Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
1.
Nat Commun ; 15(1): 7642, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223116

RESUMO

Animal morphology is influenced by several factors, including gonadal development and gametogenesis. Although their effects are well documented in male/female differentiation, much less is known about same-sex effects, such as those caused by their mode of reproduction. Here, using geometric morphometric analyses, we compare two groups of all-female triploid hybrid fish Chrosomus eos × eos-neogaeus, that differ only by their sexual and asexual reproductive strategies. We demonstrate that morphological differences arise from factors inherently associated with their mode of reproduction, with results replicated in two distinct lineages and in natural and common garden environments. Such differences provide additional insight about the costs and benefits of both reproductive strategies, which have mostly been of a demographic, population genetic, or genetic nature. In particular, these findings have important implications for the ecology of asexual organisms and contribute to the study of sex evolution by adding complexity to the paradox of sex theory.


Assuntos
Reprodução Assexuada , Animais , Feminino , Masculino , Reprodução Assexuada/genética , Hibridização Genética , Triploidia
2.
Fish Shellfish Immunol ; 153: 109805, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102972

RESUMO

The production of type I interferon is tightly regulated to prevent excessive immune activation. However, the role of selective autophagy receptor SQSTM1 in this regulation in teleost remains unknown. In this study, we cloned the triploid fish SQSTM1 (3nSQSTM1), which comprises 1371 nucleotides, encoding 457 amino acids. qRT-PCR data revealed that the transcript levels of SQSTM1 in triploid fish were increased both in vivo and in vitro following spring viraemia of carp virus (SVCV) infection. Immunofluorescence analysis confirmed that 3nSQSTM1 was mainly distributed in the cytoplasm. Luciferase reporter assay results showed that 3nSQSTM1 significantly blocked the activation of interferon promoters induced by 3nMDA5, 3nMAVS, 3nTBK1, and 3nIRF7. Co-immunoprecipitation assays further confirmed that 3nSQSTM1 could interact with both 3nTBK1 and 3nIRF7. Moreover, upon co-transfection, 3nSQSTM1 significantly inhibited the antiviral activity mediated by TBK1 and IRF7. Mechanistically, 3nSQSTM1 decreased the TBK1 phosphorylation and its interaction with 3nIRF7, thereby suppressing the subsequent antiviral response. Notably, we discovered that 3nSQSTM1 also interacted with SVCV N and P proteins, and these viral proteins may exploit 3nSQSTM1 to further limit the host's antiviral innate immune responses. In conclusion, our study demonstrates that 3nSQSTM1 plays a pivotal role in negatively regulating the interferon signaling pathway by targeting 3nTBK1 and 3nIRF7.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Fator Regulador 7 de Interferon , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Imunidade Inata/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Carpas/imunologia , Carpas/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Regulação da Expressão Gênica/imunologia , Transdução de Sinais/imunologia , Triploidia , Filogenia , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária
3.
Food Chem ; 461: 140904, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181054

RESUMO

Triploid Oncorhynchus mykiss is an important economic fish worldwide. Fishing stress can affect its growth and meat quality. This study first explored the effects of fishing stress on fatty acid and amino acid in triploid O. mykiss. Results showed fishing stress significantly reduced the content of docosadienoic acid, Gly, Arg, and DAA (P < 0.05). Targeted lipidomics analysis furthered suggested that some lipid molecules belonging to TG, DG, PC, Cer, ChE, and So were significantly up-regulated; while some lipid molecules belonging to Cer, LPE, LPC, PS, PC, and SM were significantly down-regulated, suggesting an accelerated glycolipid metabolism. Eventually, the glycolipid metabolism-related enzyme activity and gene expressions were examined, and the results indicated that O. mykiss was anti-oxidative stress by affecting relevant glycolipid metabolism signaling pathways and participating in cellular redox homeostasis. Findings of this study provide a theoretical foundation for further investigation into the mechanisms through which fishing stress affects O. mykiss.


Assuntos
Aminoácidos , Ácidos Graxos , Glicolipídeos , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Aminoácidos/metabolismo , Aminoácidos/análise , Glicolipídeos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Triploidia , Estresse Fisiológico , Metabolismo dos Lipídeos , Pesqueiros
4.
Proc Natl Acad Sci U S A ; 121(33): e2405636121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39102548

RESUMO

Chromosomal abnormalities are a common cause of human miscarriage but rarely reported in any other species. As a result, there are currently inadequate animal models available to study this condition. Horses present one potential model since mares receive intense gynecological care. This allowed us to investigate the prevalence of chromosomal copy number aberrations in 256 products of conception (POC) in a naturally occurring model of pregnancy loss (PL). Triploidy (three haploid sets of chromosomes) was the most common aberration, found in 42% of POCs following PL over the embryonic period. Over the same period, trisomies and monosomies were identified in 11.6% of POCs and subchromosomal aberrations in 4.2%. Whole and subchromosomal aberrations involved 17 autosomes, with chromosomes 3, 4, and 20 having the highest number of aberrations. Triploid fetuses had clear gross developmental anomalies of the brain. Collectively, data demonstrate that alterations in chromosome number contribute to PL similarly in women and mares, with triploidy the dominant ploidy type over the key period of organogenesis. These findings, along with highly conserved synteny between human and horse chromosomes, similar gestation lengths, and the shared single greatest risk for PL being advancing maternal age, provide strong evidence for the first animal model to truly recapitulate many key features of human miscarriage arising due to chromosomal aberrations, with shared benefits for humans and equids.


Assuntos
Aborto Espontâneo , Aberrações Cromossômicas , Animais , Cavalos , Feminino , Aborto Espontâneo/genética , Gravidez , Modelos Animais de Doenças , Humanos , Triploidia
5.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38954534

RESUMO

In aquaculture, sterile triploids are commonly used for production as sterility gives them potential gains in growth, yields, and quality. However, they cannot be reproduced, and DNA parentage assignment to their diploid or tetraploid parents is required to estimate breeding values for triploid phenotypes. No publicly available software has the ability to assign triploids to their parents. Here, we updated the R package APIS to support triploids induced from diploid parents. First, we created new exclusion and likelihood tables that account for the double allelic contribution of the dam and the recombination that can occur during female meiosis. As the effective recombination rate of each marker with the centromere is usually unknown, we set it at 0.5 and found that this value maximizes the assignment rate even for markers with high or low recombination rates. The number of markers needed for a high true assignment rate did not strongly depend on the proportion of missing parental genotypes. The assignment power was however affected by the quality of the markers (minor allele frequency, call rate). Altogether, 96-192 SNPs were required to have a high parentage assignment rate in a real rainbow trout dataset of 1,232 triploid progenies from 288 parents. The likelihood approach was more efficient than exclusion when the power of the marker set was limiting. When more markers were used, exclusion was more advantageous, with sensitivity reaching unity, very low false discovery rate (<0.01), and excellent specificity (0.96-0.99). Thus, APIS provides an efficient solution to assign triploids to their diploid parents.


Assuntos
Diploide , Software , Triploidia , Animais , Polimorfismo de Nucleotídeo Único , Feminino , Genótipo , Alelos , Masculino
7.
Molecules ; 29(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38893545

RESUMO

Tetraploid oysters are artificially produced oysters that do not exist in nature. The successful breeding of 100% triploid oysters resolved the difficulties of traditional drug-induced triploids, such as the presence of drug residues and a low triploid induction rate. However, little is known concerning the biochemical composition and nutrient contents of such tetraploids. Therefore, we investigated compositional differences among diploid, triploid, and tetraploid Crassostrea gigas as well as between males and females of diploids and tetraploids. The findings indicated that glycogen, EPA, ∑PUFA, and omega-3 contents were significantly higher in triploid oysters than in diploids or tetraploids; tetraploid oysters had a significantly higher protein content, C14:0, essential amino acid, and flavor-presenting amino acid contents than diploids or triploids. For both diploid and tetraploids, females had significantly higher levels of glutamate, methionine, and phenylalanine than males but lower levels of glycine and alanine. In addition, female oysters had significantly more EPA, DHA, omega-3, and total fatty acids, a result that may be due to the fact that gonadal development in male oysters requires more energy to sustain growth, consumes greater amounts of nutrients, and accumulates more proteins. With these results, important information is provided on the production of C. gigas, as well as on the basis and backing for the genetic breeding of oysters.


Assuntos
Aminoácidos , Crassostrea , Diploide , Ácidos Graxos , Tetraploidia , Triploidia , Animais , Crassostrea/genética , Crassostrea/metabolismo , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Feminino , Masculino
8.
PLoS One ; 19(6): e0302687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848398

RESUMO

Xenogenesis has been recognized as a prospective method for producing channel catfish, Ictalurus punctatus ♀ × blue catfish, I. furcatus ♂ hybrids. The xenogenesis procedure can be achieved by transplanting undifferentiated stem cells derived from a donor fish into a sterile recipient. Xenogenesis for hybrid catfish embryo production has been accomplished using triploid channel catfish as a surrogate. However, having a surrogate species with a shorter maturation period, like white catfish (Ameiurus catus), would result in reduced feed costs, labor costs, and smaller body size requirements, making it a more suitable species for commercial applications where space is limited, and as a model species. Hence, the present study was conducted to assess the effectiveness of triploid white catfish as a surrogate species to transplant blue catfish stem cells (BSCs) and channel catfish stem cells (CSCs). Triploid white catfish fry were injected with either BSCs or CSCs labeled with PKH 26 fluorescence dye from 0 to 12 days post hatch (DPH). No significant differences in weight and length of fry were detected among BSCs and CSCs injection times (0 to 12 DPH) when fry were sampled at 45 and 90 DPH (P > 0.05). The highest survival was reported when fry were injected between 4.0 to 5.5 DPH (≥ 81.2%). At 45 and 90 DPH, cell and cluster area increased for recipients injected from 0 to 5.2 DPH, and the highest cluster area values were reported between 4.0 to 5.2 DPH. Thereafter, fluorescent cell and cluster area in the host declined with no further decrease after 10 DPH. At 45 DPH, the highest percentage of xenogens were detected when fry were injected with BSCs between 4.0 to 5.0 and CSCs between 3.0 to 5.0 DPH. At 90 DPH, the highest number of xenogens were detected from 4.0 to 6.0 DPH when injected with either BSCs or CSCs. The current study demonstrated the suitability of white catfish as a surrogate species when BSCs and CSCs were transplanted into triploid white catfish between 4.0 to 6.0 DPH (27.4 ± 0.4°C). Overall, these findings allow enhanced efficiency of commercializing xenogenic catfish carrying gametes of either blue catfish or channel catfish.


Assuntos
Aquicultura , Peixes-Gato , Triploidia , Animais , Aquicultura/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , Transplante de Células-Tronco/métodos , Ictaluridae/genética , Feminino , Masculino
9.
Am J Bot ; 111(8): e16325, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38704729

RESUMO

PREMISE: Quaking aspen is a clonal tree species that has mixed ploidy, often with high relative abundance of both diploids and triploids but no haploids or tetraploids. Triploids typically have low fertility, leaving their occurrence apparently unlikely from an evolutionary perspective, unless they provide a "triploid bridge" to generating higher-fitness tetraploids-which are not observed in this species. This study focused on how triploidy can be maintained in quaking aspen. METHODS: A computational model was used to simulate gamete production, sexual reproduction, asexual reproduction, parent survival, and offspring survival in a population. All parameters were assumed to be cytotype-dependent and environment-independent. Sampling methods were used to identify parameter combinations consistent with observed cytotype frequencies. RESULTS: Many processes and parameter values were sufficient to yield a moderate frequency of triploids, and very few were necessary. The most plausible route involved higher triploid survival at the parent or offspring stage and limited unreduced gamete production by either diploid or triploid parents. Triploid fertility was helpful but not necessary. CONCLUSIONS: The coexistence of diploids and triploids in quaking aspen is statistically likely and promoted by the existence of commonly observed, long-lived triploid clones. However, other mechanisms not captured by the model related to environmental variation could also occur. Further empirical data or more complex but difficult-to-parameterize models are needed to gain further insight.


Assuntos
Populus , Triploidia , Populus/genética , Populus/fisiologia , Reprodução , Evolução Biológica , Diploide , Modelos Biológicos
10.
Genes Brain Behav ; 23(3): e12898, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38817102

RESUMO

Aquaculturists use polyploid fish to maximize production albeit with some unintended consequences including compromised behaviors and physiological function. Given benefits of probiotic therapies (e.g., improved immune response, growth, and metabolism), we explored probiotic supplementation (mixture of Bifidobacterium, Lactobacillus, and Lactococcus), to overcome drawbacks. We first examined fish gut bacterial community composition using 16S metabarcoding (via principal coordinate analyses and PERMANOVA) and determined probiotics significantly impacted gut bacteria composition (p = 0.001). Secondly, we examined how a genomic disruptor (triploidy) and diet supplements (probiotics) impact gene transcription and behavioral profiles of hatchery-reared Chinook salmon (Oncorhynchus tshawytscha). Juveniles from four treatment groups (diploid-regular feed, diploid-probiotic feed, triploid-regular feed, and triploid-probiotic feed; n = 360) underwent behavioral assays to test activity, exploration, neophobia, predator evasion, aggression/sociality, behavioral sensitivity, and flexibility. In these fish, transcriptional profiles for genes associated with neural functions (neurogenesis/synaptic plasticity) and biomarkers for stress response and development (growth/appetite) were (i) examined across treatments and (ii) used to describe behavioral phenotypes via principal component analyses and general linear mixed models. Triploids exhibited a more active behavioral profile (p = 0.002), and those on a regular diet had greater Neuropeptide Y transcription (p = 0.02). A growth gene (early growth response protein 1, p = 0.02) and long-term neural development genes (neurogenic differentiation factor, p = 0.003 and synaptysomal-associated protein 25-a, p = 0.005) impacted activity and reactionary profiles, respectively. Overall, our probiotic treatment did not compensate for triploidy. Our research highlights novel applications of behavioral transcriptomics for identifying candidate genes and dynamic, mechanistic associations with complex behavioral repertoires.


Assuntos
Microbioma Gastrointestinal , Lactococcus , Probióticos , Salmão , Transcriptoma , Triploidia , Animais , Probióticos/farmacologia , Probióticos/administração & dosagem , Salmão/genética , Salmão/microbiologia , Lactococcus/genética , Lactobacillus/genética , Comportamento Animal/efeitos dos fármacos
12.
BMC Plant Biol ; 24(1): 391, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735929

RESUMO

BACKGROUND: Unreduced gamete formation during meiosis plays a critical role in natural polyploidization. However, the unreduced gamete formation mechanisms in Triticum turgidum-Aegilops umbellulata triploid F1 hybrid crosses and the chromsome numbers and compostions in T. turgidum-Ae. umbellulata F2 still not known. RESULTS: In this study, 11 T.turgidum-Ae. umbellulata triploid F1 hybrid crosses were produced by distant hybridization. All of the triploid F1 hybrids had 21 chromosomes and two basic pathways of meiotic restitution, namely first-division restitution (FDR) and single-division meiosis (SDM). Only FDR was found in six of the 11 crosses, while both FDR and SDM occurred in the remaining five crosses. The chromosome numbers in the 127 selfed F2 seeds from the triploid F1 hybrid plants of 10 crosses (no F2 seeds for STU 16) varied from 35 to 43, and the proportions of euploid and aneuploid F2 plants were 49.61% and 50.39%, respectively. In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes. The chromosome loss of the U genome was the highest (26.77%) among the three genomes, followed by that of the B (22.83%) and A (11.81%) genomes, and the chromosome gain for the A, B, and U genomes was 3.94%, 3.94%, and 1.57%, respectively. Of the 21 chromosomes, 7U (16.54%), 5 A (3.94%), and 1B (9.45%) had the highest loss frequency among the U, A, and B genomes. In addition to chromosome loss, seven chromosomes, namely 1 A, 3 A, 5 A, 6 A, 1B, 1U, and 6U, were gained in the aneuploids. CONCLUSION: In the aneuploid F2 plants, the frequency of chromosome loss/gain varied among genomes, chromsomes, and crosses. In addition to variations in chromosome numbers, three types of chromosome translocations including 3UL·2AS, 6UL·1AL, and 4US·6AL were identified in the F2 plants. Furthermore, polymorphic fluorescence in situ hybridization karyotypes for all the U chromosomes were also identified in the F2 plants when compared with the Ae. umbellulata parents. These results provide useful information for our understanding the naturally occurred T. turgidum-Ae. umbellulata amphidiploids.


Assuntos
Aegilops , Instabilidade Cromossômica , Cromossomos de Plantas , Hibridização Genética , Triticum , Triticum/genética , Cromossomos de Plantas/genética , Aegilops/genética , Meiose/genética , Triploidia , Poliploidia , Genoma de Planta
13.
Nat Commun ; 15(1): 4612, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816386

RESUMO

In plants, small-interfering RNAs (siRNAs) mediate epigenetic silencing via the RNA-directed DNA methylation (RdDM) pathway, which is particularly prominent during reproduction and seed development. However, there is limited understanding of the origins and dynamics of reproductive siRNAs acting in different cellular and developmental contexts. Here, we used the RNaseIII-like protein RTL1 to suppress siRNA biogenesis in Arabidopsis pollen, and found distinct siRNA subsets produced during pollen development. We demonstrate that RTL1 expression in the late microspore and vegetative cell strongly impairs epigenetic silencing, and resembles RdDM mutants in their ability to bypass interploidy hybridization barriers in the seed. However, germline-specific RTL1 expression did not impact transgenerational inheritance of triploid seed lethality. These results reveal the existence of multiple siRNA subsets accumulated in mature pollen, and suggest that mobile siRNAs involved in the triploid block are produced in germline precursor cells after meiosis, or in the vegetative cell during pollen mitosis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Pólen , RNA Interferente Pequeno , Sementes , Pólen/genética , Pólen/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sementes/genética , Sementes/metabolismo , Triploidia , Metilação de DNA , Meiose/genética , Ribonuclease III/metabolismo , Ribonuclease III/genética , Epigênese Genética
14.
Front Endocrinol (Lausanne) ; 15: 1373623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596226

RESUMO

Hybridization and polyploid breeding are the main approaches used to obtain new aquaculture varieties. Allotriploid crucian carp (3n) with rapid growth performance was generated by mating red crucian carp (RCC) with allotetraploids (4n). Fish growth is controlled by the growth hormone (GH)/insulin-like growth factor (IGF) axis. In the present study, we examined the expression characteristics of GH/IGF axis genes in hybrids F1, 4n, 3n, RCC and common carp (CC). The results showed that GHRa, GHRb, IGF1, IGF2, and IGF-1Ra were highly expressed in 3n compared with RCC and CC, whereas IGF3 was undetectable in the liver in RCC, CC and 3n. GHRa and GHRb had low expression in the 4n group. In hybrid F1, GHRa expression was low, whereas GHRb was highly expressed compared to the levels in RCC and CC. Moreover, in hybrid F1, the expression of IGF3 was higher, and the expression of IGF1 and IGF2 was lower than that in the RCC and CC, whereas the expression of IGF-1Ra was similar to that in RCC and CC. For the IGFBP genes, IGFBP1 had higher expression in 3n compared than that in RCC and CC, while other IGFBP genes were not high expressed in 3n. Among the genes detected in this study, 11 genes were nonadditively expressed in 3n, with 5 genes in the transgressive upregulation model. We proposed that the 11 nonadditive expression of GH/IGF axis genes is related to growth heterosis in 3n. This evidence provides new insights into hybridization and polyploid breeding from the perspective of hormone regulation.


Assuntos
Carcinoma de Células Renais , Carpas , Hormônio do Crescimento Humano , Neoplasias Renais , Animais , Carpas/genética , Carpas/metabolismo , Triploidia , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Vigor Híbrido/genética , Peptídeos Semelhantes à Insulina , Hormônio do Crescimento Humano/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Perfilação da Expressão Gênica
15.
Commun Biol ; 7(1): 424, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589507

RESUMO

The cellular and molecular mechanisms governing sexual reproduction are conserved across eukaryotes. Nevertheless, hybridization can disrupt these mechanisms, leading to asexual reproduction, often accompanied by polyploidy. In this study, we investigate how ploidy level and ratio of parental genomes in hybrids affect their reproductive mode. We analyze the gametogenesis of sexual species and their diploid and triploid hybrids from the freshwater fish family Cobitidae, using newly developed cytogenetic markers. We find that diploid hybrid females possess oogonia and oocytes with original (diploid) and duplicated (tetraploid) ploidy. Diploid oocytes cannot progress beyond pachytene due to aberrant pairing. However, tetraploid oocytes, which emerge after premeiotic genome endoreplication, exhibit normal pairing and result in diploid gametes. Triploid hybrid females possess diploid, triploid, and haploid oogonia and oocytes. Triploid and haploid oocytes cannot progress beyond pachytene checkpoint due to aberrant chromosome pairing, while diploid oocytes have normal pairing in meiosis, resulting in haploid gametes. Diploid oocytes emerge after premeiotic elimination of a single-copied genome. Triploid hybrid males are sterile due to aberrant pairing and the failure of chromosomal segregation during meiotic divisions. Thus, changes in ploidy and genome dosage may lead to cyclical alteration of gametogenic pathways in hybrids.


Assuntos
Cipriniformes , Triploidia , Animais , Feminino , Masculino , Tetraploidia , Gametogênese , Haploidia , Cipriniformes/genética
16.
J Fish Biol ; 104(6): 1960-1971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553987

RESUMO

The study investigated if gonad maturation in triploid brown trout, Salmo trutta, was entirely suppressed or only delayed, and if triploids could interbreed with diploid counterparts. Ten percent of the total number of 3-year-old triploid S. trutta, 15% of 4-year-old fish, and 17% of 5-year-old fish produced semen. Three and 4 years old triploid fish did not produce eggs, but 15% of the 5-year-old fish did so. The quantity and sperm motility of triploid semen did not differ from diploids, but the sperm concentration was significantly lower. When diploid eggs were fertilized with triploid semen (3n × 2n crosses), the percentage of eyed stage embryos, of hatched larvae, and of normal-shaped larvae did not differ from the diploid controls. Circa 90% of 3n × 2n crosses had a ploidy level of 2.4n. In the remaining percentage of 3n × 2n crosses, the ploidy level was ≥2n and <2.4n. In sperm competition experiments where diploid eggs were fertilized with a mixture of diploid and triploid semen, 52% of the originating larvae had a ploidy level of 2n, 43% of 2.4n, and 5% of the fish were not exactly classified. From the start of feeding to an age of 248 days, the mortality rate of 3n × 2n interploid crosses and of 2n × 2n controls was similar. The growth of interploid crosses was significantly higher than that of controls. In triploid mature females, the egg mass per kilogram of body weight was significantly lower than in diploids. The mass of the non-hardened eggs and the percentile weight increase during hardening did not differ from diploid eggs. When triploid eggs were fertilized with diploid semen (2n × 3n crosses), the development rate to normal hatched larvae was less than 10%. All originating larvae had a ploidy level of 3n. From the start of feeding to an age of 248 days, 2n × 3n crosses had a higher mortality rate (15%) than diploid controls (<5%). Growth of this type of interploid crosses was reduced in comparison to controls. Therefore, triploids introduced into natural waters for recreational fisheries or escaping from farms may interbreed with diploid counterparts. This not only alters the genotypes of local populations but also changes the ploidy levels.


Assuntos
Diploide , Triploidia , Truta , Animais , Truta/genética , Truta/crescimento & desenvolvimento , Truta/fisiologia , Masculino , Feminino , Gônadas/crescimento & desenvolvimento , Motilidade dos Espermatozoides , Espermatozoides/fisiologia
17.
Genomics ; 116(3): 110832, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518898

RESUMO

GCN2-eIF2α signaling pathway plays crucial roles in cell growth,development, and protein synthesis. However, in polyploid fish, the function of this pathway is rarely understood. In this study, genes associated with the GCN2-eIF2α pathway (pkr, pek, gcn2, eif2α) are founded lower expression levels in the triploid crucian carp (3nCC) muscle compared to that of the red crucian carp (RCC). In muscle effect stage embryos of the 3nCC, the mRNA levels of this pathway genes are generally lower than those of RCC, excluding hri and fgf21. Inhibiting gcn2 in 3nCC embryos downregulates downstream gene expression (eif2α, atf4, fgf21), accelerating embryonic development. In contrast, overexpressing of eif2α can alter the expression levels of downstream genes (atf4 and fgf21), and decelerates the embryonic development. These results demonstrate the GCN2-eIF2α pathway's regulatory impact on 3nCC growth, advancing understanding of fish rapid growth genetics and offering useful molecular markers for breeding of excellent strains.


Assuntos
Carpas , Fator de Iniciação 2 em Eucariotos , Proteínas de Peixes , Transdução de Sinais , Animais , Carpas/genética , Carpas/metabolismo , Carpas/crescimento & desenvolvimento , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Triploidia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Embrionário/genética
18.
Sci Rep ; 14(1): 6876, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519579

RESUMO

Hydatidiform moles are abnormal conceptuses. Many hydatidiform moles are diploid androgenetic, and of these, most are homozygous in all loci. Additionally, most hydatidiform moles are euploid. Using Single Nucleotide Polymorphism (SNP) array analysis, in two studies a higher frequency of aneuploidy was observed in diploid androgenetic heterozygous conceptuses, than in their homozygous counterparts. In the Danish Mole Project, we analyze conceptuses suspected to be hydatidiform moles due to the clinical presentation, using karyotyping and Short Tandem Repeat (STR) analysis. Among 278 diploid androgenetic conceptuses, 226 were homozygous in all loci and 52 (18.7%) were heterozygous in several loci. Among 142 triploid diandric conceptuses, 141 were heterozygous for paternally inherited alleles in several loci. Here we show that the frequencies of aneuploidy in diploid androgenetic heterozygous and triploid diandric heterozygous conceptuses were significantly higher than the frequency of aneuploidy in diploid androgenetic homozygous conceptuses. In diploid androgenetic and triploid diandric conceptuses that are heterozygous for paternally inherited alleles, the two paternally inherited sets of genomes originate in two spermatozoa. Each spermatozoon provides one pair of centrioles to the zygote. The presence of two pairs of centrioles may cause an increased risk of aneuploidy.


Assuntos
Mola Hidatiforme , Neoplasias Uterinas , Masculino , Gravidez , Feminino , Humanos , Diploide , Triploidia , Mola Hidatiforme/genética , Heterozigoto , Aneuploidia
19.
Biosci Biotechnol Biochem ; 88(4): 412-419, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412471

RESUMO

The regeneration of shoots from endosperm tissue is a highly effective method to obtain triploid plants. In this study, we elucidated the establishment of an in vitro regeneration system from endosperm culture for the production of Passiflora edulis "Mantianxing." The highest callus induction rate (83.33%) was obtained on the media supplemented with 1.0 mg/L TDZ. Meanwhile, the MS medium containing 1.0 mg/L 6-BA and 0.4 mg/L IBA gave the optimum 75% shoot bud induction. Chromosome analysis revealed that the chromosomal count of P. edulis "Mantianxing" regenerated from endosperm tissues was 27 (2n = 3x = 27), which indicated that shoots regenerated from endosperm tissues were triploids. Triploid P. edulis had more drought resistance than diploid plants. Our study provided a method for breeding of passion fruit by means of a stable and reproducible regeneration system from endosperm culture, leading to the generation of triploid plants.


Assuntos
Passiflora , Triploidia , Brotos de Planta , Endosperma , Melhoramento Vegetal , Regeneração/genética
20.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38421617

RESUMO

Polyploidy, a significant catalyst for speciation and evolutionary processes in both plant and animal kingdoms, has been recognized for a long time. However, the exact molecular mechanism that leads to polyploid formation, especially in vertebrates, is not fully understood. Our study aimed to elucidate this phenomenon using the zebrafish model. We successfully achieved an effective knockout of the cyclin N-terminal domain containing 1 (cntd1) using CRISPR/Cas9 technology. This resulted in impaired formation of meiotic crossovers, leading to cell-cycle arrest during meiotic metaphase and triggering apoptosis of spermatocytes in the testes. Despite these defects, the mutant (cntd1-/-) males were still able to produce a limited amount of sperm with normal ploidy and function. Interestingly, in the mutant females, it was the ploidy not the capacity of egg production that was altered. This resulted in the production of haploid, aneuploid, and unreduced gametes. This alteration enabled us to successfully obtain triploid and tetraploid zebrafish from cntd1-/- and cntd1-/-/- females, respectively. Furthermore, the tetraploid-heterozygous zebrafish produced reduced-diploid gametes and yielded all-triploid or all-tetraploid offspring when crossed with wild-type (WT) or tetraploid zebrafish, respectively. Collectively, our findings provide direct evidence supporting the crucial role of meiotic crossover defects in the process of polyploidization. This is particularly evident in the generation of unreduced eggs in fish and, potentially, other vertebrate species.


Assuntos
Triploidia , Peixe-Zebra , Masculino , Animais , Feminino , Tetraploidia , Sementes , Poliploidia , Ploidias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA