Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 307, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291504

RESUMO

BACKGROUND: Lavender (genus Lavandula, family Lamiaceae) is an aromatic plant widely grown as an ornamental plant. The chemical composition of lavender is characterized by monoterpenoids, sesquiterpenoids, and other compounds, which are primarily synthesized and stored in epidermal secretory structures called glandular trichomes (GTs). Volatile organic compounds (VOCs) are responsible for the aroma characteristics of plant oil that drive consumer preference. Aroma is usually regarded as a characteristic trait for the classification of aromatic plants. Interestingly, VOCs are synthesized and stored in GTs. Lamiaceae species such as purple perilla, peppermint, basil, thyme, and oregano usually possess two types of GTs: peltate glandular trichomes (PGTs) and capitate glandular trichomes (CGTs). But the development process of PGTs in lavender has been reported in only a few studies to date. RESULTS: In this study, we identified and quantified the VOCs in four lavender cultivars by headspace-solid phase micro extraction-gas chromatography mass spectrometry (HS-SPME-GC-MS). A total of 66 VOCs were identified in these four cultivars, the most prominent of which were linalyl acetate and linalool, and flowers were the main site of accumulation of these VOCs. Here, we examined the developmental process of PGTs, including the formation of their base, body, and apex. The apex cells contained secretory cavities, which produced VOCs. Based on the reference genome sequence of the lavender cultivar 'Jingxun 2', several R2R3-MYB subfamily genes related to GT formation were identified. These results will guide the engineering of GTs and molecular breeding of lavender for improving the VOC content. CONCLUSIONS: In this study, we identified the VOCs in four lavender cultivars. We analyzed the formation of GTs, and compared the number and diameter size of PGTs among four lavender cultivars. Additionally, we identified four candidate genes belonging to the R2R3-MYB family.


Assuntos
Lavandula , Óleos Voláteis , Terpenos , Lavandula/genética , Óleos Voláteis/análise , Tricomas/química , Óleos de Plantas/química
2.
Chem Biodivers ; 20(4): e202200913, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36947520

RESUMO

This work represents the first multi-scale study on Teucrium fruticans L. cultivated at the Ghirardi Botanic Garden (Lombardy, Northern Italy), combining a micromorphological and a phytochemical survey on the plant's aerial parts. Micromorphological investigations, performed by Light Microscopy, Fluorescence Microscopy and Scanning Electron Microscopy, highlighted the presence of five trichomes morphotypes, distinguished by a different distribution pattern: peltates, short-stalked and ball-like medium-stalked capitates, ubiquitous on the whole plant, medium-stalked and long-stalked capitates, exclusive to the floral whorls. Both peltates and medium-stalked capitates were recognized as the main terpene production sites. Phytochemical characterization focused on the essential oils (EOs), obtained by Clevenger-type hydrodistillation in February and April 2022 and characterized by Gas Chromatography-Mass Spectrometry (GC/MS), which resulted mainly formed by sesquiterpene hydrocarbons. The February EO profile was characterized by ß-caryophyllene (28.30 %) and germacrene D (19.16 %) as main compounds, while in April ß-myrcene was detected at high percentage (13.77 %), in addition to the previous two components (15.72 % and 11.55 %, respectively). Literature data, dealing with the biological activities of the main oil constituents, highlighted an anti-microbial, anti-inflammatory, and anti-tumor potential, due to the high content in sesquiterpenes and, particularly, of ß-caryophyllene and germacrene D.


Assuntos
Óleos Voláteis , Sesquiterpenos , Teucrium , Óleos Voláteis/química , Teucrium/química , Tricomas/química , Sesquiterpenos/química
3.
Food Res Int ; 164: 112323, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737916

RESUMO

Mentha haplocalyx Briq (M. haplocalyx) is a herbaceous plant that has long been used as a food, medicinal spice, and flavoring agent in traditional Chinese medicine. Its secondary metabolites, having high commercial values, are mainly produced in tiny specialized structures called glandular trichomes (GTs). The primary purpose of this study was to examine the morphology and metabolites of peltate GTs in M. haplocalyx.Peltate GTs possessed globular dome shapes and intense auto-fluorescence on the surfaces of M. haplocalyx leaves. Structure subsidence and cuticle rupture were found throughout the aging stage of peltate GTs. According to histochemical staining results, the secretion of peltate GTs contained anthraquinone, flavonoids, phenolic acid and terpenoids. In M. haplocalyx peltate GTs and leaf tissues without peltate glandular trichomes, ten and two volatile compounds were identified respectively. Peltate GTs contained 42 non-volatile chemicals with a variety of structural types, including 20 flavonoids, 17 phenolic acids,1 diterpene, 3 anthraquinone and 1 alkane. Meanwhile, 15 non-volatile compounds were discovered in leaf tissues without peltate glandular trichomes, and they were all included in the list of peltate GTs' 41 components. Therefore, Peltate GTs were shown to be the primary site of not just volatile compounds but also non-volatile chemicals in M. haplocalyx. This study provides an important theoretical basis and technical approach for clarifying the bio-active metabolite biosynthesis in M. haplocalyx.


Assuntos
Mentha , Tricomas/química , Tricomas/metabolismo , Folhas de Planta/química , Espectrometria de Massas , Flavonoides/análise
4.
Phytochem Anal ; 34(3): 269-279, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36654257

RESUMO

INTRODUCTION: In recent years, industrial production of Cannabis sativa has increased due to increased demand of medicinal products based on the plant. In these medicinal products, it is mainly the contents of cannabinoids like THCA and CBDA which are of interest, but also the flavonoids of C. sativa have pharmaceutical interest. OBJECTIVES: The primary aim is to study the distribution of the different cannabinoids in leaves of C. sativa and specifically to which extent they are located on the trichomes found on the surface of C. sativa leaves. Desorption electrospray ionization (DESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) provide non-targeted imaging of numerous compounds in the same experiment. Therefore, the distribution of flavonoids is also mapped in the same experiments. MATERIAL AND METHODS: Fan leaves from C. sativa were imaged in the lateral dimension using direct DESI-MSI as well as indirect DESI-MSI via a porous PTFE surface using pixel sizes of 150-200 µm. For cross sections of sugar leaves, MALDI-MSI was performed at 20 µm pixel size. RESULTS: From indirect DESI-MSI experiments, a connection was made between the cannabinoid CBGA and capitate-stalked trichomes. Other cannabinoids like THCA/CBDA (isomers, which are not resolved in an MSI experiment) were also detected in the capitate-stalked trichomes, but in addition to this also in the small glandular trichomes. MALDI-MSI experiments on cross sections of sugar leaves confirmed that the cannabinoids were not an integral part of the leaf tissue itself, but originated from the trichomes on the surface of the leaf. CONCLUSION: The study provides visual evidence that the cannabinoids are produced and accumulated in the trichomes of C. sativa leaves.


Assuntos
Canabinoides , Cannabis , Canabinoides/análise , Cannabis/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tricomas/química , Flavonoides/análise , Folhas de Planta/química , Açúcares/análise
5.
Environ Sci Pollut Res Int ; 30(14): 41878-41899, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640234

RESUMO

In the present scenario, remediation of heavy metals (HMs) contaminated soil has become an important work to be done for the well-being of human and their environment. Phytoremediation can be regarded as an excellent method in environmental technologies. The present contemporary research explores the Solanum viarum Dunal function as a potential accumulator of hazardous HMs viz. lead (Pb), cadmium (Cd), zinc (Zn), and their combination (CHM). On toxic concentrations of Pb, Cd, Zn, and their synergistic exposure, seeds had better germination percentage and their 90d old aerial tissues accumulated Pb, Cd, and Zn concentrations ranging from 44.53, 84.06, and 147.29 mg kg-1 DW, respectively. Pattern of accumulation in roots was as Zn 70.08 > Pb 48.55 > Cd 42.21 mg kg-1DW. Under HMs treatment, positive modulation in physiological performances, antioxidant activities suggested an enhanced tolerance along with higher membrane stability due to increased levels of lignin, proline, and sugar. Phenotypic variations were recorded in prickles and roots of 120 d old HM stressed plants, which are directly correlated with better acclimation. Interestingly, trichomes of the plant also showed HM accumulation. Later, SEM-EDX microanalysis suggested involvement of S. viarum capitate glandular trichomes as excretory organs for Cd and Zn. Thus, the present study provides an understanding of the mechanism that makes S. viarum to function as potent accumulator and provides information to generate plants to be used for phytoremediation.


Assuntos
Metais Pesados , Poluentes do Solo , Solanum , Humanos , Cádmio/análise , Zinco/análise , Biodegradação Ambiental , Chumbo/análise , Tricomas/química , Metais Pesados/análise , Plantas , Poluentes do Solo/análise , Solo
6.
J Microsc ; 291(1): 119-127, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36542368

RESUMO

Cannabis glandular trichomes produce and store an abundance of lipidic specialised metabolites (e.g. cannabinoids and terpenes) that are consumed by humans for medicinal and recreational purposes. Due to a lack of genetic resources and inherent autofluorescence of cannabis glandular trichomes, our knowledge of cannabinoid trafficking and secretion is limited to transmission electron microscopy (TEM). Advances in cryofixation methods has resulted in ultrastructural observations closer to the 'natural state' of the living cell, and recent reports of cryofixed cannabis trichome ultrastructure challenge the long-standing model of cannabinoid trafficking proposed by ultrastructural reports using chemically fixed samples. Here, we compare the ultrastructural morphology of cannabis glandular trichomes preserved using conventional chemical fixation and ultrarapid cryofixation. We show that chemical fixation results in amorphous metabolite inclusions surrounding the organelles of glandular trichomes that were not present in cryofixed samples. Vacuolar morphology in cryofixed samples exhibited homogenous electron density, while chemically fixed samples contained a flocculent electron dense periphery and electron lucent lumen. In contrast to the apparent advantages of cryopreservation, fine details of cell wall fibre orientation could be observed in chemically fixed glandular trichomes that were not seen in cryofixed samples. Our data suggest that chemical fixation results in intracellular artefacts that impact the interpretation of lipid production and trafficking, while enabling greater detail of extracellular polysaccharide organisation.


Assuntos
Canabinoides , Cannabis , Humanos , Cannabis/química , Cannabis/metabolismo , Tricomas/química , Tricomas/metabolismo , Tricomas/ultraestrutura , Canabinoides/análise , Canabinoides/química , Canabinoides/metabolismo , Microscopia Eletrônica de Transmissão , Lipídeos/análise , Folhas de Planta
7.
Fitoterapia ; 164: 105379, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36450313

RESUMO

Buddleja officinalis is a traditional Chinese medicinal plant covered with glandular and non-glandular trichomes on leaves. Phytochemical investigation of its leaves led to the identification of one undescribed tetranorcycloartane 3-oxo-25,26,27,29-tetranorcycloartan-24-oic acid (1) and one first identified natural product tetranorcycloartane 3-oxo-25,26,27,29-tetranorcycloartan-24-oic methyl ester (2), along with an undescribed megastigmane glucoside (3) and 14 known constituents (4-17). Structures of undescribed chemicals were elucidated by comprehensive 1D and 2D NMR, MS and CD analysis. Further chemical investigation resulted in six triterpenoids (4-9) being localized to the trichomes of B. officinalis. The major trichome components cycloeucalenone (4) and 24-oxo-29-norcycloartan-3-one (5) showed potent antifeedant activity against a generalist insect cotton bollworm (Helicoverpa armigera), but no obvious activity against the specialist herbivore Hyphasis inconstans. Compounds 4 and 7 also displayed inhibitory effects on seed germination of Arabidopsis thaliana. In addition, 1 and 4 exhibited moderate antibacterial activity toward three gram-positive bacteria.


Assuntos
Buddleja , Triterpenos , Tricomas/química , Buddleja/química , Estrutura Molecular , Folhas de Planta/química , Triterpenos/farmacologia
8.
Molecules ; 26(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34299441

RESUMO

The aim of this study was to conduct a histochemical analysis to localize lipids, terpenes, essential oil, and iridoids in the trichomes of the L. album subsp. album corolla. Morphometric examinations of individual trichome types were performed. Light and scanning electron microscopy techniques were used to show the micromorphology and localization of lipophilic compounds and iridoids in secretory trichomes with the use of histochemical tests. Additionally, the content of essential oil and its components were determined using gas chromatography-mass spectrometry (GC-MS). Qualitative analyses of triterpenes carried out using high-performance thin-layer chromatography (HPTLC) coupled with densitometric detection, and the iridoid content expressed as aucubin was examined with spectrophotometric techniques. We showed the presence of iridoids and different lipophilic compounds in papillae and glandular and non-glandular trichomes. On average, the flowers of L. album subsp. album yielded 0.04 mL/kg of essential oil, which was dominated by aldehydes, sesquiterpenes, and alkanes. The extract of the L. album subsp. album corolla contained 1.5 × 10-3 ± 4.3 × 10-4 mg/mL of iridoid aucubin and three triterpenes: oleanolic acid, ß-amyrin, and ß-amyrin acetate. Aucubin and ß-amyrin acetate were detected for the first time. We suggest the use of L. album subsp. album flowers as supplements in human nutrition.


Assuntos
Iridoides/química , Lamiaceae/química , Óleos Voláteis/química , Triterpenos/química , Cromatografia em Camada Fina/métodos , Flores/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Iridoides/análise , Lamiaceae/metabolismo , Óleos Voláteis/análise , Compostos Fitoquímicos/análise , Folhas de Planta/química , Sesquiterpenos/análise , Tricomas/química , Triterpenos/análise
9.
BMC Plant Biol ; 21(1): 277, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34144672

RESUMO

BACKGROUND: Perilla frutescens (L.) Britt is a medicinal and edible plant widely cultivated in Asia. Terpenoids, flavonoids and phenolic acids are the primary source of medicinal ingredients. Glandular trichomes with multicellular structures are known as biochemical cell factories which synthesized specialized metabolites. However, there is currently limited information regarding the site and mechanism of biosynthesis of these constituents in P. frutescens. Herein, we studied morphological features of glandular trichomes, metabolic profiling and transcriptomes through different tissues. RESULTS: Observation of light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types based on their morphological features: peltate, capitate, and digitiform glandular trichomes. The oil of peltate glandular trichomes, collected by custom-made micropipettes and analyzed by LC-MS and GC-MS, contained perillaketone, isoegomaketone, and egomaketone as the major constituents which are consistent with the components of leaves. Metabolomics and transcriptomics were applied to explore the bioactive constituent biosynthesis in the leaves, stem, and root of P. frutescens. Transcriptome sequencing profiles revealed differential regulation of genes related to terpenoids, flavonoids, and phenylpropanoid biosynthesis, respectively with most genes expressed highly in leaves. The genes affecting the development of trichomes were preliminarily predicted and discussed. CONCLUSIONS: The current study established the morphological and chemical characteristics of glandular trichome types of P. frutescens implying the bioactive constituents were mainly synthesized in peltate glandular trichomes. The genes related to bioactive constituents biosynthesis were explored via transcriptomes, which provided the basis for unraveling the biosynthesis of bioactive constituents in this popular medicinal plant.


Assuntos
Perilla frutescens/química , Tricomas/química , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Varredura , Perilla frutescens/genética , Perilla frutescens/ultraestrutura , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Plantas Medicinais/química , Plantas Medicinais/ultraestrutura , RNA de Plantas , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Tricomas/ultraestrutura
10.
PLoS One ; 16(4): e0242633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33793557

RESUMO

Cannabis sativa has been cultivated since antiquity as a source of fibre, food and medicine. The recent resurgence of C. sativa as a cash crop is mainly driven by the medicinal and therapeutic properties of its resin, which contains compounds that interact with the human endocannabinoid system. Compared to other medicinal crops of similar value, however, little is known about the biology of C. sativa. Glandular trichomes are small hair-like projections made up of stalk and head tissue and are responsible for the production of the resin in C. sativa. Trichome productivity, as determined by C. sativa resin yield and composition, is only beginning to be understood at the molecular level. In this study the proteomes of glandular trichome stalks and heads, were investigated and compared to the proteome of the whole flower tissue, to help further elucidate C. sativa glandular trichome biochemistry. The data suggested that the floral tissue acts as a major source of carbon and energy to the glandular trichome head sink tissue, supplying sugars which drive secondary metabolite biosynthesis. The trichome stalk seems to play only a limited role in secondary metabolism and acts as both source and sink.


Assuntos
Cannabis/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Tricomas/metabolismo , Cannabis/química , Flores/metabolismo , Microscopia Eletrônica de Varredura/métodos , Metabolismo Secundário , Tricomas/química
11.
Environ Pollut ; 272: 116385, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433344

RESUMO

Urban green infrastructure is closely linked to the alleviation of pollution from atmospheric particulate matter. Although particle deposition has been shown to depend on leaf characteristics, the findings from earlier studies are sometimes ambiguous due to the lack of controlling variables. In this study, we investigated the impact of leaf morphological characteristics on PM2.5 dry deposition velocity by employing a control-variable approach. We focused on four indices: trichome density, petiole length, aspect ratio (width-to-length ratio), and fractal deviation. For each index, tree species were chosen from the same family or genus to minimize the influence of other factors and make a group of treatments for an individual index. The dry deposition velocities of PM2.5 were determined through application of an indirect method. The results revealed that the presence of leaf trichomes had a positive effect on PM2.5 dry deposition velocity, and a higher trichome density also led to a greater particle deposition velocity. Lower leaf aspect ratio, shorter petioles, and higher leaf fractal deviation were associated with greater PM2.5 dry deposition velocity. The control-variable approach allows to investigate the correlation between deposition velocity and a certain leaf characteristic independently while minimizing the effects of others. Thus, our study can clarify how a single leaf characteristic affects particle deposition velocity, and expound its potential mechanism more scientifically than the published studies. Our research points out the importance of controlling variables, and also provides ideas for future researches on related factors to be found. Meanwhile the results would help provide insight into design improvements or adaptive management for the alleviation of air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Material Particulado/análise , Folhas de Planta/química , Árvores , Tricomas/química
12.
Planta ; 253(1): 13, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389109

RESUMO

MAIN CONCLUSION: Three types of the glandular trichomes are developed on the flowers and leaves of Millingtonia hortensis. Morphology, cell ultrastructure and content of the volatile compounds are specific to each trichome type. The aim of this study was to characterize the structural and histochemical features of the glandular trichomes (GTs) of two types localized on the different flower parts and leaves in Millingtonia hortensis, as well as to identify the composition of the internal pool of metabolites. The peltate GTs are most common; they are founded on peduncle, calyx, ovary, and leaves. GTs consist of 12-24-cell disk-shaped head and a single-celled neck. The capitate GTs are located on corolla tube and have four to eight-cell head, single-celled neck and a wide multicellular stalk. A series of histochemical reactions and fluorescent microscopy revealed the various substances in the chemical composition of GTs. Acid polysaccharides are predominately identified in the capitate trichomes of the corolla tube and peltate trichomes of calyx, terpenes present in larger quantity in the trichomes of the corolla tube and ovary, whilst phenolic substances prevail in the trichomes of the calyx and ovary. GTs of each type are characterized by specific ultrastructural traits. Smooth endoplasmic reticulum (SER) and leucoplasts prevail in the peltate trichomes of peduncle, calyx and ovary; Golgi apparatus is the common organelle in the capitate trichomes of the corolla tube and peltate trichomes of calyx; the huge aggregates of the RER cisterns there are in cytoplasm of all leaf trichomes. Synthesized secretion accumulates in the subcuticular cavity of all GTs except the leaf peltate trichomes. In the trichomes of the leaves secretion is stored in the thick upper cell wall with the wide cutinized layer. For the first time content of the internal pool of metabolites from the flowers and leaves was identified by GC-MS. Seventeen compounds, including alcohols, fatty acid derivatives, monoterpenes, sesquiterpenes, and benzenoids were identified. 1-octen 3-ol, 3-carene, methyl salicylate, p-hydroxybenzeneethanol and 1-hydroxy-2,4-di-tertbutyl-benzene were the main compounds of the flower scent. We consider GTs of the reproductive organs in M. hortensis synthesizing acid polysaccharides and volatile compounds as secretory structures attracting of pollinators, whereas the leaf peltate trichomes accumulating predominately non-volatile phenols, protect young vegetative shoots against small herbivorous insects and pathogens.


Assuntos
Bignoniaceae , Flores , Folhas de Planta , Tricomas , Flores/química , Flores/ultraestrutura , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Tricomas/química , Tricomas/ultraestrutura
13.
Molecules ; 25(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352709

RESUMO

Flos Lamii albi has a high biological activity and is widely used in herbal medicine. The aim of the study was to characterize the secretory structures present in Lamium album subsp. album corolla and the location of phenolic compounds. Additionally, we carried out qualitative phytochemical analyses of flavonoids and phenolic acids. Light, fluorescence, and scanning electron microscopy were used to analyze the structure of the floral organs. The main classes of phenolic compounds and their localization were determined histochemically. Phytochemical analyses were performed with high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC). Six types of glandular trichomes were found which contained flavonoids, phenolic acids, and tannins. The phytochemical studies demonstrated the presence of caffeic, chlorogenic, ferulic, gallic, p-coumaric, protocatechuic, syringic, gentisic, and vanillic phenolic acids as well as rutoside, isoquercetin, and quercetin flavonoids. The corolla in L. album subsp. album has antioxidant properties due to the presence of various polyphenols, as shown by the histo- and phytochemical analyses. The distribution and morphology of trichomes and the content of phenolic compounds in the corolla have taxonomic, pharmacognostic, and practical importance, facilitating the identification of the raw material.


Assuntos
Flores/química , Lamiaceae/química , Fenóis/química , Compostos Fitoquímicos/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Flavonoides/química , Hidroxibenzoatos/química , Plantas Medicinais/química , Polifenóis/química , Taninos/química , Tricomas/química
14.
Planta ; 252(6): 102, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33180181

RESUMO

MAIN CONCLUSION: Permanent glandular trichomes of Robinia viscosa var. hartwigii produce viscous secretion containing several secondary metabolites, as lipids, mucilage, flavonoids, proteins and alkaloids. Robinia viscosa var. hartwigii (Hartweg's locust) is an ornamental tree with high apicultural value. It can be planted in urban greenery and in degraded areas. The shoots, leaves, and inflorescences of this plant are equipped with numerous persistent glandular trichomes producing sticky secretion. The distribution, origin, development, morphology, anatomy, and ultrastructure of glandular trichomes of Hartweg's locust flowers as well as the localisation and composition of their secretory products were investigated for the first time. To this end, light, scanning, and transmission electron microscopy combined with histochemical and fluorescence techniques were used. The massive glandular trichomes differing in the distribution, length, and stage of development were built of a multicellular and multiseriate stalk and a multicellular head. The secretory cells in the stalk and head had large nuclei with nucleoli, numerous chloroplasts with thylakoids and starch grains, mitochondria, endoplasmic reticulum profiles, Golgi apparatus, vesicles, and multivesicular bodies. Many vacuoles contained phenolic compounds dissolved or forming various condensed deposits. The secretion components were transported through symplast elements, and the granulocrine and eccrine modes of nectar secretion were observed. The secretion was accumulated in the subcuticular space at the trichome apex and released through a pore in the cuticle. Histochemical and fluorescence assays showed that the trichomes and secretion contained lipophilic and polyphenol compounds, polysaccharides, proteins, and alkaloids. We suggest that these metabolites may serve an important function in protection of plants against biotic stress conditions and may also be a source of phytopharmaceuticals in the future.


Assuntos
Histocitoquímica , Robinia , Tricomas , Flores , Microscopia Eletrônica , Folhas de Planta , Robinia/química , Robinia/ultraestrutura , Tricomas/química , Tricomas/ultraestrutura
15.
Chem Biodivers ; 17(11): e2000532, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32965746

RESUMO

This study presented a micromorphological and phytochemical survey on Lavandula dentata L. cultivated at the Ghirardi Botanic Garden (Toscolano Maderno, BS, Italy). The morphological investigation revealed the presence of peltate, short- and medium-stalked capitate trichomes. The histochemical survey showed terpene production by peltates and medium-stalked capitates, hydrophilic secretions by short-stalked capitates. The phytochemical survey was developed on leaf and flower volatile organic compounds (VOCs) and on the essential oil (EO) from the flowering aerial parts. The VOC profiles represented an element of novelty and were dominated by oxygenated monoterpenes, among which 1,8-cineole and ß-pinene were the most abundant (77.40 %, 7.11 % leaves; 81.08 %, 10.46 % flowers). The EO of L. dentata was dominated by oxygenated monoterpenes with a high percentage of 1,8-cineole (69.08 %), followed by ß-pinene, trans-pinocarveol and myrtenal. Evaluations about the ecological role, the potential biological activity and the sensory attributes were proposed, based on literature contributions.


Assuntos
Lavandula/química , Óleos Voláteis/análise , Tricomas/química , Compostos Orgânicos Voláteis/análise , Flores/química , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Itália , Lavandula/metabolismo , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Microextração em Fase Sólida , Terpenos/análise , Terpenos/química , Terpenos/isolamento & purificação , Tricomas/metabolismo , Tricomas/ultraestrutura , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
16.
J Agric Food Chem ; 68(41): 11389-11401, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32852206

RESUMO

Tea trichomes contain special flavor-determining metabolites; however, little is known about how and why tea trichomes produce them. Integrated metabolite and transcriptome profiling on tea trichomes in comparison with that on leaves showed that trichomes contribute to tea plant defense and tea flavor and nutritional quality. These unicellular, nonglandular, and unbranched tea trichomes produce a wide array of tea characteristic metabolites, such as UV-protective flavonoids, insect-toxic caffeine, herbivore-defensive volatiles, and theanine, as evidenced by the expression of whole sets of genes involved in different metabolic pathways. Both dry and fresh trichomes contain several volatiles and flavonols that were not found or at much low levels in trichome-removed leaves, including benzoic acid derivatives, lipid oxidation derivatives, and monoterpene derivatives. Trichomes also specifically expressed many disease signaling genes and various antiherbivore or antiabiotic peptides. Trichomes are one of the domestication traits in tea plants. Tea trichomes contribute to tea plant defenses and tea flavors.


Assuntos
Camellia sinensis/metabolismo , Aromatizantes/química , Tricomas/química , Camellia sinensis/química , Camellia sinensis/genética , Flavonoides/química , Flavonoides/metabolismo , Aromatizantes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Chá/química , Transcriptoma , Tricomas/genética , Tricomas/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
17.
Mol Biol Rep ; 47(9): 6587-6598, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32860161

RESUMO

Genus Ocimum is known to have species possessing important therapeutic essential oil. The major phytoconstituents of essential oil in Ocimum species are phenylpropanoids and terpenoids. The essential oil is accumulated in the trichomes; the specialized structures predominantly found on leaves and other tissues. The development of trichome is integrated with development of plant and leaf and also tightly coordinated with the primary and secondary metabolic pathways producing essential oil constituents. In continuation to our studies on elucidating/understanding the mechanism of biosynthesis of  essential oil pathways in Ocimum species, we have performed comparative transcriptome analysis to investigate the role of trichome-related gene expression in the regulation of biosynthetic pathways of essential oil. The essential oil biogenesis is tightly integrated with primary metabolic activities, the analysis for the expression pattern of genes related to primary metabolism and its relationship with secondary metabolism was evaluated in comparative manner. Physiological parameters in relation to primary metabolism such as photosynthetic pigment content, soluble sugar content, and invertase enzymes along with morphological parameters were analysed in O. basilicum and O. sanctum. Differential expression profiling uncovered about 8116 and 2810 differentially expressed transcripts in O. basilicum and O. sanctum, respectively. Enrichment of differentially expressed genes were analysed in relation to metabolic pathways, primary metabolism and secondary metabolism. Trichome related genes identified from the Ocimum species vis-à-vis their expression profiles suggested higher expression in O. basilicum. The findings in this study provide interesting insights into the role of trichome-related transcripts in relation to essential oil content in Ocimum species. The study is valuable as this is the first study on revealing the transcripts and their role in trichome development and essential oil biogenesis in two major species of Ocimum.


Assuntos
Ocimum/química , Ocimum/metabolismo , Óleos Voláteis/metabolismo , Transcriptoma/genética , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Ocimum/enzimologia , Ocimum/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário/genética , Metabolismo Secundário/fisiologia , Terpenos/metabolismo , Tricomas/química , Tricomas/genética
18.
Sci Rep ; 10(1): 12464, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719384

RESUMO

Glandular trichomes (GTs) are defensive structures that produce and accumulate specialized metabolites and protect plants against herbivores, pathogens, and abiotic stress. GTs have been extensively studied in angiosperms for their roles in defense and biosynthesis of high-value metabolites. In contrast, trichomes of gymnosperms have been described in fossilized samples, but have not been studied in living plants. Here, we describe the characterization of GTs on young stems of a hybrid white spruce. Metabolite and histological analysis of spruce GTs support a glandular function with accumulation of a diverse array of mono-, sesqui- and diterpenes including diterpene methylesters. Methylated diterpenes have previously been associated with insect resistance in white spruce. Headspeace analysis of spruce GTs showed a profile of volatiles dominated by monoterpenes and a highly diverse array of sesquiterpenes. Spruce GTs appear early during shoot growth, prior to the development of a lignified bark and prior to accumulation of terpenes in needles. Spruce GTs may provide an early, terpene-based chemical defense system at a developmental stage when young shoots are particularly vulnerable to foliage and shoot feeding insects, and before the resin duct system characteristic of conifers has fully developed.


Assuntos
Terpenos/química , Traqueófitas/química , Tricomas/química , Animais , Cycadopsida/anatomia & histologia , Cycadopsida/química , Cycadopsida/crescimento & desenvolvimento , Cycadopsida/imunologia , Insetos/fisiologia , Terpenos/imunologia , Traqueófitas/anatomia & histologia , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/imunologia , Tricomas/anatomia & histologia , Tricomas/crescimento & desenvolvimento , Tricomas/imunologia
19.
Plant Cell Environ ; 43(9): 2019-2032, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32323332

RESUMO

Interspecific New Rice for Africa (NERICA) varieties have been recently developed and used in Sub-Saharan Africa but herbivore resistance properties of these plants remain poorly understood. Here we report that, compared to a local Japanese cultivar Nipponbare, NERICA 1, 4 and 10 are significantly more damaged by insect herbivores in the paddy fields. In contrast to high levels of leaf damage from rice skippers and grasshoppers, constitutive and induced volatile organic compounds for indirect plant defense were higher or similar in NERICAs and Nipponbare. Accumulation of direct defense secondary metabolites, momilactones A and B, and p-coumaroylputrescine (CoP) was reduced in NERICAs, while feruloylputrescine accumulated at similar levels in all varieties. Finally, we found that Nipponbare leaves were covered with sharp nonglandular trichomes impregnated with silicon but comparable defense structures were virtually absent in herbivory-prone NERICA plants. As damage to the larval gut membranes by Nipponbare silicified trichomes that pass intact through the insect digestive system, occurs, and larval performance is enhanced by trichome removal from otherwise chemically defended Nipponbare plants, we propose that silicified trichomes work as an important defense mechanism of rice against chewing insect herbivores.


Assuntos
Herbivoria , Oryza/fisiologia , Tricomas/fisiologia , Animais , Digestão , Trato Gastrointestinal/ultraestrutura , Insetos , Japão , Larva/crescimento & desenvolvimento , Lepidópteros , Oryza/química , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Metabolismo Secundário , Tricomas/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
20.
Sci Rep ; 10(1): 5234, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251340

RESUMO

Ocimum is one of the most revered medicinally useful plants which have various species. Each of the species is distinct in terms of metabolite composition as well as the medicinal property. Some basil types are used more often as an aromatic and flavoring ingredient. It would be informative to know relatedness among the species which though belong to the same genera while exclusively different in terms of metabolic composition and the operating pathways. In the present investigation the similar effort has been made in order to differentiate three commonly occurring Ocimum species having the high medicinal value, these are Ocimum sanctum, O. gratissimum and O. kilimandscharicum. The parameters for the comparative analysis of these three Ocimum species comprised of temporal changes in number leaf trichomes, essential oil composition, phenylpropanoid pathway genes expression and the activity of important enzymes. O. gratissimum was found to be richest in phenylpropanoid accumulation as well as their gene expression when compared to O. sanctum while O. kilimandscharicum was found to be accumulating terpenoid. In order to get an overview of this qualitative and quantitative regulation of terpenes and phenylpropenes, the expression pattern of some important transcription factors involved in secondary metabolism were also studied.


Assuntos
Metabolômica/métodos , Ocimum/metabolismo , Óleos Voláteis/química , Proteínas de Plantas/genética , Plantas Medicinais/metabolismo , Antocianinas/análise , Antocianinas/metabolismo , Clorofila/análise , Clorofila/metabolismo , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Ocimum/química , Ocimum/genética , Óleos Voláteis/metabolismo , Proteínas de Plantas/metabolismo , Plantas Medicinais/química , Metabolismo Secundário , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/química , Tricomas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA