina , Traumatismo por Reperfusão , Ratos , Feminino , Animais , Dexmedetomidina/farmacologia , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa , Interleucina-6 , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Antioxidantes/farmacologia , Isquemia , Útero , Superóxido Dismutase , Malondialdeído/análise
7.
BMC Pulm Med ; 24(1): 207, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671448

RESUMO

OBJECTIVE: The aim of this research was to examine how penehyclidine hydrochloride (PHC) impacts the occurrence of pyroptosis in lung tissue cells within a rat model of lung ischemia-reperfusion injury. METHODS: Twenty-four Sprague Dawley (SD) rats, weighing 250 g to 270 g, were randomly distributed into three distinct groups as outlined below: a sham operation group (S group), a control group (C group), and a test group (PHC group). Rats in the PHC group received a preliminary intravenous injection of PHC at a dose of 3 mg/kg. At the conclusion of the experiment, lung tissue and blood samples were collected and properly stored for subsequent analysis. The levels of malondialdehyde, superoxide dismutase, and myeloperoxidase in the lung tissue, as well as IL-18 and IL-1ß in the blood serum, were assessed using an Elisa kit. Pyroptosis-related proteins, including Caspase1 p20, GSDMD-N, and NLRP3, were detected through the western blot method. Additionally, the dry-to-wet ratio (D/W) of the lung tissue and the findings from the blood gas analysis were also documented. RESULTS: In contrast to the control group, the PHC group showed enhancements in oxygenation metrics, reductions in oxidative stress and inflammatory reactions, and a decrease in lung injury. Additionally, the PHC group exhibited lowered levels of pyroptosis-associated proteins, including the N-terminal segment of gasdermin D (GSDMD-N), caspase-1p20, and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3). CONCLUSION: Pre-administration of PHC has the potential to mitigate lung ischemia-reperfusion injuries by suppressing the pyroptosis of lung tissue cells, diminishing inflammatory reactions, and enhancing lung function. The primary mechanism behind anti-pyroptotic effect of PHC appears to involve the inhibition of oxidative stress.


Assuntos
Gasderminas , Pulmão , Piroptose , Quinuclidinas , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Piroptose/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Ratos , Quinuclidinas/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Masculino , Malondialdeído/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Superóxido Dismutase/metabolismo , Peroxidase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Caspase 1/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo
8.
J Toxicol Environ Health A ; 87(10): 448-456, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38557302

RESUMO

Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.


Assuntos
Isquemia Encefálica , Cistanche , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/farmacologia , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/farmacologia , Apoptose , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Fármacos Neuroprotetores/farmacologia
9.
Eur J Cardiothorac Surg ; 65(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38597892

RESUMO

OBJECTIVES: Intestinal ischaemia-reperfusion injury induced by cardiopulmonary bypass causes intestinal epithelial barrier dysfunction, leading to dysbiosis and bacterial translocation. We conducted a randomized prospective study with 2 objectives: (i) to investigate epithelial barrier dysfunction and bacterial translocation induced by cardiopulmonary bypass and changes in the gut microbiota and (ii) to verify whether probiotics can improve these conditions. METHODS: Between 2019 and 2020, patients 0-15 years old scheduled to undergo cardiac surgery using cardiopulmonary bypass were enrolled and randomly allocated to 2 groups: the intervention group received probiotics and the control group did not receive probiotics. We analysed the microbiota in faeces and blood, organic acid concentrations in faeces, plasma intestinal fatty acid-binding protein and immunological responses. RESULTS: Eighty-two patients were enrolled in this study. The characteristics of the patients were similar in both groups. The total number of obligate anaerobes was higher in the intervention group than in the control group after postoperative day 7. We identified 4 clusters within the perioperative gut microbiota, and cluster changes showed a corrective effect of probiotics on dysbiosis after postoperative day 7. Organic acid concentrations in faeces, incidence of bacterial translocation, intestinal fatty acid-binding protein levels and immunological responses, except for interleukin -17A, were not markedly different between the 2 groups. CONCLUSIONS: Administration of probiotics was able to correct dysbiosis but did not sufficiently alleviate the intestinal damage induced by cardiopulmonary bypass. More effective methods should be examined to prevent disturbances induced by cardiac surgery using cardiopulmonary bypass. CLINICAL TRIAL REGISTRATION NUMBER: https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000037174 UMIN000035556.


Assuntos
Ponte Cardiopulmonar , Microbioma Gastrointestinal , Probióticos , Humanos , Ponte Cardiopulmonar/efeitos adversos , Ponte Cardiopulmonar/métodos , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Masculino , Feminino , Microbioma Gastrointestinal/fisiologia , Pré-Escolar , Estudos Prospectivos , Lactente , Criança , Adolescente , Disbiose , Recém-Nascido , Translocação Bacteriana , Fezes/microbiologia , Traumatismo por Reperfusão/prevenção & controle , Complicações Pós-Operatórias/prevenção & controle , Intestinos , Mucosa Intestinal/metabolismo
10.
Curr Opin Organ Transplant ; 29(3): 186-194, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38483109

RESUMO

PURPOSE OF REVIEW: The number of patients on the liver transplant waitlist continues to grow and far exceeds the number of livers available for transplantation. Normothermic machine perfusion (NMP) allows for ex-vivo perfusion under physiologic conditions with the potential to significantly increase organ yield and expand the donor pool. RECENT FINDINGS: Several studies have found increased utilization of donation after cardiac death and extended criteria brain-dead donor livers with implementation of NMP, largely due to the ability to perform viability testing during machine perfusion. Recently, proposed viability criteria include lactate clearance, maintenance of perfusate pH more than 7.2, ALT less than 6000 u/l, evidence of glucose metabolism and bile production. Optimization of liver grafts during NMP is an active area of research and includes interventions for defatting steatotic livers, preventing ischemic cholangiopathy and rejection, and minimizing ischemia reperfusion injury. SUMMARY: NMP has resulted in increased organ utilization from marginal donors with acceptable outcomes. The added flexibility of prolonged organ storage times has the potential to improve time constraints and transplant logistics. Further research to determine ideal viability criteria and investigate ways to optimize marginal and otherwise nontransplantable liver grafts during NMP is warranted.


Assuntos
Transplante de Fígado , Preservação de Órgãos , Perfusão , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Transplante de Fígado/tendências , Humanos , Perfusão/métodos , Perfusão/efeitos adversos , Perfusão/tendências , Perfusão/instrumentação , Preservação de Órgãos/métodos , Preservação de Órgãos/efeitos adversos , Preservação de Órgãos/tendências , Doadores de Tecidos/provisão & distribuição , Sobrevivência de Enxerto , Resultado do Tratamento , Seleção do Doador , Temperatura , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/etiologia , Sobrevivência de Tecidos , Animais
11.
FASEB J ; 38(6): e23575, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38530256

RESUMO

Ischemia-reperfusion injury (IRI) is one of the primary clinical causes of acute kidney injury (AKI). The key to IRI lies in immune-inflammatory damage, where dendritic cells (DCs) play a central role in eliciting immune responses within the context of inflammation induced by ischemia-reperfusion. Our previous study has confirmed that delayed ischemic preconditioning (DIPC) can reduce the kidney injury by mediating DCs to regulate T-cells. However, the clinical feasibility of DIPC is limited, as pre-clamping of the renal artery is not applicable for the prevention and treatment of ischemia-reperfusion acute kidney injury (I/R-AKI) in clinical patients. Therefore, the infusion of DCs as a substitute for DIPC presents a more viable strategy for preventing renal IRI. In this study, we further evaluated the impact and mechanism of infused tolerogenic CD11c+DCs on the kidneys following IRI by isolating bone marrow-derived dendritic cells and establishing an I/R-AKI model after pre-infusion of DCs. Renal function was significantly improved in the I/R-AKI mouse model after pre-infused with CD11c+DCs. The pro-inflammatory response and oxidative damage were reduced, and the levels of T helper 2 (Th2) cells and related anti-inflammatory cytokines were increased, which was associated with the reduction of autologous DCs maturation mediated by CD11c+DCs and the increase of regulatory T-cells (Tregs). Next, knocking out CD11c+DCs, we found that the reduced immune protection of tolerogenic CD11c+DCs reinfusion was related to the absence of own DCs. Together, pre-infusion of tolerogenic CD11c+DCs can replace the regulatory of DIPC on DCs and T-cells to alleviate I/R-AKI. DC vaccine is expected to be a novel avenue to prevent and treat I/R-AKI.


Assuntos
Injúria Renal Aguda , Precondicionamento Isquêmico , Traumatismo por Reperfusão , Humanos , Animais , Camundongos , Rim , Isquemia , Injúria Renal Aguda/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Reperfusão , Células Dendríticas
12.
Curr Med Sci ; 44(2): 380-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517675

RESUMO

OBJECTIVE: A novel technique was explored using an airbag-selective portal vein blood arrester that circumvents the need for an intraoperative assessment of anatomical variations in patients with complex intrahepatic space-occupying lesions. METHODS: Rabbits undergoing hepatectomy were randomly assigned to 4 groups: intermittent portal triad clamping (PTC), intermittent portal vein clamping (PVC), intermittent portal vein blocker with an airbag-selective portal vein blood arrester (APC), and without portal blood occlusion (control). Hepatic ischemia and reperfusion injury were assessed by measuring the 7-day survival rate, blood loss, liver function, hepatic pathology, hepatic inflammatory cytokine infiltration, hepatic malondialdehyde levels, and proliferating cell nuclear antigen levels. RESULTS: Liver damage was substantially reduced in the APC and PVC groups. The APC animals exhibited transaminase levels similar to or less oxidative stress damage and inflammatory hepatocellular injury compared to those exhibited by the PVC animals. Bleeding was significantly higher in the control group than in the other groups. The APC group had less bleeding than the PVC group because of the avoidance of portal vein skeletonization during hepatectomy. Thus, more operative time was saved in the APC group than in the PVC group. Moreover, the total 7-day survival rate in the APC group was higher than that in the PTC group. CONCLUSION: Airbag-selective portal vein blood arresters may help protect against hepatic ischemia and reperfusion injury in rabbits undergoing partial hepatectomy. This technique may also help prevent liver damage in patients requiring hepatectomy.


Assuntos
Air Bags , Traumatismo por Reperfusão , Humanos , Animais , Coelhos , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Veia Porta/cirurgia , Constrição , Fígado/patologia , Isquemia/patologia , Traumatismo por Reperfusão/prevenção & controle
13.
Eur J Pharmacol ; 971: 176521, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522639

RESUMO

Maintaining blood-brain barrier (BBB) integrity is critical components of therapeutic approach for ischemic stroke. Fibroblast growth factor 17 (FGF17), a member of FGF8 superfamily, exhibits the strongest expression throughout the wall of all major arteries during development. However, its molecular action and potential protective role on brain endothelial cells after stroke remains unclear. Here, we observed reduced levels of FGF17 in the serum of patients with ischemic stroke, as well as in the brains of mice subjected to middle cerebral artery occlusion (MCAO) injury and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced brain microvascular endothelial cells (bEnd.3) cells. Moreover, treatment with exogenous recombinant human FGF17 (rhFGF17) decreased infarct volume, improved neurological deficits, reduced Evans Blue leakage and upregulated the expression of tight junctions in MCAO-injured mice. Meanwhile, rhFGF17 increased cell viability, enhanced trans-endothelial electrical resistance, reduced sodium fluorescein leakage, and alleviated reactive oxygen species (ROS) generation in OGD/R-induced bEnd.3 cells. Mechanistically, the treatment with rhFGF17 resulted in nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation and upregulation of heme oxygenase-1 (HO-1) expression. Additionally, based on in-vivo and in-vitro research, rhFGF17 exerted protective effects against ischemia/reperfusion (I/R) -induced BBB disruption and endothelial cell apoptosis through the activation of the FGF receptor 3/PI3K/AKT signaling pathway. Overall, our findings indicated that FGF17 may hold promise as a novel therapeutic strategy for ischemic stroke patients.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Ratos , Humanos , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais , Fosfatidilinositol 3-Quinases/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Reperfusão , Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/uso terapêutico , Fatores de Crescimento de Fibroblastos/metabolismo
14.
J Physiol ; 602(8): 1835-1852, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38529522

RESUMO

Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Ratos Wistar , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Inflamação/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/complicações , Fibrose
15.
Physiol Res ; 73(1): 127-138, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466011

RESUMO

MicroRNAs have been shown to potentially function in cerebral ischemia/reperfusion (IR) injury. This study aimed to examine the expression of microRNA-320 (miR-320) in cerebral IR injury and its involvement in cerebral mitochondrial function, oxidative stress, and inflammatory responses by targeting the HMGB1/NF-kappaB axis. Sprague-Dawley rats were subjected to middle cerebral artery occlusion to simulate cerebral IR injury. The cerebral expression of miR-320 was assessed using qRT-PCR. Neurological function, cerebral infarct volume, mitochondrial function, oxidative stress, and inflammatory cytokines were evaluated using relevant methods, including staining, fluorometry, and ELISA. HMGB1 expression was analyzed through Western blotting. The levels of miR-320, HMGB1, neurological deficits, and cerebral infarction were significantly higher after IR induction. Intracerebral overexpression of miR-320 resulted in substantial neurological deficits, increased infarct volume, elevated levels of 8-isoprostane, NF-kappaBp65, TNF-alpha, IL-1beta, ICAM-1, VCAM-1, and HMGB1 expression. It also promoted the loss of mitochondrial membrane potential and ROS levels while reducing MnSOD and GSH levels. Downregulation of miR-320 and inhibition of HMGB1 activity significantly reversed the outcomes of cerebral IR injury. MiR-320 plays a negative role in regulating cerebral inflammatory/oxidative reactions induced by IR injury by enhancing HMGB1 activity and modulating mitochondrial function.


Assuntos
Proteína HMGB1 , MicroRNAs , Traumatismo por Reperfusão , Animais , Ratos , Proteína HMGB1/genética , Infarto da Artéria Cerebral Média/genética , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
16.
Biol Direct ; 19(1): 23, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500127

RESUMO

BACKGROUND: This study seeks to investigate the impacts of Lactobacillus reuteri (L. reuteri) on hepatic ischemia-reperfusion (I/R) injury and uncover the mechanisms involved. METHODS: Mice in the I/R groups were orally administered low and high doses of L.reuteri (L.reuteri-low and L. reuteri-hi; 1 × 1010 CFU/d and 1 × 1011 CFU/d), for 4 weeks prior to surgery. Following this, mice in the model group were treated with an Nrf2 inhibitor (ML-385), palmitoylcarnitine, or a combination of both. RESULTS: After treatment with L. reuteri, mice exhibited reduced levels of serum aminotransferase (ALT), aspartate aminotransferase (AST), and myeloperoxidase (MPO) activity, as well as a lower Suzuki score and apoptosis rate. L. reuteri effectively reversed the I/R-induced decrease in Bcl2 expression, and the significant increases in the levels of Bax, cleaved-Caspase3, p-p65/p65, p-IκB/IκB, p-p38/p38, p-JNK/JNK, and p-ERK/ERK. Furthermore, the administration of L. reuteri markedly reduced the inflammatory response and oxidative stress triggered by I/R. This treatment also facilitated the activation of the Nrf2/HO-1 pathway. L. reuteri effectively counteracted the decrease in levels of beneficial gut microbiota species (such as Blautia, Lachnospiraceae NK4A136, and Muribaculum) and metabolites (including palmitoylcarnitine) induced by I/R. Likewise, the introduction of exogenous palmitoylcarnitine demonstrated a beneficial impact in mitigating hepatic injury induced by I/R. However, when ML-385 was administered prior to palmitoylcarnitine treatment, the previously observed effects were reversed. CONCLUSION: L. reuteri exerts protective effects against I/R-induced hepatic injury, and its mechanism may be related to the promotion of probiotic enrichment, differential metabolite homeostasis, and the Nrf2/HO-1 pathway, laying the foundation for future clinical applications.


Assuntos
Microbioma Gastrointestinal , Limosilactobacillus reuteri , Traumatismo por Reperfusão , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/uso terapêutico , Palmitoilcarnitina/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia
17.
J Physiol ; 602(6): 1175-1197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431908

RESUMO

Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Selênio , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Neuroproteção/fisiologia , Proteína 2 Associada à Membrana da Vesícula , Selenoproteína P , Oxigênio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Glucose/metabolismo , Proteínas Qa-SNARE
18.
Eur J Pharmacol ; 970: 176507, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492877

RESUMO

BACKGROUND AND AIMS: Acute kidney injury (AKI) due to renal ischemia-reperfusion injury (RIRI) is associated with high morbidity and mortality, with no renoprotective drug available. Previous research focused on single drug targets, yet this approach has not reached translational success. Given the complexity of this condition, we aimed to identify a disease module and apply a multitarget network pharmacology approach. METHODS: Identification of a disease module with potential drug targets was performed utilizing Disease Module Detection algorithm using NADPH oxidases (NOXs) as seeds. We then assessed the protective effect of a multitarget network pharmacology targeting the identified module in a rat model of RIRI. Rats were divided into five groups; sham, RIRI, and RIRI treated with setanaxib (NOX inhibitor, 10 mg/kg), etanercept (TNF-α inhibitor, 10 mg/kg), and setanaxib and etanercept (5 mg/kg each). Kidney functions, histopathological changes and oxidative stress markers (MDA and reduced GSH) were assessed. Immunohistochemistry of inflammatory (TNF-α, NF-κB) apoptotic (cCasp-3, Bax/Bcl 2), fibrotic (α-SMA) and proteolysis (MMP-9) markers was performed. RESULTS: Our in-silico analysis yielded a disease module with TNF receptor 1 (TNFR1A) as the closest target to both NOX1 and NOX2. Targeting this module by a low-dose combination of setanaxib, and etanercept, resulted in a synergistic effect and ameliorated ischemic AKI in rats. This was evidenced by improved kidney function and reduced expression of inflammatory, apoptotic, proteolytic and fibrotic markers. CONCLUSIONS: Our findings show that applying a multitarget network pharmacology approach allows synergistic renoprotective effect in ischemic AKI and might pave the way towards translational success.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Ratos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Etanercepte/farmacologia , Rim , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Isquemia/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle
19.
Transplant Proc ; 56(3): 672-677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555195

RESUMO

BACKGROUND: Liver ischemia/reperfusion injury (IRI) is a well-documented phenomenon that occurs after liver resection and transplantation, posing a significant clinical challenge. We aim to contribute valuable insights into potential therapeutic interventions for fibrotic liver IRI, ultimately advancing our understanding of liver transplantation and resection outcomes. METHODS: Twenty-four mice were divided randomly into 4 equal groups: [1] the normal group, n = 6; [2] the liver fibrosis (LF) group, n = 6; [3] the LF and IR group, n = 6; and [4] the LF with treatment of rapamycin and IR group; n = 6. RESULTS: Key biomarkers assessing liver function, alanine aminotransferase and aspartate aminotransferase, significantly decreased with Rapamycin administration. There is a substantial decrease observed in inflammatory cytokines such as interleukin (IL) 6, IL-1B, tumor necrosis factor alpha, Transforming growth factor-beta (TGF-beta), and Inducible nitric oxide synthase (iNOS) with rapamycin treatment. Furthermore, NOX levels, caspase-3, and caspase-9 were reduced after rapamycin administration. CONCLUSION: The application of rapamycin demonstrates appropriate effects in anti-inflammation, antioxidation, and anti-apoptosis, indicating significant therapeutic potential for fibrotic liver IRI.


Assuntos
Cirrose Hepática , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Sirolimo , Animais , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Sirolimo/farmacologia , Camundongos , Cirrose Hepática/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Citocinas/metabolismo , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Alanina Transaminase/sangue , Óxido Nítrico Sintase Tipo II/metabolismo
20.
Clin Immunol ; 261: 110167, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38453127

RESUMO

Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown. In this study, A bilateral renal I/R mouse model was used to evaluate the role of LXA4 in wild-type, IRG1 knockout, and IRAK-M knockout mice. Our results showed that LXA4, as well as 5-LOX and ALXR, were quickly induced, and subsequently decreased by renal I/R. LXA4 pretreatment improved renal I/R-induced renal function impairment and renal damage and inhibited inflammatory responses and oxidative stresses in mice kidneys. Notably, LXA4 inhibited I/R-induced the activation of TLR4 signal pathway including decreased phosphorylation of TAK1, p36, and p65, but did not affect TLR4 and p-IRAK-1. The analysis of transcriptomic sequencing data and immunoblotting suggested that innate immune signal molecules interleukin-1 receptor-associated kinase-M (IRAK-M) and immunoresponsive gene 1 (IRG1) might be the key targets of LXA4. Further, the knockout of IRG1 or IRAK-M abolished the beneficial effects of LXA4 on IRI-AKI. In addition, IRG1 deficiency reversed the up-regulation of IRAK-M by LXA4, while IRAK-M knockout had no impact on the IRG1 expression, indicating that IRAK-M is a downstream molecule of IRG1. Mechanistically, we found that LXA4-promoted IRG1-itaconate not only enhanced Nrf2 activation and increased HO-1 and NQO1, but also upregulated IRAK-M, which interacted with TRAF6 by competing with IRAK-1, resulting in deactivation of TLR4 downstream signal in IRI-AKI. These data suggested that LXA4 protected against IRI-AKI via promoting IRG1/Itaconate-Nrf2 and IRAK-M-TRAF6 signaling pathways, providing the rationale for a novel strategy for preventing and treating IRI-AKI.


Assuntos
Injúria Renal Aguda , Lipoxinas , Traumatismo por Reperfusão , Succinatos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/farmacologia , Transdução de Sinais , Rim/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA