Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 21(2): 667-681, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30585394

RESUMO

Metacaspases are cysteine specific proteases implicated in cell-signalling, stress acclimation and programmed cell death (PCD) pathways in plants, fungi, protozoa, bacteria and algae. We investigated metacaspase-like gene expression and biochemical activity in the bloom-forming, N2 -fixing, marine cyanobacterium Trichodesmium, which undergoes PCD under low iron and high-light stress. We examined these patterns with respect to in-silico analyses of protein domain architectures that revealed a diverse array of regulatory domains within Trichodesmium metacaspases-like (TeMC) proteins. Experimental manipulations of laboratory cultures and oceanic surface blooms of Trichodesmium from the South Pacific Ocean triggered PCD under Fe-limitation and high light along with enhanced TeMC activity and upregulated expression of diverse TeMC representatives containing different regulatory domains. Furthermore, TeMC activity was significantly and positively correlated with caspase-like activity, which has been routinely observed to increase with PCD induction in Trichodesmium. Although both TeMC and caspase-like activities were stimulated upon PCD induction, inhibitor treatments of these proteolytic activities provided further evidence of largely distinct substrate specificities, even though some inhibitory crossover was observed. Our findings are the first results linking metacaspase expression and activity in PCD induced mortality in Trichodesmium. Yet, the role/s and specific activities of these different proteins remain to be elucidated.


Assuntos
Apoptose , Proteínas de Bactérias/metabolismo , Caspases/metabolismo , Trichodesmium/citologia , Trichodesmium/enzimologia , Animais , Apoptose/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caspases/química , Caspases/genética , Oceano Pacífico , Domínios Proteicos , Água do Mar/microbiologia , Trichodesmium/isolamento & purificação
2.
J Biol Chem ; 293(47): 18099-18109, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30217820

RESUMO

Atmospheric nitrogen fixation by photosynthetic cyanobacteria (diazotrophs) strongly influences oceanic primary production and in turn affects global biogeochemical cycles. Species of the genus Trichodesmium are major contributors to marine diazotrophy, accounting for a significant proportion of the fixed nitrogen in tropical and subtropical oceans. However, Trichodesmium spp. are metabolically constrained by the availability of iron, an essential element for both the photosynthetic apparatus and the nitrogenase enzyme. Survival strategies in low-iron environments are typically poorly characterized at the molecular level, because these bacteria are recalcitrant to genetic manipulation. Here, we studied a homolog of the iron deficiency-induced A (IdiA)/ferric uptake transporter A (FutA) protein, Tery_3377, which has been used as an in situ iron-stress biomarker. IdiA/FutA has an ambiguous function in cyanobacteria, with its homologs hypothesized to be involved in distinct processes depending on their cellular localization. Using signal sequence fusions to GFP and heterologous expression in the model cyanobacterium Synechocystis sp. PCC 6803, we show that Tery_3377 is targeted to the periplasm by the twin-arginine translocase and can complement the deletion of the native Synechocystis ferric-iron ABC transporter periplasmic binding protein (FutA2). EPR spectroscopy revealed that purified recombinant Tery_3377 has specificity for iron in the Fe3+ state, and an X-ray crystallography-determined structure uncovered a functional iron substrate-binding domain, with Fe3+ pentacoordinated by protein and buffer ligands. Our results support assignment of Tery_3377 as a functional FutA subunit of an Fe3+ ABC transporter but do not rule out dual IdiA function.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Água do Mar/microbiologia , Trichodesmium/metabolismo , Proteínas de Bactérias/genética , Cristalografia por Raios X , Proteínas de Ligação ao Ferro/genética , Oceanos e Mares , Domínios Proteicos , Trichodesmium/química , Trichodesmium/genética , Trichodesmium/isolamento & purificação
3.
Environ Microbiol ; 19(11): 4700-4713, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925547

RESUMO

Cytosine methylation has been shown to regulate essential cellular processes and impact biological adaptation. Despite its evolutionary importance, only a handful of bacterial, genome-wide cytosine studies have been conducted, with none for marine bacteria. Here, we examine the genome-wide, C5 -Methyl-cytosine (m5C) methylome and its correlation to global transcription in the marine nitrogen-fixing cyanobacterium Trichodesmium. We characterize genome-wide methylation and highlight conserved motifs across three Trichodesmium isolates and two Trichodesmium metagenomes, thereby identifying highly conserved, novel genomic signatures of potential gene regulation in Trichodesmium. Certain gene bodies with the highest methylation levels correlate with lower expression levels. Several methylated motifs were highly conserved across spatiotemporally separated Trichodesmium isolates, thereby elucidating biogeographically conserved methylation potential. These motifs were also highly conserved in Trichodesmium metagenomic samples from natural populations suggesting them to be potential in situ markers of m5C methylation. Using these data, we highlight predicted roles of cytosine methylation in global cellular metabolism providing evidence for a 'core' m5C methylome spanning different ocean regions. These results provide important insights into the m5C methylation landscape and its biogeochemical implications in an important marine N2 -fixer, as well as advancing evolutionary theory examining methylation influences on adaptation.


Assuntos
Citosina/metabolismo , Metilação de DNA/genética , DNA Bacteriano/metabolismo , Trichodesmium/genética , Sequência de Bases/genética , DNA Bacteriano/genética , Genoma Bacteriano/genética , Genômica , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Análise de Sequência de DNA , Trichodesmium/isolamento & purificação
4.
ISME J ; 11(9): 2090-2101, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28534879

RESUMO

Trichodesmium is a genus of marine diazotrophic colonial cyanobacteria that exerts a profound influence on global biogeochemistry, by injecting 'new' nitrogen into the low nutrient systems where it occurs. Colonies of Trichodesmium ubiquitously contain a diverse assemblage of epibiotic microorganisms, constituting a microbiome on the Trichodesmium host. Metagenome sequences from Trichodesmium colonies were analyzed along a resource gradient in the western North Atlantic to examine microbiome community structure, functional diversity and metabolic contributions to the holobiont. Here we demonstrate the presence of a core Trichodesmium microbiome that is modulated to suit different ocean regions, and contributes over 10 times the metabolic potential of Trichodesmium to the holobiont. Given the ubiquitous nature of epibionts on colonies, the substantial functional diversity within the microbiome is likely an integral facet of Trichodesmium physiological ecology across the oligotrophic oceans where this biogeochemically significant diazotroph thrives.


Assuntos
Água do Mar/microbiologia , Trichodesmium/isolamento & purificação , Nitrogênio/metabolismo , Fixação de Nitrogênio , Oceanos e Mares , Filogenia , Trichodesmium/classificação , Trichodesmium/genética , Trichodesmium/metabolismo
5.
Environ Microbiol Rep ; 8(6): 1058-1066, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27753237

RESUMO

Populations of nitrogen-fixing cyanobacteria in the genus Trichodesmium are critical to ocean ecosystems, yet predicting patterns of Trichodesmium distribution and their role in ocean biogeochemistry is an ongoing challenge. This may, in part, be due to differences in the physiological ecology of Trichodesmium species, which are not typically considered independently in field studies. In this study, the abundance of the two dominant Trichodesmium clades (Clade I and Clade III) was investigated during a survey at Station ALOHA in the North Pacific Subtropical Gyre (NPSG) using a clade-specific qPCR approach. While Clade I dominated the Trichodesmium community, Clade III abundance was >50% in some NPSG samples, in contrast to the western North Atlantic where Clade III abundance was always <10%. Clade I populations were distributed down to depths >80 m, while Clade III populations were only observed in the mixed layer and found to be significantly correlated with depth and temperature. These data suggest active niche partitioning of Trichodesmium species from different clades, as has been observed in other cyanobacteria. Tracking the distribution and physiology of Trichodesmium spp. would contribute to better predictions of the physiological ecology of this biogeochemically important genus in the present and future ocean.


Assuntos
Água do Mar/microbiologia , Trichodesmium/classificação , Trichodesmium/isolamento & purificação , Oceano Pacífico , Reação em Cadeia da Polimerase em Tempo Real , Trichodesmium/genética
6.
Environ Microbiol ; 18(12): 5151-5160, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27581522

RESUMO

Nitrogen-fixing cyanobacteria in the genus Trichodesmium play a critical role in the productivity of the tropical and subtropical oligotrophic oceans. The ecological success of these populations is likely associated with the diverse microbial interactions occurring within the Trichodesmium holobiont, especially between Trichodesmium and heterotrophic bacterial epibionts. Yet, the composition of the Trichodesmium holobiont and the processes governing microbial assemblage are not well documented. Here, we used high-resolution 16S rDNA amplicon sequencing to examine the diversity of Trichodesmium and associated epibionts across different ocean regions and colony morphologies (puffs and rafts). Trichodesmium Clade I (i.e., T. thiebautii-like) dominated the colonies in all ocean basins regardless of morphology, although the Trichodesmium community structure significantly varied between morphologies in some regions. On average, Alphaproteobacteria (i.e., Thalassobius), Gammaproteobacteria (i.e., Pseudoalteromonas), Sphingobacteria (i.e., Microscilla and Vibrio) and Flavobacteria dominated the epibiont communities, but community composition and structure significantly differed between regions. Epibionts from the two colony morphologies were taxonomically and functionally distinct in the North Atlantic and North Pacific. These findings suggest that the colony types might define two distinct niches and that epibiont assemblage might be driven in part by selective processes, where epibionts are selected according to their influence on colony metabolism.


Assuntos
Biodiversidade , Água do Mar/microbiologia , Trichodesmium/isolamento & purificação , Nitrogênio/metabolismo , Fixação de Nitrogênio , Oceanos e Mares , Filogenia , Trichodesmium/classificação , Trichodesmium/genética , Trichodesmium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA