Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Sci Rep ; 14(1): 12259, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806558

RESUMO

Tribolium castaneum and Rhyzopertha dominica are cosmopolitan, destructive postharvest pests. Although research has investigated how high densities of T. castaneum affect attraction to the aggregation pheromone by conspecifics, research into the behavioral response of both species to food cues after high density exposure has been lacking despite its importance to foraging ecology. Our goal was to manipulate and observe the effects of crowding on the behavioral response of both species to common food and pheromonal stimuli and to determine how the headspace emission patterns from grain differed under increasing densities. Densities of colonies for both species was altered (10-500 adults) on a fixed quantity of food (10 g of flour or whole wheat), then the behavioral response to common food and pheromonal cues was evaluated in a wind tunnel and release-recapture experiment, while volatiles were examined through gas chromatography coupled with mass spectrometry. Importantly, at least for T. castaneum, crowded conditions attenuate attraction to food-based stimuli, but not pheromonal stimuli. Crowding seemed to have no effect on R. dominica attraction to food and pheromonal stimuli in the wind tunnel, but exposure to high density cues did elicit 2.1-3.8-fold higher captures in traps. The relative composition and abundance of headspace volatiles emitted varied significantly with different densities of beetles and was also species-specific. Overall, our results have implications for expanding our understanding of the foraging ecology of two economically important pests.


Assuntos
Besouros , Comportamento Alimentar , Feromônios , Tribolium , Animais , Tribolium/fisiologia , Besouros/fisiologia , Comportamento Alimentar/fisiologia , Feromônios/metabolismo , Densidade Demográfica , Comportamento Animal/fisiologia
2.
J Evol Biol ; 37(7): 748-757, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38654518

RESUMO

Dispersal is an important facet of the life history of many organisms and is, therefore, subject to selective pressure but does not evolve in isolation. Across nature, there are examples of dispersal syndromes and life history strategies in which suites of traits coevolve and covary with dispersal in combinations that serve to maximize fitness in a given ecological context. The red rust flour beetle, Tribolium castaneum, is a model organism and globally significant post-harvest pest that relies on dispersal to reach new patches of ephemeral habitat. Dispersal behaviour in Tribolium has a strong genetic basis. However, a robust understanding of the relationship between dispersal and other life-history components, which could elucidate evolutionary processes and allow pest managers to control their spread and reduce the impact of infestation, is currently lacking. Here, we use highly replicated lines of T. castaneum previously artificially selected for divergent small-scale dispersal propensity to robustly test several important life history components: reproductive strategy, development time, and longevity. As predicted, we find that a suite of important changes as a result of our selection on dispersal: high dispersal propensity is associated with a lower number of longer mating attempts by males, lower investment in early life reproduction by females, slower development of later-laid offspring, and longer female life span. These findings indicate that correlated intraspecific variation in dispersal and related traits may represent alternative life history strategies in T. castaneum. We therefore suggest that pest management efforts to mitigate the species' agro-economic impact should consider the eco-evolutionary dynamics within multiple life histories. The benefits of doing so could be felt both through improved targeting of efforts to reduce spread and also in forecasting how the selection pressures applied through pest management are likely to affect pest evolution.


Assuntos
Distribuição Animal , Tribolium , Animais , Tribolium/genética , Tribolium/fisiologia , Masculino , Feminino , Seleção Genética , Características de História de Vida , Longevidade , Reprodução , Evolução Biológica
3.
J Evol Biol ; 37(6): 665-676, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466641

RESUMO

In today's rapidly changing world, it is critical to examine how animal populations will respond to severe environmental change. Following events such as pollution or deforestation that cause populations to decline, extinction will occur unless populations can adapt in response to natural selection, a process called evolutionary rescue. Theory predicts that immigration can delay extinction and provide novel genetic material that can prevent inbreeding depression and facilitate adaptation. However, when potential source populations have not experienced the new environment before (i.e., are naive), immigration can counteract selection and constrain adaptation. This study evaluated the effects of immigration of naive individuals on evolutionary rescue using the red flour beetle, Tribolium castaneum, as a model system. Small populations were exposed to a challenging environment, and 3 immigration rates (0, 1, or 5 migrants per generation) were implemented with migrants from a benign environment. Following an initial decline in population size across all treatments, populations receiving no immigration gained a higher growth rate one generation earlier than those with immigration, illustrating the constraining effects of immigration on adaptation. After 7 generations, a reciprocal transplant experiment found evidence for adaptation regardless of immigration rate. Thus, while the immigration of naive individuals briefly delayed adaptation, it did not increase extinction risk or prevent adaptation following environmental change.


Assuntos
Migração Animal , Tribolium , Animais , Tribolium/fisiologia , Adaptação Fisiológica , Meio Ambiente , Evolução Biológica , Dinâmica Populacional , Densidade Demográfica
4.
Pest Manag Sci ; 80(7): 3301-3307, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372489

RESUMO

BACKGROUND: Wheat grain containers or silos can be perfect habitats for insects, which generate large economic losses to grain production. Natural alternatives to synthetic insecticides have grown in popularity because of health, economic and ecological issues. Diatomaceous earth is a natural compound that has an insecticide effect by enhancing an insect's dehydration with no toxicity on mammals including humans. The aim of this study is to confirm the effect of diatomaceous earth as an insecticide for the wheat grain pest, the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae) and demonstrate its underlying mechanisms as an insecticide by open-flow respirometry and scanning electron microscopy. RESULTS: Survival bioassays of T. castaneum revealed a dose-dependent insecticide effect of diatomaceous earth. Gravimetric measurements showed that 2 days exposure to diatomaceous earth produces a significant increase of mass loss. Open-flow respirometry measurements showed an increase of total water emission rate on insects due to an increase of both, respiratory and cuticular water loss. Our study revealed that diatomaceous earth produces an increase of insect's cuticle permeability, which is responsible for elevated cuticular water loss. Scanning electron microscopy images provided visual evidence of the lipid absorbent properties of diatomaceous earth particles, and showed a tendency for higher, although not significant, damaged area of the cuticle's surface from diatomaceous earth treated insects compared to control ones. CONCLUSION: With state-of-the art techniques like open-flow respirometry and scanning electron microscopy, we demonstrated the underlying mechanism of diatomaceous earth as an insecticide and provided new cues for understanding the properties of the cuticle and its ecological importance. © 2024 Society of Chemical Industry.


Assuntos
Terra de Diatomáceas , Inseticidas , Tribolium , Animais , Inseticidas/farmacologia , Tribolium/efeitos dos fármacos , Tribolium/fisiologia , Microscopia Eletrônica de Varredura
5.
Cell Tissue Res ; 396(1): 19-40, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409390

RESUMO

In holometabolous insects, extensive reorganisation of tissues and cells occurs at the pupal stage. The remodelling of the external exoskeleton and internal organs that intervenes during metamorphosis has been traditionally studied in many insect species based on histological or ultrastructural methods. This study demonstrates the use of synchrotron X-ray phase-contrast micro-computed tomography as a powerful, non-destructive tool for in situ morphological observation of anatomical structures at the pupal stage in two Tenebrionid beetles, i.e. Tribolium castaneum and Tenebrio molitor, known as important pests, as well as emerging and promising models in experimental biology. Virtual sections and three-dimensional reconstructions were performed on both males and females at early, intermediate, and late pupal stage. The dataset allowed us to observe the remodelling of the gut and nervous system as well as the shaping of the female and male reproductive system at different pupal ages in both mealworm and red flour beetles. Moreover, we observed that the timing and duration pattern of organ development varied between the species analysed, likely related to the species-specific adaptations of the pre-imaginal stages to environmental conditions, which ultimately affect their life cycle. This research provides new knowledge on the morphological modifications that occur during the pupal stage of holometabolous insects and provides a baseline set of information on beetle metamorphosis that may support future research in forensics, physiology, and ecology as well as an image atlas for educational purposes.


Assuntos
Tenebrio , Tribolium , Animais , Masculino , Feminino , Tribolium/anatomia & histologia , Tribolium/fisiologia , Larva/fisiologia , Microtomografia por Raio-X , Metamorfose Biológica
6.
Environ Entomol ; 52(6): 1020-1032, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37757446

RESUMO

Long-term trapping programs of stored product pests provide information for timely and accurate pest management. Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is a highly successful external-infesting grain pest and is frequently monitored using a commercial pitfall trap that combines pheromonal and kairomonal stimuli. However, an often overlooked component of lure-based traps is the potential for the volatile plume to change over time as individuals are captured. These now-dead insects may then release necromones altering the captures of conspecifics. In this study, we evaluated changes in (i) the behavior of T. castaneum and (ii) the relative change in volatiles over time since dead insects were added and among different densities of dead conspecifics in a commercially available kairomone oil. We used multiple behavior assays, including wind tunnel, release-recapture, and 2-way olfactometer, and performed chemical analyses via headspace collection and gas chromatography coupled with mass spectrometry. Tribolium castaneum response to the kairomone lure was not consistent among assays of density of conspecifics between 4 and 40 adults after 24 or 96 h, or time of seeding over 1-96 h or 8-11 days prior. Tested strains collected in 2012 and 2019 ruled out strain-specific differences. Oil batch effects were also ruled out as a factor contributing to the response of T. castaneum. The relative volatile composition was generally stable among the treatments despite using different seeding densities and seeding times. Given that attraction and relative volatile composition were generally unaffected by prior captures, long-term monitoring programs may be robust in their interpretability over time.


Assuntos
Besouros , Tribolium , Humanos , Animais , Tribolium/fisiologia , Controle de Insetos/métodos , Feromônios/farmacologia
7.
J Evol Biol ; 36(12): 1745-1752, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658647

RESUMO

Host-associated microbiota play a fundamental role in the training and induction of different forms of immunity, including inducible as well as constitutive components. However, direct experiments analysing the relative importance of microbiota on diverse forms of evolved immune functions are missing. We addressed this gap by using experimentally evolved lines of Tribolium castaneum that either produced inducible immune memory-like responses (immune priming) or constitutively expressed basal resistance (without priming), as divergent counterstrategies against Bacillus thuringiensis infection. We altered the microbial communities present in the diet (i.e. wheat flour) of these evolved lines using UV irradiation and estimated the impact on the beetle's ability to mount a priming response versus basal resistance. Populations that had evolved immune priming lost the ability to mount a priming response upon alteration of diet microbiota. Microbiota manipulation also caused a drastic reduction in their reproductive output and post-infection longevity. In contrast, in pathogen-resistant beetles, microbiota manipulation did not affect post-infection survival or reproduction. The divergent evolution of immune responses across beetle lines was thus associated with divergent reliance on the microbiome. Whether the latter is a direct outcome of differential pathogen exposure during selection or reflects evolved immune functions remains unclear. We hope that our results will motivate further experiments to understand the mechanistic basis of these complex evolutionary associations between microbiota, host immune strategies and fitness outcomes.


Assuntos
Bacillus thuringiensis , Besouros , Microbiota , Tribolium , Animais , Farinha , Bacillus thuringiensis/fisiologia , Triticum , Tribolium/fisiologia , Dieta
8.
J Econ Entomol ; 116(2): 605-614, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36691836

RESUMO

The increasing popularity of low- and no-gluten flours as wheat flour alternatives has driven the need to understand risks of insect pest infestation in these products. Previous research using no-choice bioassays found that the red flour beetle, Tribolium castaneum Herbst can oviposit and develop on a range of alternative flours; here we test T. castaneum preference by assessing attraction in a wind tunnel assay and oviposition preference in both small- and large-scale choice assays between alternative and wheat flour. Some flours such as buckwheat, teff, millet, rice, and rye elicit similar responses as wheat flour for both attraction and oviposition. Other flours such as cassava and oat were not preferred for either oviposition or attraction behaviors. Flours like sorghum and amaranth, had mixed preferences for oviposition, with decreased oviposition in the small arena but not the large arena. Comparisons to published developmental success rates of T. castnaeum on these dietsindicate that females can choose diets on which they have high developmental success, such as buckwheat or teff, and avoid flours like cassava where developmental success is low. However, mismatch of oviposition preference and developmental success also occurs, in flours such as rice and amaranth. These results suggest the red flour beetle has limited ability to make adaptive food selections for egg laying. Further analysis of the chemical and physical properties associated with preferred and nonpreferred flours can provide information on cues associated with egg laying as well as how these cues could be exploited in pest management programs.


Assuntos
Besouros , Tribolium , Feminino , Animais , Tribolium/fisiologia , Oviposição , Glutens , Farinha , Triticum
9.
J Chem Ecol ; 49(1-2): 46-58, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36539674

RESUMO

Group-living individuals experience immense risk of disease transmission and parasite infection. In social and in some non-social insects, disease control with immunomodulation arises not only via individual immune defenses, but also via infochemicals such as contact cues and (defensive) volatiles to mount a group-level immunity. However, little is known about whether activation of the immune system elicits changes in chemical phenotypes, which may mediate these responses. We here asked whether individual immune experience resulting from wounding or injection of heat-killed Bacillus thuringiensis (priming) leads to changes in the chemical profiles of female and male adult red flour beetles, Tribolium castaneum, which are non-social but gregarious. We analyzed insect extracts using GC-FID to study the chemical composition of (1) cuticular hydrocarbons (CHCs) as candidates for the transfer of immunity-related information between individuals via contact, and (2) stink gland secretions, with analysis of benzoquinones as main active compounds regulating 'external immunity'. Despite a pronounced sexual dimorphism in CHC profiles, wounding stimulation led to similar profile changes in males and females with increases in the proportion of methyl-branched alkanes compared to naïve beetles. While changes in the overall secretion profiles were less pronounced, absolute amounts of benzoquinones were transiently elevated in wounded compared to naïve females. Responses to priming were insignificant in CHCs and secretions. We suggest that changes in different infochemicals after wounding may mediate immune status signaling in the context of both internal and external immune responses in groups of this non-social insect, thus showing parallels to social immunity.


Assuntos
Besouros , Tribolium , Animais , Feminino , Masculino , Tribolium/fisiologia , Besouros/fisiologia , Hidrocarbonetos , Alcanos , Benzoquinonas
10.
Proc Natl Acad Sci U S A ; 119(24): e2120853119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675426

RESUMO

Muscle attachment sites (MASs, apodemes) in insects and other arthropods involve specialized epithelial cells, called tendon cells or tenocytes, that adhere to apical extracellular matrices containing chitin. Here, we have uncovered a function for chitin deacetylases (CDAs) in arthropod locomotion and muscle attachment using a double-stranded RNA-mediated gene-silencing approach targeted toward specific CDA isoforms in the red flour beetle, Tribolium castaneum (Tc). Depletion of TcCDA1 or the alternatively spliced TcCDA2 isoform, TcCDA2a, resulted in internal tendon cuticle breakage at the femur-tibia joint, muscle detachment from both internal and external tendon cells, and defective locomotion. TcCDA deficiency did not affect early muscle development and myofiber growth toward the cuticular MASs but instead resulted in aborted microtubule development, loss of hemiadherens junctions, and abnormal morphology of tendon cells, all features consistent with a loss of tension within and between cells. Moreover, simultaneous depletion of TcCDA1 or TcCDA2a and the zona pellucida domain protein, TcDumpy, prevented the internal tendon cuticle break, further supporting a role for force-dependent interactions between muscle and tendon cells. We propose that in T. castaneum, the absence of N-acetylglucosamine deacetylation within chitin leads to a loss of microtubule organization and reduced membrane contacts at MASs in the femur, which adversely affect musculoskeletal connectivity, force transmission, and physical mobility.


Assuntos
Amidoidrolases , Proteínas de Insetos , Músculos , Tribolium , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Quitina/metabolismo , Extremidades/fisiologia , Fêmur , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Locomoção , Desenvolvimento Muscular , Músculos/enzimologia , Músculos/fisiologia , Tribolium/enzimologia , Tribolium/fisiologia
11.
J Therm Biol ; 103: 103162, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35027205

RESUMO

The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) is one of the most dangerous insects of a wide spectrum of stored products around the globe. The population growth of this species is affected by temperature. However, there are no data on comparative demographic parameters (i.e., net reproductive rate, intrinsic rate of increase, finite rate of increase, mean generation time and doubling time) in different temperatures, parameters that allow the in-depth exploration of its survival, mortality and reproduction patterns. This study evaluated egg-to-adult development, adult mortality and female fecundity on white soft wheat flour at 20, 25, 30 and 32.5 °C. The net reproductive rate increased from 0.08 females/female at 20 °C to 11.77 females/female at 25 °C and 102.07 females/female at 30 °C, followed by a decrease to 10.73 females/female at 32.5 °C. The lowest values of the intrinsic rate of increase and the finite rate of increase were observed at 20 °C (- 0.0105 females/female/day and 0.9895, respectively) and the highest at 30 °C (0.0348 females/female/day and 1.0354, respectively). While the mean generation time did not differ significantly between 20 and 25 °C (249.9 and 225.5 days, respectively), this decreased to 132.8 and 115.1 days at 30 and 32.5 °C, respectively. The value of the doubling time was negative at 20 °C (- 67.5 days), increased to 19.9, 34.0 and 63.9 days at 30, 32.5 and 25 °C, respectively. Using the non-linear Briere model, the lower threshold for T. castaneum population increase was estimated to be 22.2 °C, the upper threshold at 33.2 °C, and the temperature for maximum growth rate was 30.1 °C. Survival analysis indicated that temperature also affected the mortality risk of T. castaneum. The mean survival time increased from 112.1 days at 20 °C to 462.4 days at 25 °C, followed by a decrease to 206.5 and 64.5 days at 30 and 32.5 °C, respectively. We expect these results to be useful for the prediction of the population growth, the potential expansion and consequently management of T. castaneum.


Assuntos
Temperatura , Tribolium/fisiologia , Animais , Demografia , Feminino , Farinha/parasitologia , Reprodução , Análise de Sobrevida
12.
Sci Rep ; 11(1): 21816, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750398

RESUMO

Predator avoidance is an important behavior that affects the degree of adaptation of organisms. We compared the DNA variation of one of the predator-avoidance behaviors, the recently extensively studied "death-feigning behavior", between the long strain bred for feigning death for a long time and the short strain bred for feigning death for a short time. To clarify how the difference in DNA sequences between the long and short strains corresponds to the physiological characteristics of the death-feigning duration at the transcriptome level, we performed comprehensive and comparative analyses of gene variants in Tribolium castaneum strains using DNA-resequencing. The duration of death feigning involves many gene pathways, including caffeine metabolism, tyrosine metabolism, tryptophan metabolism, metabolism of xenobiotics by cytochrome P450, longevity regulating pathways, and circadian rhythm. Artificial selection based on the duration of death feigning results in the preservation of variants of genes in these pathways in the long strain. This study suggests that many metabolic pathways and related genes may be involved in the decision-making process of anti-predator animal behavior by forming a network in addition to the tyrosine metabolic system, including dopamine, revealed in previous studies.


Assuntos
Genoma de Inseto , Resposta de Imobilidade Tônica/fisiologia , Tribolium/genética , Tribolium/fisiologia , Adaptação Fisiológica/genética , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal , Cafeína/metabolismo , Ritmo Circadiano/genética , Redes Reguladoras de Genes , Longevidade/genética , Redes e Vias Metabólicas , Mapas de Interação de Proteínas/genética , Análise de Sequência de DNA , Triptofano/metabolismo , Tirosina/metabolismo , Xenobióticos/metabolismo
13.
J Econ Entomol ; 114(6): 2598-2609, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34729597

RESUMO

Preventing insect infestations is a critical component for establishing a pest management plan for stored-product insects. Long-lasting insecticide-treated netting (LLIN) is a potential tool to reduce insect movement by providing a chemical barrier, where insects may be able to physically pass through but ultimately die after exposure to the netting. Sublethal effects, such as reduced movement immediately after exposure and reduced ability to colonize, have been reported. Here we examine the sublethal effects of exposure to LLIN on two beetle species, Trogoderma variabile Ballion, warehouse beetle, and Tribolium castaneum Herbst, red flour beetle. We found that both female and male T. castaneum exposed to LLIN produced significantly less adult progeny than those exposed to untreated netting. Adult progeny output did not differ for T. variabile, but survivorship increased in T. variabile females exposed to LLIN. Importantly, the overall net reproductive rate was significantly decreased for both T. variabile and T. castaneum. The number of copulation attempts did not differ between males or females exposed to LLIN compared to untreated netting, but males exposed to LLIN showed increased durations of attempted and successful copulation events. This research demonstrates that the implications of LLIN exposure extend past direct mortality, with sublethal effects on reproductive output potentially increasing the effectiveness of this tool for preventing insect infestations.


Assuntos
Besouros , Mosquiteiros Tratados com Inseticida , Preferência de Acasalamento Animal/efeitos dos fármacos , Tribolium , Animais , Besouros/efeitos dos fármacos , Besouros/fisiologia , Feminino , Masculino , Reprodução , Tribolium/efeitos dos fármacos , Tribolium/fisiologia
14.
Biomolecules ; 11(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680135

RESUMO

Olfaction is crucial for insects to find food sources, mates, and oviposition sites. One of the initial steps in olfaction is facilitated by odorant-binding proteins (OBPs) that translocate hydrophobic odorants through the aqueous olfactory sensilla lymph to the odorant receptor complexes embedded in the dendritic membrane of olfactory sensory neurons. The Tribolium castaneum (Coleoptera, Tenebrionidae) OBPs encoded by the gene pair TcasOBP9A and TcasOBP9B represent the closest homologs to the well-studied Drosophila melanogaster OBP Lush (DmelOBP76a), which mediates pheromone reception. By an electroantennographic analysis, we can show that these two OBPs are not pheromone-specific but rather enhance the detection of a broad spectrum of organic volatiles. Both OBPs are expressed in the antenna but in a mutually exclusive pattern, despite their homology and gene pair character by chromosomal location. A phylogenetic analysis indicates that this gene pair arose at the base of the Cucujiformia, which dates the gene duplication event to about 200 Mio years ago. Therefore, this gene pair is not the result of a recent gene duplication event and the high sequence conservation in spite of their expression in different sensilla is potentially the result of a common function as co-OBPs.


Assuntos
Antenas de Artrópodes/metabolismo , Receptores Odorantes/genética , Tribolium/metabolismo , Sequência de Aminoácidos/genética , Animais , Cromossomos/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Odorantes/análise , Receptores Odorantes/metabolismo , Tribolium/fisiologia
15.
J Therm Biol ; 100: 103062, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503800

RESUMO

Temperature shocks have profound effects on biological and physiological functions at all levels of organization. However, the recovery periods from these shocks and their subsequent impacts remain unknown. Herein, our study investigated the effect of short temperature stress on survival, dormancy recovery time, nutritional indices, life traits and development rate for T. castaneum (larvae and adults) and S. oryzae adults. The results showed significant effects on survival rates of T. castaneum (larvae and adults) and S. oryzae adults. When both insects had been exposed to high-temperature shock, survival rates decreased with higher temperatures and longer periods of exposure. Furthermore, recovery times varied between and within the insect species, as prolonged exposure to thermal shocks increased recovery periods. Moreover, dormancy time resulting from the high-temperature shocks significantly affected food deterrence and food intake, regardless of the stage of development, species, exposure periods and temperature-exposure conditions. Subsequently, differences in body growth rates and food consumption rates are an appropriate indicator of differences in food conversion rates under high-temperature shocks, regardless of the species and developmental stages. On the other hand, our results indicated that as high-temperature shocks increased, the total development period increased of T. castaneum. Likewise, the pupal stage increased with increasing high-temperature shocks, and the larval stage decreased with increasing thermal shocks and increasing the periods of exposure. In summary, our study showed the importance of dormancy recovery time and its subsequent effects for improving disinfestation effectiveness of heat treatment, and understanding insect response to high temperatures.


Assuntos
Termotolerância , Tribolium/fisiologia , Gorgulhos/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Tribolium/crescimento & desenvolvimento , Gorgulhos/crescimento & desenvolvimento
16.
Sci Rep ; 11(1): 16152, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373551

RESUMO

Chemical communication via pheromones is an integral component in insect behavior, particularly for mate searching and reproduction. Aggregation pheromones, that attract conspecifics of both sexes, are particularly common and have been identified for hundreds of species. These pheromones are among the most ecologically selective pest suppression agents. In this study, we identified an activating effect of the aggregation pheromone of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenibroidae) on a highly conserved circadian clock gene (Tctimeless). Tribolium castaneum is one of the most damaging cosmopolitan pest of flour and other stored food products. Its male produced aggregation pheromone, 4,8-dimethyldecanal (DMD), attracts both conspecific males and females and is used for pest management via monitoring and mating disruption. The Tctimeless gene is an essential component for daily expression patterns of the circadian clock and plays vital roles in eclosion, egg production, and embryonic development. In this study, we demonstrate that constant exposure to the species-specific aggregation pheromone led to Tctimeless up-regulation and a different pattern of rhythmic locomotive behavior. We propose that changing the well-adapted "alarm clock", using DMD is liable to reduce fitness and can be highly useful for pest management.


Assuntos
Relógios Circadianos/genética , Genes de Insetos , Tribolium/genética , Tribolium/fisiologia , Aldeídos/administração & dosagem , Aldeídos/metabolismo , Animais , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Feminino , Perfilação da Expressão Gênica , Genes de Insetos/efeitos dos fármacos , Controle de Insetos , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Masculino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiologia , Feromônios/administração & dosagem , Feromônios/fisiologia , Reprodução/efeitos dos fármacos , Reprodução/genética , Reprodução/fisiologia , Comportamento Social , Tribolium/efeitos dos fármacos
17.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361547

RESUMO

Essential oils of aromatic plants represent an alternative to classical pest control with synthetic chemicals. They are especially promising for the alternative control of stored product pest insects. Here, we tested behavioral and electrophysiological responses of the stored product pest Tribolium confusum, to the essential oil of a Brazilian indigenous plant, Varronia globosa, collected in the Caatinga ecosystem. We analyzed the essential oil by GC-MS, tested the effects of the entire oil and its major components on the behavior of individual beetles in a four-way olfactometer, and investigated responses to these stimuli in electroantennogram recordings (EAG). We could identify 25 constituents in the essential oil of V. globosa, with anethole, caryophyllene and spathulenole as main components. The oil and its main component anethole had repellent effects already at low doses, whereas caryophyllene had only a repellent effect at a high dose. In addition, the essential oil abolished the attractive effect of the T. confusum aggregation pheromone. EAG recordings revealed dose-dependent responses to the individual components and increasing responses to the blend and even more to the entire oil. Our study reveals the potential of anethole and the essential oil of V. globosa in the management of stored product pests.


Assuntos
Antenas de Artrópodes/fisiologia , Comportamento Animal/efeitos dos fármacos , Repelentes de Insetos , Magnoliopsida/química , Óleos Voláteis , Tribolium/fisiologia , Animais , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
18.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785598

RESUMO

Maintaining internal salt and water balance in response to fluctuating external conditions is essential for animal survival. This is particularly true for insects as their high surface-to-volume ratio makes them highly susceptible to osmotic stress. However, the cellular and hormonal mechanisms that mediate the systemic control of osmotic homeostasis in beetles (Coleoptera), the largest group of insects, remain largely unidentified. Here, we demonstrate that eight neurons in the brain of the red flour beetle Tribolium castaneum respond to internal changes in osmolality by releasing diuretic hormone (DH) 37 and DH47-homologs of vertebrate corticotropin-releasing factor (CRF) hormones-to control systemic water balance. Knockdown of the gene encoding the two hormones (Urinate, Urn8) reduces Malpighian tubule secretion and restricts organismal fluid loss, whereas injection of DH37 or DH47 reverses these phenotypes. We further identify a CRF-like receptor, Urinate receptor (Urn8R), which is exclusively expressed in a functionally unique secondary cell in the beetle tubules, as underlying this response. Activation of Urn8R increases K+ secretion, creating a lumen-positive transepithelial potential that drives fluid secretion. Together, these data show that beetle Malpighian tubules operate by a fundamentally different mechanism than those of other insects. Finally, we adopt a fluorescent labeling strategy to identify the evolutionary origin of this unusual tubule architecture, revealing that it evolved in the last common ancestor of the higher beetle families. Our work thus uncovers an important homeostatic program that is key to maintaining osmotic control in beetles, which evolved parallel to the radiation of the "advanced" beetle lineages.


Assuntos
Evolução Molecular , Túbulos de Malpighi/fisiologia , Tribolium/fisiologia , Equilíbrio Hidroeletrolítico , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Hormônios de Inseto/metabolismo , Túbulos de Malpighi/citologia , Neurônios/fisiologia , Tribolium/genética
19.
PLoS One ; 16(1): e0245115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444354

RESUMO

Many species show rhythmicity in activity, from the timing of flowering in plants to that of foraging behavior in animals. The free-running periods and amplitude (sometimes called strength or power) of circadian rhythms are often used as indicators of biological clocks. Many reports have shown that these traits are highly geographically variable, and interestingly, they often show latitudinal or longitudinal clines. In many cases, the higher the latitude is, the longer the free-running circadian period (i.e., period of rhythm) in insects and plants. However, reports of positive correlations between latitude or longitude and circadian rhythm traits, including free-running periods, the power of the rhythm and locomotor activity, are limited to certain taxonomic groups. Therefore, we collected a cosmopolitan stored-product pest species, the red flour beetle Tribolium castaneum, in various parts of Japan and examined its rhythm traits, including the power and period of the rhythm, which were calculated from locomotor activity. The analysis revealed that the power was significantly lower for beetles collected in northern areas than southern areas in Japan. However, it is worth noting that the period of circadian rhythm did not show any clines; specifically, it did not vary among the sampling sites, despite the very large sample size (n = 1585). We discuss why these cline trends were observed in T. castaneum.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Tribolium/fisiologia , Animais , Japão
20.
Sci Rep ; 11(1): 1145, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441570

RESUMO

Knockdown and mortality of adults of the red flour beetle, Tribolium castaneum (Herbst) and the confused flour beetle, Tribolium confusum Jacquelin du Val, were assessed after exposure to two contact insecticides, chlorfenapyr and cyfluthrin, on a concrete surface. Individuals were rated on a scale for knockdown of exposed adults according to their mobility from 1, representing immobilized adults to 5, representing normally moving (similar to the controls). Only cyfluthrin gave immediate knockdown. Adults were rated at 1, 3 and 7 days post-exposure. After the final assessment, adults were discarded and the same procedure was repeated for 5 consecutive weeks with new adults exposed on the same treated surfaces. Despite initial knockdown, many individuals did not eventually die after exposure to cyfluthrin. In contrast, adults exposed to chlorfenapyr were not initially knocked down after exposure but most died after 7 days. These trends were similar during the entire 5-week residual testing period. The storage of the treated dishes in illuminated or non-illuminated conditions did not affect the insecticidal effect of either insecticide. The results of the present study can be further implemented towards the design of a "lethality index" that can serve as a quick indicator of knockdown and mortality rates caused after exposure to insecticides.


Assuntos
Inseticidas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Tribolium/efeitos dos fármacos , Animais , Movimento/efeitos dos fármacos , Controle de Pragas , Tribolium/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA