Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Methods Mol Biol ; 2803: 123-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676889

RESUMO

Isoproterenol (ISO) administration produces significant biochemical and histological changes including oxidative stress, reactive oxygen species (ROS) overproduction, and inflammation that leads to aggravation of myocardial injury. Subcutaneous or intraperitoneal ISO injection into rats can replicate several features of human heart disease, making it a useful tool for comprehending the underlying mechanisms and evaluating potential therapeutic strategies. In the present chapter, we elaborate on how depending on the precise experimental goals and the intended level of severity, different dosages and regimens are employed to induce myocardial injury.


Assuntos
Modelos Animais de Doenças , Isoproterenol , Estresse Oxidativo , Espécies Reativas de Oxigênio , Isoproterenol/toxicidade , Animais , Ratos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Humanos , Masculino , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/patologia , Traumatismos Cardíacos/metabolismo
2.
Sci Rep ; 14(1): 3552, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346998

RESUMO

Cardiac diffusion weighted-magnetic resonance imaging (DWI) has slowly developed due to its technical difficulties. However, this limitation could be overcome by advanced techniques, including a stimulated echo technique and a gradient moment nulling technique. This study aimed to develop and validate a high-order DWI sequence, using echo-planar imaging (EPI) and second-order motion-compensated (M012) diffusion gradient applied to cardiac imaging in small-sized animals with fast heart and respiratory rates, and to investigate the feasibility of cardiac DWI, diagnosing acute myocardial injury in isoproterenol-induced myocardial injury rat models. The M012 diffusion gradient sequence was designed for diffusion tensor imaging of the rat myocardium and validated in the polyvinylpyrrolidone phantom. Following sequence optimization, 23 rats with isoproterenol-induced acute myocardial injury and five healthy control rats underwent cardiac MRI, including cine imaging, T1 mapping, and DWI. Diffusion gradient was applied using a 9.4-T MRI scanner (Bruker, BioSpec 94/20, gradient amplitude = 440 mT/m, maximum slew rate = 3440 T/m/s) with double gating (electrocardiogram and respiratory gating). Troponin I was used as a serum biomarker for myocardial injury. Histopathologic examination of the heart was subsequently performed. The developed DWI sequence using EPI and M012 provided the interpretable images of rat hearts. The apparent diffusion coefficient (ADC) values were significantly higher in rats with acute myocardial injury than in the control group (1.847 ± 0.326 * 10-3 mm2/s vs. 1.578 ± 0.144 * 10-3 mm2/s, P < 0.001). Troponin I levels were increased in the blood samples of rats with acute myocardial injury (P < 0.001). Histopathologic examinations detected myocardial damage and subendocardial fibrosis in rats with acute myocardial injury. The newly developed DWI technique has the ability to detect myocardial injury in small animal models, representing high ADC values on the myocardium with isoproterenol-induced injury.


Assuntos
Imagem de Tensor de Difusão , Traumatismos Cardíacos , Animais , Ratos , Troponina I , Isoproterenol , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/diagnóstico por imagem , Modelos Animais , Reprodutibilidade dos Testes
3.
Sci Rep ; 14(1): 924, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195835

RESUMO

Doxorubicin (DOX) is a popular and potent anticancer drug, but its cardiotoxicity limits its clinical application. Shikonin has a wide range of biological functions, including antioxidant and anti-inflammatory effects. The aim of this study was to investigate the effects of shikonin on DOX-induced cardiac injury and to identify the underlying mechanisms. Mice receiving shikonin showed reduced cardiac injury response and enhanced cardiac function after DOX administration. Shikonin significantly attenuated DOX-induced oxidative damage, inflammation accumulation and cardiomyocyte apoptosis. Shikonin protects against DOX-induced cardiac injury by inhibiting Mammalian sterile 20-like kinase 1 (Mst1) and oxidative stress and activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In conclusion, shikonin alleviates DOX-induced cardiotoxicity by inhibiting Mst1 and activating Nrf2. Shikonin may be used to treat DOX-induced cardiac injury.


Assuntos
Cardiotoxicidade , Traumatismos Cardíacos , Animais , Camundongos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/tratamento farmacológico , Fator 2 Relacionado a NF-E2
4.
Biomed Pharmacother ; 170: 116020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147733

RESUMO

INTRODUCTION: Mitochondrial dysfunction causes myocardial disease. This study investigated the effects of MitoQ alone and in combination with moderate-intensity endurance training (EX) on cardiac function and content and mRNA expression of several proteins involved in mitochondrial quality control in isoproterenol (ISO)-induced heart injuries METHODS: Seven groups of CTL, ISO, ISO-EX, ISO-MitoQ-125, ISO-MitoQ-250, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 were assigned. Rats were trained on a treadmill, and the MitoQ groups received MitoQ in drinking water for 8 weeks, starting one week after the induction of heart injury. Arterial pressure and cardiac function indices, mRNA expression, protein content, oxidant and antioxidant markers, fibrosis, and histopathological changes were assessed by physiograph, Real-Time PCR, immunofluorescence, calorimetry, Masson's trichrome, and H&E staining, respectively. RESULTS: The impacts of MitoQ-125, EX+MitoQ-125, and EX+MitoQ-250 on arterial pressure and left ventricular systolic pressure were higher than MitoQ-250 or EX alone. ± dp/dt max were higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-MitoQ-125 and ISO-MitoQ-250 groups, respectively. Histopathological scores and fibrosis decreased in ISO-EX, ISO-MitoQ-125, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 groups. The restoration of MFN2, PINK-1, and FIS-1 changes was higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-EX, ISO-MitoQ-125 and ISO-MitoQ-250 groups. The expression of MFN2 and PINK-1 was lower in ISO-MitoQ-125 and ISO-EX+MitoQ-125 than ISO and CTL groups. The expression of FIS-1 in ISO-EX and ISO-EX+MitoQ-250 increased compared to CTL and ISO groups. MDA decreased in ISO-MitoQ-125 and ISO-EX+MitoQ-125 groups. CONCLUSION: Exercise and MitoQ combination have additive effects on cardiac function by modulating cardiac mitochondria quality. This study provided a possible therapy to treat heart injuries.


Assuntos
Treino Aeróbico , Traumatismos Cardíacos , Humanos , Ratos , Animais , Isoproterenol/toxicidade , Dinâmica Mitocondrial , Mitofagia , Mitocôndrias Cardíacas , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/prevenção & controle , Suplementos Nutricionais , Fibrose , RNA Mensageiro
5.
Aging (Albany NY) ; 15(21): 11845-11859, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916995

RESUMO

BACKGROUND: Capsaicin (CAP), a frequently occurring alkaloid component found in spicy peppers, has demonstrated therapeutic potential against tumors, metabolic disease, and cardiovascular disorders. Doxorubicin (DOX), a widely used anthracycline drug in chemotherapy, is notorious for its cardiotoxicity. This study aimed to investigate the potential of CAP in mitigating DOX toxicity in mouse hearts and H9C2 cells, as well as to explore the underlying mechanisms. METHODS: In our study, we conducted experiments on both mice and H9C2 cells. The mice were divided into four groups and treated with different substances: normal saline, CAP, DOX and CAP+DOX. We evaluated the induction of ferroptosis by DOX and the remission of ferroptosis by CAP using various methods, including echocardiography, Hematoxylin and Eosin (H&E) staining, Masson's trichrome staining, and determination of ferroptosis metabolites, genes and proteins. Additionally, we employed RNA-seq to identify the inhibitory effect of CAP on DOX-induced myocardial apoptosis, which was further confirmed through western blotting. Similar approaches were applied to H9C2 cells, yielding reliable results. RESULTS: Our study demonstrated that treatment with CAP improved the survival rate of DOX-treated mice and reduced myocardial injury. Mechanistically, CAP downregulated transferrin (Trf) and upregulated solute carrier family 40 member 1 (SLC40A1), which helped maintain iron levels in the cells and prevent ferroptosis. Furthermore, CAP inhibited DOX-induced apoptosis by modulating the phosphoinositide 3-kinase (PI3K)- protein kinase B (Akt) signaling pathway. Specifically, CAP activated the PI3K-Akt pathway and regulated downstream BCL2 and BAX to mitigate DOX-induced apoptosis. Therefore, our results suggest that CAP effectively alleviates acute myocardial injury induced by DOX. CONCLUSION: Our findings demonstrate that CAP has the potential to alleviate DOX-induced ferroptosis by regulating iron homeostasis. Additionally, it can inhibit DOX-induced apoptosis by activating PI3K-Akt signaling pathway.


Assuntos
Traumatismos Cardíacos , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Capsaicina/metabolismo , Capsaicina/farmacologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Doxorrubicina/toxicidade , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/tratamento farmacológico , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/patologia , Apoptose , Homeostase , Ferro/metabolismo
6.
Front Immunol ; 14: 1122317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275860

RESUMO

Purpose: Myocardial injury is a common complication in patients with endotoxaemia/sepsis, especially in children. Moreover, it develops through an unclear pathophysiological mechanism, and effective therapies are lacking. Recently, RNA modification, particularly N 6-methyladenosine (m6A) modification, has been found to be involved in various physiological processes and to play important roles in many diseases. However, the role of m6A modification in endotoxaemia/sepsis-induced myocardial injury is still in its infancy. Therefore, we attempted to construct the m6A modification map of myocardial injury in a rat model treated by lipopolysaccharide (LPS) and explore the role of m6A modification in LPS-induced myocardial injury. Method: Myocardial injury adolescent rat model was constructed by intraperitoneal injection of LPS. m6A RNA Methylation Quantification Kit was used to detect overall level of m6A modification in rat cardiac tissue. m6A-specific methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted to identify the altered m6A-modified genes and differentially expressed genes in cardiac tissue of rats treated by LPS and control rats (6 versus. 6). Bioinformatics was used to analyze the functions of differentially m6A modified genes, differentially expressed genes, and genes with both differential m6A modification and differential expression. qPCR was used to detect expression of m6A modification related enzymes. Result: We found that the overall level of m6A modification in cardiac tissue of the LPS group was up-regulated compared with that of the control group. MeRIP-seq and RNA-seq results showed that genes with differential m6A modification, genes with differential expression and genes with both differential m6A modification and differential expression were closely associated with inflammatory responses and apoptosis. In addition, we found that m6A-related enzymes (Mettl16, Rbm15, Fto, Ythdc2 and Hnrnpg) were differentially expressed in the LPS group versus. the control group. Conclusion: m6A modification is involved in the pathogenesis process of LPS-induced myocardial injury, possibly through the regulation of inflammatory response and apoptosis-related pathways. These results provide valuable information regarding the potential pathogenic mechanisms underlying LPS-induced myocardial injury.


Assuntos
Endotoxemia , Traumatismos Cardíacos , Sepse , Animais , Ratos , Lipopolissacarídeos/toxicidade , RNA , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Transcriptoma , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/genética
7.
Int Immunopharmacol ; 119: 110071, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37080067

RESUMO

AIMS: Doxorubicin is a drug widely used in clinical cancer treatment, but severe cardiotoxicity limits its clinical application. Autophagy disorder is an important factor in the mechanism of doxorubicin-induced cardiac injury. As the smallest molecule in nature, hydrogen has various biological effects such as anti-oxidation, anti-apoptosis and regulation of autophagy. Hydrogen therapy is currently considered to be an emerging therapeutic method, but the effect and mechanism of hydrogen on doxorubicin-induced myocardial injury have not been determined. The purpose of this study was to investigate the protective effect of hydrogen inhalation on doxorubicin-induced chronic myocardial injury and its effect and mechanism on autophagy. METHODS: In this study, we established a chronic heart injury model by intraperitoneal injection of doxorubicin in rats for 30 days, accumulating 20 mg/kg. The effect of hydrogen inhalation on the cardiac function in rats was explored by echocardiography, Elisa, and H&E staining. To clarify the influence of autophagy, we detected the expression of LC3 and related autophagy proteins in vivo and in vitro by immunofluorescence and western blot.In order to further explore the mechanism of autophagy, we added pathway inhibitors and used western blot to preliminarily investigate the protective effect of hydrogen inhalation on myocardial injury caused by doxorubicin. RESULTS: Hydrogen inhalation can improve doxorubicin-induced cardiac function decline and pathological structural abnormalities in rats. It was confirmed by immunofluorescence that hydrogen treatment could restore the expression of autophagy marker protein LC3 (microtubule-associated protein 1 light chain 3) in cardiomyocytes reduced by doxorubicin, while reducing cardiomyocyte apoptosis. Mechanistically, Western blot results consistently showed that hydrogen treatment up-regulated the ratio of p-AMPK (phosphorylated AMP-dependent protein kinase) to AMPK and down-regulated p-mTOR (phosphorylated mammalian target of rapamycin) and mTOR ratio. CONCLUSIONS: These results suggest that hydrogen inhalation can activate autophagy through the AMPK/mTOR pathway and protect against myocardial injury induced by doxorubicin. Hydrogen inhalation therapy may be a potential treatment for doxorubicin-induced myocardial injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Traumatismos Cardíacos , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Hidrogênio/uso terapêutico , Hidrogênio/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Miócitos Cardíacos/metabolismo , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/tratamento farmacológico , Doxorrubicina/efeitos adversos , Autofagia , Mamíferos
8.
Balkan Med J ; 40(2): 82-92, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883738

RESUMO

In cardiooncology practice, "early cardiotoxicity" refers to an emerging subclinical myocardial dysfunction/injury in response to certain chemotherapeutic regimens. This condition can progress to overt cardiotoxicity in time and hence warrants proper and timely diagnostic and preventive strategies. Current diagnostic strategies for "early cardiotoxicity" are largely based on conventional biomarkers and certain echocardiographic indices. However, a significant gap still exists in this setting, warranting further strategies to improve diagnosis and overall prognosis in cancer survivors. Copeptin (surrogate marker of the arginine vasopressine axis) might serve as a promising adjunctive guide for the timely detection, risk stratification, and management of early cardiotoxicity on top of conventional strategies largely due to its multifaceted pathophysiological implications in the clinical setting. This work aims to focus on serum copeptin as a marker of "early cardiotoxicity" and its general clinical implications in patients with cancer.


Assuntos
Antineoplásicos , Cardiotoxicidade , Neoplasias , Humanos , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Arginina , Biomarcadores/sangue , Cardiotoxicidade/sangue , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/etiologia , Ecocardiografia , Glicopeptídeos/sangue , Traumatismos Cardíacos/sangue , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/diagnóstico , Neoplasias/sangue , Neoplasias/tratamento farmacológico
9.
Can J Physiol Pharmacol ; 101(5): 258-267, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848640

RESUMO

Type 2 diabetes mellitus (T2DM) increases the risk of cardiovascular disease, especially myocardial injury. Due to their hypoglycemic effects, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are efficiently used for T2DM management. GLP-1RAs also have anti-inflammatory and antioxidative effects and can improve cardiac function. The aim of this study was to investigate the cardioprotective effects of liraglutide, a GLP-1RA, on isoprenaline-induced myocardial injury in rats. The study included four groups of animals. They were pretreated with saline for 10 days + saline on days 9 and 10 (control), saline for 10 days + isoprenaline on days 9 and 10 (isoprenaline group), liraglutide for 10 days + saline on days 9 and 10 (liraglutide group), and liraglutide for 10 days, and on days 9 and 10 isoprenaline was administered. This study evaluated ECG, myocardial injury markers, oxidative stress markers, and pathohistological changes. The results showed that liraglutide mitigated the isoprenaline-induced cardiac dysfunction recorded by ECG. Liraglutide reduced serum markers of myocardial injury such as high-sensitive troponin I, aspartate aminotransferase, alanine aminotransferase, reduced thiobarbituric acid reactive substances, increased catalase and superoxide dismutase activity, increased reduced glutathione level, and improved lipid profile. Liraglutide induced antioxidative protection and alleviated isoprenaline-induced myocardial injury.


Assuntos
Diabetes Mellitus Tipo 2 , Traumatismos Cardíacos , Ratos , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Isoproterenol/toxicidade , Hipoglicemiantes/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/prevenção & controle , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
10.
J Biochem Mol Toxicol ; 37(4): e23309, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36645100

RESUMO

Cardiotoxicity is a severe considerable side effect of cisplatin (CDDP) that requires much medical attention. The current study investigates the cardioprotective effects of canagliflozin (CA) against CDDP-induced heart toxicity. Rats were allocated to the control group; the CA group was administered CA 10 mg/kg/day orally for 10 days; the CDDP group was injected with 7 mg/kg, intraperitoneal as a single dose on the 5th day, and the CDDP + CA group. Compared to the CDDP-treated group, CA effectively attenuated CDDP-induced heart injury as evidenced by a decrease of serum aspartate aminotransferase, alkaline phosphatase, creatine kinase-MB, and lactate dehydrogenase enzymes and supported by the alleviation of histopathological changes in cardiac tissues. Biochemically, CA attenuated cardiac oxidative injury through upregulation of the nuclear factor-erythroid 2 related factor 2 (Nrf2) signal. CA suppressed inflammation by decreasing cardiac NO2 - , MPO, iNOS, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha, and interleukin 1-beta levels. Besides, CA significantly upregulated cardiac levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and p-AKT proteins. Moreover, CA remarkably mitigated CDDP-induced apoptosis via modulation of Bax, cytochrome C, and Bcl-2 protein levels. Together, the present study revealed that CA could be a good candidate for preventing CDDP-induced cardiac injury by modulating iNOS/NF-κB, Nrf2, PI3K/AKT, and Bax/cytochrome C/Bcl-2 signals.


Assuntos
Traumatismos Cardíacos , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Cisplatino/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Citocromos c/metabolismo , Proteína X Associada a bcl-2/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Estresse Oxidativo , Traumatismos Cardíacos/induzido quimicamente , Apoptose
11.
Shock ; 59(4): 627-636, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36680791

RESUMO

ABSTRACT: Background: Lipopolysaccride-induced myocardial injury was characterized by frequent mitochondrial dysfunction. Our previous studies found that nucleolin (NCL) played important protective roles in myocardial ischemia-reperfusion injury. Recently, it has been found that NCL has a protective effect on LPS-induced myocardial injury in vivo . However, the exact underlying mechanisms that how NCL protects myocardium against the LPS-induced myocardial injury remains unclear. Objective: The aim of the study is to investigate the protective role of NCL in LPS-induced myocardial injury from the aspect of mitochondrial biogenesis. Methods: The cardiac-specific NCL-knockout (NCL -/- ) or NCL f/f mice were injected with LPS (10 mg/kg) to induce LPS-induced myocardial injury. The supernatant generated after LPS stimulation of macrophages was used as the conditioned medium to stimulate H9C2 and established the injured cell model. Analysis of mRNA stability, RNA-binding protein immunoprecipitation assay, and luciferase reporter assay were performed to detect the mechanism by which NCL regulated the expression of PGC-1α. Results: The expression of NCL and PGC-1α was elevated in cardiac tissue and cardiomyocytes during LPS-induced myocardial injury. The cardiac-specific NCL-knockout decreased PGC-1α expression, inhibited mitochondrial biogenesis, and increased cardiomyocytes death during LPS-induced myocardial injury in vitro and in vivo . In contrast, the overexpression of NCL could improve mitochondrial biogenesis in H9C2 cells. Moreover, the analysis of mRNA stability and luciferase reporter assay revealed that the interaction between NCL and PGC-1α significantly promoted the stability of PGC-1α mRNA, thereby upregulating the expression of PGC-1α and exerting a cardioprotective effect. In addition, the activation of PGC-1α diminished the detrimental effects of NCL knockdown on mitochondrial biogenesis in vitro and in vivo . Conclusions: Nucleolin upregulated the gene expression of PGC-1α by directly binding to the 5'-UTR of PGC-1α mRNA and increasing its mRNA stabilities, then promoted mitochondrial biogenesis, and played protective effect on cardiomyocytes during LPS-induced myocardial injury. Taken together, all these data showed that NCL activated PGC-1α to rescue cardiomyocytes from LPS-induced myocardial injury insult, suggesting that the cardioprotective role of NCL might be a promising prospect for clinical treatment of patients with endotoxemia.


Assuntos
Traumatismos Cardíacos , Mitocôndrias , Miócitos Cardíacos , Biogênese de Organelas , Animais , Camundongos , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Lipopolissacarídeos/farmacologia , Miócitos Cardíacos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Mitocôndrias/metabolismo , Nucleolina
12.
Toxicol Mech Methods ; 33(4): 316-326, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36258671

RESUMO

Cardiac toxicity is a serious adverse effect of cisplatin (CIS). Lansoprazole (LPZ) is a proton pump inhibitor with promising cardioprotective effects. Our study planned to examine the cardioprotective effect of LPZ against CIS-induced cardiac injury. To achieve this goal, 32 male rats were randomly allocated into four groups. CIS, 7 mg/kg, was injected i.p. on the fifth day of the experiment. LPZ was administered via oral gavage at a dose of 50 mg/kg. The present study revealed that CIS injection induced a remarkable cardiac injury evidenced by an increase in serum ALP, AST, CK-MB, LDH, and troponin-I levels. The cardiac oxidative damage was also observed after CIS injection and mediated by downregulation of GSH, SOD, GST, Nrf2, HO-1, PPAR-γ, and cytoglobin levels associated with the upregulation of MDA content. Besides, CIS injection caused a significant inflammatory reaction mediated by alteration of cardiac NF-κB, STAT-3, p-STAT-3, and IκB expressions. Additionally, cardiac Ang-II expression was significantly increased in CIS control rats, while Ang 1-7 expression was significantly reduced relative to normal rats. In contrast, LPZ administration remarkably ameliorated these changes in the heart of CIS-intoxicated rats. Collectively, LPZ potently attenuated cardiac toxicity induced by CIS via regulation of Nrf2/HO-1, PPAR-γ, cytoglobin, IκB/NF-κB/STAT-3, and Ang-II/Ang 1-7 signals.


Assuntos
Traumatismos Cardíacos , NF-kappa B , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Cisplatino/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Citoglobina/metabolismo , Citoglobina/farmacologia , Ratos Sprague-Dawley , Cardiotoxicidade , Lansoprazol/farmacologia , Lansoprazol/uso terapêutico , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Traumatismos Cardíacos/induzido quimicamente
13.
Pestic Biochem Physiol ; 182: 105034, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249655

RESUMO

Epoxiconazole is a worldwide fungicide used to control fungal diseases. Although to its hazardous effects in non-target species, little information is available in the literature to show the cardiotoxic effects of EPX in male rats. Thus, our investigation aimed to assess the outcomes of EPX exposure on some biochemical parameters, the generation of oxidative stress, DNA fragmentation and histopathological alterations in the heart tissue. EPX was administered orally at doses of 8, 24, 40 and 56 mg/kg body weight, representing, respectively NOEL (No observed effect level), NOEL× 3, NOEL× 5 and NOEL× 7 for 28 consecutive days in male Wistar rats. Our results show that EPX induced a significant decrease of cardiac acetylcholinesterase, an increase of biochemical markers, such as creatinine phosphokinase (CPK) and a perturbation of the lipid profile. Furthermore, EPX caused diverse histological modifications in the myocardium, including congestion of cardiac blood vessels, cytoplasmic vacuolization, leucocytic infiltration and hemorrhage. Indeed, we have shown that EPX induces increase of lipid peroxidation, protein oxidation levels and DNA damage. On the other hand, we have found an increase of the antioxidant enzymes activity such as catalase (CAT) and superoxide dismutase (SOD) activities. The glutathione peroxidase and glutathione S tranferase initially enhanced at the doses of 8, 24, and 40 mg/kg b.w. and then decreased at the dose of 56 mg/kg b.w. In conclusion, our work has shown that EPX causes cardiotoxic effects by altering redox status and damaging heart tissue.


Assuntos
Compostos de Epóxi/toxicidade , Traumatismos Cardíacos , Triazóis/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Traumatismos Cardíacos/induzido quimicamente , Peroxidação de Lipídeos , Estresse Oxidativo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
14.
Curr Med Sci ; 42(1): 48-55, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35089495

RESUMO

OBJECTIVE: The nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is associated with doxorubicin (DOX)-induced cardiac injury. It has been reported that microRNA-24-3p (miR-24-3p) may regulate the Keapl by mRNA degradation, whereas Keapl can suppress the activation of Nrf2. However, the role of miR-24-3p in DOX-related cardiotoxicity remains unclear. METHODS: The mice receiving DOX were used as cardiac injury model. In this study, an adenoassociated virus 9 system was used to deliver miR-24-3p or miR-scramble to mice hearts. The echocardiographic and hemodynamic analyses were used to evaluate the effects of miR-24-3p on cardiac function under DOX stimulation. ELISA and RT-PCR were used to detect protein or mRNA expressions associated with cardiac injury, inflammation response, apoptosis and oxidative stress. Western Blot were used for quantitative analysis of the roles of miR-24-3p in regulating Nrf2 expression. H9C2 cells used to verify the role of miR-24-3p in vitro. RESULTS: We found that miR-24-3p mRNA was significantly decreased in DOX-treated mice and cardiomyocytes. Overexpression of miR-24-3p blocked cardiac injury caused by DOX injection, as reflected by the reduction in the levels of cardiac troponin I, creatinine kinase isoenzyme MB and the N-terminal pro brain natriuretic peptide. Furthermore, miR-24-3p reduced oxidative stress and cell loss without affecting the inflammation response. As expected, we found that Nrf2 was upregulated by miR-24-3p supplementation, and that the protective efforts of miR-24-3p supplementation were abolished when Nrf2 was silenced. CONCLUSION: The results from this study suggest that miR-24-3p protects cardiomyocytes against DOX-induced heart injury via activation of the Nrf2 pathway. miR-24-3p supplementation may be a novel strategy to counteract the cardiac side effects of DOX treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/tratamento farmacológico , MicroRNAs/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Animais , Cardiotoxicidade/tratamento farmacológico , Camundongos , MicroRNAs/administração & dosagem
15.
J Physiol Pharmacol ; 73(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37087565

RESUMO

The current study investigated the preventive effect of 6-Shogaol on isoproterenol hydrochloride (ISO)-induced myocardial cardiac injury. 6-Shogaol (50 mg/kg b.w.) was administered for 14 days at pretreatment and ISO-induction (85 mg/kg b.w.) for the last two days (13th and 14th days) by subcutaneous injection. Cardiac markers in serum like creatine kinase (CK), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), cardiac troponins T (cTn T) and I (cTn I) increased in ISO-induced rats. Moreover, lipid peroxidative markers like thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides (LOOH) were raised, and the activities/level of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) were diminished in ISO-treated heart tissue. In addition, inflammatory and nuclear respiratory factor (Nrf)-2 signalling molecules were upregulated in ISO-induced ischemic rats. 6-Shogaol pretreatment decreased the activities of cardiac and lipid peroxidative markers and enhanced the antioxidant status in ISO-induced cardiac injury rats. Further, 6-Shogaol pretreatment inhibited serum inflammatory markers: tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), nuclear factor-kappaB (NF-κB), Nrf-2 molecule and heme oxygenase (HO)-1 in ISO-induced cardial damage rats. We noticed the effect of 6-Shogaol inhibited pro-apoptotic genes like B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Fas, caspase-3, -8, -9, cytochrome C, and inflammatory genes and increased Bcl-2 expression in ISO-treated rats. The cardioprotective activity of 6-Shogaol in rats with ISO-induced myocardial damage may be due to its ability to reduce oxidative stress, inflammation, and apoptosis, perhaps via the Nrf-2/HO-1 signalling pathway.


Assuntos
Catecóis , Fator de Transcrição de Proteínas de Ligação GA , Traumatismos Cardíacos , Heme Oxigenase-1 , Animais , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Creatina Quinase/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/efeitos dos fármacos , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Heme Oxigenase-1/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Lipídeos , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/prevenção & controle , Catecóis/farmacologia , Catecóis/uso terapêutico
16.
J Cell Physiol ; 237(3): 1888-1901, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958118

RESUMO

Advanced glycation end products (AGEs), which are highly reactive molecules resulting from persistent high-glucose levels, can lead to the generation of oxidative stress and cardiac complications. The carboxyl terminus of HSP70 interacting protein (CHIP) has been demonstrated to have a protective role in several diseases, including cardiac complications; however, the role in preventing AGE-induced cardiac damages remains poorly understood. Here, we found that elevated AGE levels impaired cardiac CHIP expression in streptozotocin-induced diabetes and high-fat diet-administered animals, representing AGE exposure models. We used the TUNEL assay, hematoxylin and eosin, Masson's trichrome staining, and western blotting to prove that cardiac injuries were induced in diabetic animals and AGE-treated cardiac cells. Interestingly, our results collectively indicated that CHIP overexpression significantly rescued the AGE-induced cardiac injuries and promoted cell survival. Moreover, CHIP knockdown-mediated stabilization of nuclear factor κB (NFκB) was attenuated by overexpressing CHIP in the cells. Furthermore, co-immunoprecipitation and immunoblot assay revealed that CHIP promotes the ubiquitination and proteasomal degradation of AGE-induced NFκB. Importantly, fluorescence microscopy, a luciferase reporter assay, electrophoretic mobility shift assay, and subcellular fractionation further demonstrated that CHIP overexpression inhibits AGE-induced NFκB nuclear translocation, reduced its binding ability with the promoter sequences of the receptor of AGE, consequently inhibiting the translocation of the receptor AGE to the cell membrane for its proper function. Overall, our current study findings suggest that CHIP can target NFκB for ubiquitin-mediated proteasomal degradation, and thereby potentially rescue AGE-induced cardiac damages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Produtos Finais de Glicação Avançada , Traumatismos Cardíacos , Complexo de Endopeptidases do Proteassoma , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Produtos Finais de Glicação Avançada/metabolismo , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/genética , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação
17.
Eur J Pharmacol ; 903: 174122, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33932452

RESUMO

Immune-induced inflammation plays an important role both in aggravating and healing of post myocardial infarction (MI) injuries. Potent anti-inflammatory and local immunomodulatory activity of infliximab has been suggested to have modulating effects on immune responses after MI. The aim of the present study was to evaluate the efficacy of infliximab on hemodynamic responses and myocardial injuries following isoproterenol-induced myocardial infarction. Male Wistar rats, weighting 260 ± 20 g were assigned into ten groups (n = 6) of saline (normal saline), infliximab (7 mg/kg), isoproterenol (100 mg/kg for two consecutive days), and isoproterenol plus infliximab (30 min after the second injection of isoproterenol). The heart tissues and serums were analyzed 24, 48, 72, and 96 h post-MI and hemodynamic parameters, histopathological changes, malondialdehyde (MDA), Total antioxidant capacity (TAC), lactate dehydrogenase (LDH), and lactate levels were assessed in the respective groups. Infliximab partially improved hemodynamic depression in the first days after MI, but the heart became more suppressed later. A similar result also obtained at the MDA tissue levels but not serum levels. Anti-inflammatory effects of Infliximab may improve cardiac function and prevent heart tissue injury early after MI; however, it can worsen the condition later by inhibiting compensatory reactions such as cardiac remodeling and tissue repair.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Traumatismos Cardíacos/tratamento farmacológico , Hemodinâmica/efeitos dos fármacos , Infliximab/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Infliximab/uso terapêutico , Isoproterenol/toxicidade , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Ratos Wistar , Fatores de Tempo
18.
J Extracell Vesicles ; 10(4): e12072, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33664937

RESUMO

Extracellular vesicles (EVs) curb important biological functions. We previously disclosed that ischemia-reperfusion (IR) induces increased release of EVs (IR-EVs) in the heart. However, the role of IR-EVs in IR pathological process remains poorly understood. Here we found that adoptive transfer of IR-EVs aggravated IR induced heart injury, and EV inhibition by GW4869 reduced the IR injury. Our in vivo and in vitro investigations substantiated that IR-EVs facilitated M1-like polarization of macrophages with increased expression of proinflammatory cytokines. Further, we disclosed the miRNA profile in cardiac EVs and confirmed the enrichment of miRNAs, such as miR-155-5p in IR-EVs compared to EVs from the sham heart (S-EVs). In particular, IR-EVs transferred miR-155-5p to macrophages and enhanced the inflammatory response through activating JAK2/STAT1 pathway. Interestingly, IR-EVs not only boosted the local inflammation in the heart, but even triggered systemic inflammation in distant organs. Taken together, we newly identify an IR-EVs-miR-155-5p-M1 polarization axis in the heart post IR. The EVs derived from IR-injured heart contribute to both local and systemic inflammation. Importantly, EV inhibition by GW4869 is supposed to be a promising therapeutic strategy for IR injury.


Assuntos
Vesículas Extracelulares/metabolismo , Traumatismos Cardíacos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/efeitos dos fármacos , Traumatismos Cardíacos/induzido quimicamente , Janus Quinase 2 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
19.
J Appl Toxicol ; 41(10): 1673-1686, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629383

RESUMO

Dexamethasone (DEX)-induced hypertension is observed in normotensive rats, but little is known about the effects of DEX on spontaneously hypertensive animals (SHR). This study aimed to evaluate the effects of DEX on hemodynamics, cardiac hypertrophy and arterial stiffness in normotensive and hypertensive rats. Wistar rats and SHR were treated with DEX (50 µg/kg s.c., 14 d) or saline. Pulse wave velocity (PWV), echocardiographic parameters, blood pressure (BP), autonomic modulation and histological analyses of heart and thoracic aorta were performed. SHR had higher BP compared with Wistar, associated with autonomic unbalance to the heart. Echocardiographic changes in SHR (vs. Wistar) were suggestive of cardiac remodeling: higher relative wall thickness (RWT, +28%) and left ventricle mass index (LVMI, +26%) and lower left ventricle systolic diameter (LVSD, -19%) and LV diastolic diameter (LVDD, -10%), with slightly systolic dysfunction and preserved diastolic dysfunction. Also, SHR had lower myocardial capillary density and similar collagen deposition area. PWV was higher in SHR due to higher aortic collagen deposition. DEX-treated Wistar rats presented higher BP (~23%) and autonomic unbalance. DEX did not change cardiac structure in Wistar, but PWV (+21%) and aortic collagen deposition area (+21%) were higher compared with control. On the other side, DEX did not change BP or autonomic balance to the heart in SHR, but reduced RWT and LV collagen deposition area (-12% vs. SHRCT ). In conclusion, the results suggest a differential effect of dexamethasone on arterial stiffness, myocardial remodeling and blood pressure between normotensive and spontaneously hypertensive rats.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Dexametasona/toxicidade , Traumatismos Cardíacos/induzido quimicamente , Hemodinâmica/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Wistar , Rigidez Vascular/efeitos dos fármacos , Animais , Hipertensão/fisiopatologia , Ratos
20.
Cell Physiol Biochem ; 55(1): 1-16, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33443844

RESUMO

BACKGROUND/AIMS: Exposure to particulate air pollution is associated with increased cardiovascular morbidity and mortality. These effects are particularly aggravated in patients with pre-existing kidney diseases. Cerium oxide nanoparticles (CNPs), used as diesel fuel additives, are emitted in vehicle exhaust and affect humans when inhaled. However, thrombotic and cardiac injury resulting from pulmonary exposure to CNPs in experimental acute kidney injury (AKI) is not fully understood. The objective of the present study was to evaluate the thrombotic and cardiac injury effects of CNPs in a rat model of AKI. METHODS: AKI was induced in rats by a single intraperitoneal injection of cisplatin (CDDP, 6 mg/kg). Six days after injection, rats were intratracheally (i.t.) instilled with either CNPs (1 mg/kg) or saline (control), and various cardiovascular variables and markers of inflammation, oxidative stress and DNA injury were assessed by enzyme linked immunosorbent assay, colorimetric assay, single-cell gel electrophoresis assay and immunohistochemistry, the following day. RESULTS: Compared with individual CDDP or CNPs treatments, the combined CDDP + CNPs treatment elevated significantly the coagulation function, relative heart weight, and troponin I, lactate dehydrogenase, interleukin-6 (IL-6), tumor necrosis factor α (TNFα), and total nitric oxide levels in the plasma. In heart homogenates, the combination of CDDP and CNPs induced a significant increase in IL-6, TNFα, catalase, and glutathione. Furthermore, significantly more DNA damage was observed in this group than in the CDDP or CNPs groups. Immunohistochemical analysis of the heart revealed that expression of nuclear factor erythroid-derived 2-like 2 (Nrf2) and glutathione peroxidase by cardiac myocytes and endothelial cells was increased in the CDDP + CNPs group more than in either CDDP or CNPs group. CONCLUSION: I.t. administration of CNPs in rats with AKI exacerbated systemic inflammation, oxidative stress, and coagulation events. It also aggravated cardiac inflammation, DNA damage, and Nrf2 expression.


Assuntos
Injúria Renal Aguda , Coagulação Sanguínea/efeitos dos fármacos , Cério/toxicidade , Cisplatino/efeitos adversos , Traumatismos Cardíacos , Nanopartículas/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Cisplatino/farmacologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA