Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.446
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731937

RESUMO

Due to the favorable features obtained through the incorporation of fluorine atom(s), fluorinated drugs are a group with emerging pharmaceutical importance. As their commercial availability is still very limited, to expand the range of possible candidates, new fluorinated tryptophan analogs were synthesized. Control of enantiopurity during the synthesis procedure requires that highly efficient enantioseparation methods be available. In this work, the enantioseparation of seven fluorinated tryptophans and tryptophan was studied and compared systematically to (i) develop analytical methods for enantioselective separations and (ii) explore the chromatographic features of the fluorotrytophans. For enantioresolution, macrocyclic glycopeptide-based selectors linked to core-shell particles were utilized, applying liquid chromatography-based methods. Application of the polar-ionic mode resulted in asymmetric and broadened peaks, while reversed-phase conditions, together with mobile-phase additives, resulted in baseline separation for all studied fluorinated tryptophans. The marked differences observed between the methanol and acetonitrile-containing eluent systems can be explained by the different solvation abilities of the bulk solvents of the applied mobile phases. Among the studied chiral selectors, teicoplanin and teicoplanin aglycone were found to work effectively. Under optimized conditions, baseline separations were achieved within 6 min. Ionic interactions were semi-quantitatively characterized and found to not influence enantiorecognition. Interestingly, fluorination of the analytes does not lead to marked changes in the chromatographic characteristics of the methanol-containing eluents, while larger differences were noticed when the polar but aprotic acetonitrile was applied. Experiments conducted on the influence of the separation temperature indicated that the separations are enthalpically driven, with only one exception. Enantiomeric elution order was found to be constant on both teicoplanin and teicoplanin aglycone-based chiral stationary phases (L < D) under all applied chromatographic conditions.


Assuntos
Glicopeptídeos , Halogenação , Teicoplanina , Triptofano , Triptofano/química , Triptofano/análogos & derivados , Glicopeptídeos/química , Estereoisomerismo , Teicoplanina/química , Teicoplanina/análogos & derivados , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Compostos Macrocíclicos/química
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124377, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701580

RESUMO

Tryptophan (Trp) residue provides characteristic vibrational markers to the middle wavenumber spectral region of the Raman spectra recorded from peptides and proteins. In this report, we were particularly interested in eight Trp Raman markers, referred to as Wi (i = 1,…,8). All responsible for pronounced Raman lines, these markers originate from indole moiety, a bicyclic conjugated segment involved in the Trp structure. Numerous investigations have previously attempted to relate the variations observed in the spectral features of these markers to the environmental changes of Trp residues. To emphasize the most important points we can mention (i) the variations in the Raman profile of W4 (∼1360 cm-1) and W5 (∼1340 cm-1), frequently observed as a doublet with variable intensity ratio. These two markers were thought to result from a Fermi-resonance effect between certain planar and nonplanar modes; (ii) the changes observed in the wavenumbers and relative intensities of W4, W7 (∼880 cm-1) and W8 (∼760 cm-1) were supposed to be related to the accessibility of Trp to surrounding water molecules; and (iii) the wavenumber fluctuations of W3 (∼1550 cm-1), taken as a Trp side chain orientational marker. However, some ambiguities still exist regarding the interpretation of these markers, needing further clarification. Herein, upon a joint experimental and theoretical analysis based on a multiconformational approach, attention was paid to the relationships between structural and vibrational features of three indole-containing compounds with increasing structural complexity, i.e., skatole (3-methylindole), tryptophan, and tripeptide Gly-Trp-Gly. This study clearly shows that the existing assignments given to certain Trp Raman markers should be reconsidered, especially those based on the Fermi-resonance origin of W4-W5 (∼1360-1340 cm-1) doublet, as well as the purely environmental dependence of W7 and W8 markers.


Assuntos
Análise Espectral Raman , Triptofano , Vibração , Triptofano/química , Triptofano/análise , Análise Espectral Raman/métodos , Conformação Molecular , Indóis/química
3.
Eur J Med Chem ; 271: 116451, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691892

RESUMO

The potent antibacterial activity and low resistance of antimicrobial peptides (AMPs) render them potential candidates for treating multidrug-resistant bacterial infections. Herein, a minimalist design strategy was proposed employing the "golden partner" combination of arginine (R) and tryptophan (W), along with a dendritic structure to design AMPs. By extension, the α/ε-amino group and the carboxyl group of lysine (K) were utilized to link R and W, forming dendritic peptide templates αRn(εRn)KWm-NH2 and αWn(εWn)KRm-NH2, respectively. The corresponding linear peptide templates R2nKWm-NH2 and W2nKRm-NH2 were used as controls. Their physicochemical properties, activity, toxicity, and stability were compared. Among these new peptides, the dendritic peptide R2(R2)KW4 was screened as a prospective candidate owing to its preferable antibacterial properties, biocompatibility, and stability. Additionally, R2(R2)KW4 not only effectively restrained the progression of antibiotic resistance, but also demonstrated synergistic utility when combined with conventional antibiotics due to its unique membrane-disruptive mechanism. Furthermore, R2(R2)KW4 possessed low toxicity (LD50 = 109.31 mg/kg) in vivo, while efficiently clearing E. coli in pulmonary-infected mice. In conclusion, R2(R2)KW4 has the potential to become an antimicrobial regent or adjuvant, and the minimalist design strategy of dendritic peptides provides innovative and encouraging thoughts in designing AMPs.


Assuntos
Antibacterianos , Arginina , Testes de Sensibilidade Microbiana , Triptofano , Triptofano/química , Triptofano/farmacologia , Animais , Arginina/química , Arginina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Camundongos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Infecções Bacterianas/tratamento farmacológico , Humanos , Escherichia coli/efeitos dos fármacos
4.
Org Lett ; 26(19): 4065-4070, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38696591

RESUMO

We introduce a novel and straightforward methodology for photoredox arylation of an indole scaffold using aryldiazonium salts under mild and metal-free conditions. Our approach enables the regioselective and chemoselective introduction of several aryl groups to the C(2) position of indoles and tryptophan, even in competition with other amino acids. This approach extends to the late-stage functionalization of peptides and lysozyme, heralding the unprecedented arylation of tryptophan residues in wild-type proteins and offering broad utility in chemical biology.


Assuntos
Indóis , Oxirredução , Triptofano , Triptofano/química , Indóis/química , Estrutura Molecular , Processos Fotoquímicos , Muramidase/química , Peptídeos/química , Estereoisomerismo , Catálise
5.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675522

RESUMO

Kynurenic acid (KYNA) is a bioactive compound exhibiting multiple actions and positive effects on human health due to its antioxidant, anti-inflammatory and neuroprotective properties. KYNA has been found to have a beneficial effect on wound healing and the prevention of scarring. Despite notable progress in the research focused on KYNA observed during the last 10 years, KYNA's presence in flax (Linum usitatissimum L.) has not been proven to date. In the present study, parts of flax plants were analysed for KYNA synthesis. Moreover, eight different cultivars of flax seeds were tested for the presence of KYNA, resulting in a maximum of 0.432 µg/g FW in the seeds of the cultivar Jan. The level of KYNA was also tested in the stems and roots of two selected flax cultivars: an oily cultivar (Linola) and a fibrous cultivar (Nike). The exposure of plants to the KYNA precursors tryptophan and kynurenine resulted in higher levels of KYNA accumulation in flax shoots and roots. Thus, the obtained results indicate that KYNA might be synthesized in flax. The highest amount of KYNA (295.9 µg/g dry weight [DW]) was detected in flax roots derived from plants grown in tissue cultures supplemented with tryptophan. A spectroscopic analysis of KYNA was performed using the FTIR/ATR method. It was found that, in tested samples, the characteristic KYNA vibration bands overlap with the bands corresponding to the vibrations of biopolymers (especially pectin and cellulose) present in flax plants and fibres.


Assuntos
Linho , Ácido Cinurênico , Raízes de Plantas , Linho/química , Linho/metabolismo , Ácido Cinurênico/metabolismo , Ácido Cinurênico/análise , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Sementes/química , Sementes/metabolismo , Triptofano/metabolismo , Triptofano/análise , Triptofano/química , Extratos Vegetais/química
6.
Anal Bioanal Chem ; 416(12): 3019-3032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573344

RESUMO

Inclusion bodies (IBs) are protein aggregates formed as a result of overexpression of recombinant protein in E. coli. The formation of IBs is a valuable strategy of recombinant protein production despite the need for additional processing steps, i.e., isolation, solubilization and refolding. Industrial process development of protein refolding is a labor-intensive task based largely on empirical approaches rather than knowledge-driven strategies. A prerequisite for knowledge-driven process development is a reliable monitoring strategy. This work explores the potential of intrinsic tryptophan and tyrosine fluorescence for real-time and in situ monitoring of protein refolding. In contrast to commonly established process analytical technology (PAT), this technique showed high sensitivity with reproducible measurements for protein concentrations down to 0.01 g L - 1 . The change of protein conformation during refolding is reflected as a shift in the position of the maxima of the tryptophan and tyrosine fluorescence spectra as well as change in the signal intensity. The shift in the peak position, expressed as average emission wavelength of a spectrum, was correlated to the amount of folding intermediates whereas the intensity integral correlates to the extent of aggregation. These correlations were implemented as an observation function into a mechanistic model. The versatility and transferability of the technique were demonstrated on the refolding of three different proteins with varying structural complexity. The technique was also successfully applied to detect the effect of additives and process mode on the refolding process efficiency. Thus, the methodology presented poses a generic and reliable PAT tool enabling real-time process monitoring of protein refolding.


Assuntos
Corpos de Inclusão , Redobramento de Proteína , Espectrometria de Fluorescência , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Triptofano/química , Escherichia coli/metabolismo , Escherichia coli/química , Tirosina/química , Fluorescência , Dobramento de Proteína
7.
Food Chem ; 449: 139114, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581782

RESUMO

L-Tryptophan (L-Trp) is essential for the human body and can only be obtained externally. It is important to develop a method to efficiently detect L-Trp in food. In this work, ionic liquid (IL) modified poly(3,4-ethylendioxythiophene)/ Titanium carbide (PEDOT/Ti3C2TX) was used as a substrate material to improve detection sensitivity. Molecular imprinted polymers (MIP) film for specific recognition of L-Trp was fabricated on the surface of modified electrodes using electrochemical polymerization. The monitoring results showed that the molecularly imprinted electrochemical sensors (MIECS) exhibited good linearity ranges (10-6 - 0.1 µM and 0.1-100 µM) with a low detection limit (LOD) of 2.09 × 10-7 µM. In addition, the MIECS exhibited remarkable stability, reproducibility, and immunity to interference. A good recovery (93.54-99.59%) was demonstrated in the detection of milk. The sensor was expected to be developed as a highly selective and sensitive portable assay, and applied to the detection of L-Trp in food.


Assuntos
Técnicas Eletroquímicas , Líquidos Iônicos , Limite de Detecção , Leite , Impressão Molecular , Polímeros , Titânio , Triptofano , Leite/química , Líquidos Iônicos/química , Polímeros/química , Animais , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Triptofano/análise , Triptofano/química , Titânio/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros Molecularmente Impressos/química , Contaminação de Alimentos/análise , Eletrodos , Reprodutibilidade dos Testes
8.
J Phys Chem B ; 128(17): 4035-4046, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38641327

RESUMO

Networks of tryptophan (Trp)─an aromatic amino acid with strong fluorescence response─are ubiquitous in biological systems, forming diverse architectures in transmembrane proteins, cytoskeletal filaments, subneuronal elements, photoreceptor complexes, virion capsids, and other cellular structures. We analyze the cooperative effects induced by ultraviolet (UV) excitation of several biologically relevant Trp mega-networks, thus giving insights into novel mechanisms for cellular signaling and control. Our theoretical analysis in the single-excitation manifold predicts the formation of strongly superradiant states due to collective interactions among organized arrangements of up to >105 Trp UV-excited transition dipoles in microtubule architectures, which leads to an enhancement of the fluorescence quantum yield (QY) that is confirmed by our experiments. We demonstrate the observed consequences of this superradiant behavior in the fluorescence QY for hierarchically organized tubulin structures, which increases in different geometric regimes at thermal equilibrium before saturation, highlighting the effect's persistence in the presence of disorder. Our work thus showcases the many orders of magnitude across which the brightest (hundreds of femtoseconds) and darkest (tens of seconds) states can coexist in these Trp lattices.


Assuntos
Triptofano , Raios Ultravioleta , Triptofano/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Microtúbulos/química , Fluorescência , Espectrometria de Fluorescência
9.
J Am Chem Soc ; 146(19): 13641-13650, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687675

RESUMO

The substitution of a single hydrogen atom in a protein by fluorine yields a site-specific probe for sensitive detection by 19F nuclear magnetic resonance (NMR) spectroscopy, where the absence of background signal from the protein facilitates the detection of minor conformational species. We developed genetic encoding systems for the site-selective incorporation of 4-fluorotryptophan, 5-fluorotryptophan, 6-fluorotryptophan, and 7-fluorotryptophan in response to an amber stop codon and used them to investigate conformational heterogeneity in a designed amino acid binding protein and in flaviviral NS2B-NS3 proteases. These proteases have been shown to present variable conformations in X-ray crystal structures, including flips of the indole side chains of tryptophan residues. The 19F NMR spectra of different fluorotryptophan isomers installed at the conserved site of Trp83 indicate that the indole ring flip is common in flaviviral NS2B-NS3 proteases in the apo state and suppressed by an active-site inhibitor.


Assuntos
Conformação Proteica , Triptofano , Triptofano/química , Triptofano/análogos & derivados , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Flúor/química , Proteínas/química
10.
Analyst ; 149(10): 3041-3051, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38625079

RESUMO

Herein, we introduce a novel method for tryptophan detection via a reduction reaction facilitated by its interaction with a copper(II) phthalocyanine (CuPc) electrocatalytic electrode. This method addresses challenges associated with the susceptibility of the oxidation response to interference from various species when measuring tryptophan in bodily fluids. The reduction currents exhibit a linear increase with tryptophan concentrations in two ranges: 0.0013-0.10 mM and 0.10-1.20 mM, with the sensitivities of 14.7 ± 0.5 µA mM-1 and 3.5 ± 0.1 µA mM-1, respectively. The limit of detection (LOD, 3SB/m) is determined to be 0.39 µM. The sensor exhibits excellent reproducibility, with the relative standard deviation of <5%. Application of the sensor to authentic urine samples yields a % recovery of 101 ± 4%.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Indóis , Limite de Detecção , Compostos Organometálicos , Triptofano , Triptofano/urina , Triptofano/química , Indóis/química , Humanos , Compostos Organometálicos/química , Catálise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Oxirredução , Isoindóis
11.
J Chem Inf Model ; 64(9): 3942-3952, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652017

RESUMO

The aggregation of superoxide dismutase 1 (SOD1) results in amyloid deposition and is involved in familial amyotrophic lateral sclerosis, a fatal motor neuron disease. There have been extensive studies of its aggregation mechanism. Noncanonical amino acid 5-cyano-tryptophan (5-CN-Trp), which has been incorporated into the amyloid segments of SOD1 as infrared probes to increase the structural sensitivity of IR spectroscopy, is found to accelerate the overall aggregation rate and potentially modulate the aggregation process. Despite these observations, the underlying mechanism remains elusive. Here, we optimized the force field parameters of 5-CN-Trp and then used molecular dynamics simulation along with the Markov state model on the SOD128-38 dimer to explore the kinetics of key intermediates in the presence and absence of 5-CN-Trp. Our findings indicate a significantly increased probability of protein aggregate formation in 5CN-Trp-modified ensembles compared to wildtype. Dimeric ß-sheets of different natures were observed exclusively in the 5CN-Trp-modified peptides, contrasting with wildtype simulations. Free-energy calculations and detailed analyses of the dimer structure revealed augmented interstrand interactions attributed to 5-CN-Trp, which contributed more to peptide affinity than any other residues. These results explored the key events critical for the early nucleation of amyloid-prone proteins and also shed light on the practice of using noncanonical derivatives to study the aggregation mechanism.


Assuntos
Simulação de Dinâmica Molecular , Agregados Proteicos , Superóxido Dismutase-1 , Triptofano , Triptofano/química , Triptofano/metabolismo , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Humanos , Multimerização Proteica , Cinética , Cadeias de Markov
12.
Colloids Surf B Biointerfaces ; 238: 113878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565007

RESUMO

Nitrogen-doped carbon dots (NCD) were synthesized using a simple and fast hydrothermal route, employing citric acid and urea as precursors. The resulting NCDs were non-covalently functionalized (conjugated) with aromatic amino acids, namely phenylalanine (Phe) and tryptophan (Trp). Atomic force microscopy revealed that the NCDs exhibit a disk-like morphology with an average diameter of approximately 60 nm and an average height of about 0.5 nm. Following conjugation, the particle height increased to around 3 nm. UV-vis spectroscopy analysis indicated successful conjugation of the amino acids to the NCD nanostructures. Additionally, DFT numerical calculations based on three differently N-doped clusters were performed to elucidate the nature of the non-covalent interactions between NCDs and the corresponding amino acids. Photoluminescent spectra demonstrated a stable and strong fluorescence signal for both hybrids in the UV region. The most significant changes were observed in the case of Trp-conjugation. In contrast to phenylalanine, the non-covalent bonding of tryptophan to NCDs strongly influenced the visible emission (around 500 nm) originating from surface states of the dots.


Assuntos
Aminoácidos Aromáticos , Carbono , Nanoestruturas , Nitrogênio , Carbono/química , Nitrogênio/química , Aminoácidos Aromáticos/química , Nanoestruturas/química , Pontos Quânticos/química , Propriedades de Superfície , Fenilalanina/química , Tamanho da Partícula , Triptofano/química , Microscopia de Força Atômica , Fenômenos Ópticos , Teoria da Densidade Funcional
13.
Eur J Pharm Biopharm ; 199: 114301, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677563

RESUMO

Oxidation is one of the most common degradation pathways of biopharmaceutics, potentially leading to altered product stability, pharmacokinetics, reduced biological activity and/or an increased immunogenicity. However, it is often insufficiently assessed in early development stages, leaving potential molecule liabilities undiscovered. Aim of the present work was the development of a high throughput oxidation profiling strategy, applicable throughout various stages of biopharmaceutical development. The study demonstrates that the combination of multiple stress assays, including peroxide-based, visible light, and metal-catalyzed oxidation (MCO), enables a comprehensive understanding of a mAb's oxidation susceptibility. The most effective parameters to evaluate oxidation in a high-throughput screening workflow are aggregation, tryptophan oxidation and changes in the hydrophobicity profile of the Fc and Fab subunit measured via Size Exclusion Chromatography, Intrinsic Tryptophan Fluorescence Emission spectroscopy and Reversed-Phase Chromatography subunit analysis, respectively. This oxidation profiling approach is valuable tool to systematically characterize the oxidation susceptibility under relevant conditions, time effective and with minimal sample consumption.


Assuntos
Anticorpos Monoclonais , Ensaios de Triagem em Larga Escala , Oxirredução , Anticorpos Monoclonais/química , Ensaios de Triagem em Larga Escala/métodos , Interações Hidrofóbicas e Hidrofílicas , Cromatografia em Gel/métodos , Triptofano/química , Espectrometria de Fluorescência/métodos , Cromatografia de Fase Reversa/métodos
14.
Inorg Chem ; 63(19): 8556-8566, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38684718

RESUMO

One of the crucial metabolic processes for both plant and animal kingdoms is the oxidation of the amino acid tryptophan (TRP) that regulates plant growth and controls hunger and sleeping patterns in animals. Here, we report revolutionary insights into how this process can be crucially affected by interactions with metal oxide nanoparticles (NPs), creating a toolbox for a plethora of important biomedical and agricultural applications. Molecular mechanisms in TRP-NP interactions were revealed by NMR and optical spectroscopy for ceria and titania and by X-ray single-crystal study and a computational study of model TRP-polyoxometalate complexes, which permitted the visualization of the oxidation mechanism at an atomic level. Nanozyme activity, involving concerted proton and electron transfer to the NP surface for oxides with a high oxidative potential, like CeO2 or WO3, converted TRP in the first step into a tricyclic organic acid belonging to the family of natural plant hormones, auxins. TiO2, a much poorer oxidant, was strongly binding TRP without concurrent oxidation in the dark but oxidized it nonspecifically via the release of reactive oxygen species (ROS) in daylight.


Assuntos
Nanopartículas Metálicas , Titânio , Triptofano , Triptofano/química , Triptofano/metabolismo , Nanopartículas Metálicas/química , Titânio/química , Cério/química , Oxirredução , Óxidos/química , Modelos Moleculares
15.
Bioorg Med Chem Lett ; 105: 129744, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614152

RESUMO

Two tryptophan compound classes 5- and 6-borono PEGylated boronotryptophan derivatives have been prepared for assessing their aqueous solubility as formulation of injections for boron neutron capture therapy (BNCT). The PEGylation has improved their aqueous solubility thereby increasing their test concentration in 1 mM without suffering from toxicity. In-vitro uptake assay of PEGylated 5- and 6-boronotryptophan showed that the B-10 concentration can reach 15-50 ppm in U87 cell whereas the uptake in LN229 cell varies. Shorter PEG compound 6-boronotryptophanPEG200[18F] was obtained in 1.7 % radiochemical yield and the PET-derived radioradioactivity percentage in 18 % was taken up by U87 tumor at the limb of xenograft mouse. As high as tumor to normal uptake ratio in 170 (T/N) was obtained while an inferior radioactivity uptake of 3 % and T/N of 8 was observed in LN229 xenografted mouse.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Radioisótopos de Flúor , Polietilenoglicóis , Tomografia por Emissão de Pósitrons , Animais , Camundongos , Humanos , Radioisótopos de Flúor/química , Polietilenoglicóis/química , Linhagem Celular Tumoral , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Compostos de Boro/química , Compostos de Boro/farmacocinética , Compostos de Boro/síntese química , Triptofano/química , Triptofano/análogos & derivados , Triptofano/farmacocinética , Triptofano/síntese química , Estrutura Molecular
16.
J Nat Prod ; 87(4): 1197-1202, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38503712

RESUMO

HPLC-MS analysis revealed the presence of an unreported peptide in the extract of the marine sponge Neopetrosia sp. Its structure was determined as a tripeptide, named neopetromin (1), composed of two tyrosine and one tryptophan residues with a heteroaromatic C-N cross-link between side chains. The absolute configuration of amino acids was determined using Marfey's method after ozonolysis and hydrolysis of 1. Compound 1 promoted vacuole fragmentation in an actin-independent manner in tobacco BY-2 cells.


Assuntos
Nicotiana , Poríferos , Vacúolos , Animais , Estrutura Molecular , Poríferos/química , Nicotiana/química , Vacúolos/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Biologia Marinha , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Oligopeptídeos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Triptofano/química , Triptofano/farmacologia
17.
Nature ; 627(8004): 680-687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448587

RESUMO

Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.


Assuntos
Cátions , Ciclização , Indicadores e Reagentes , Proteínas , Triptofano , Cátions/química , Indicadores e Reagentes/química , Oxirredução , Proteoma/química , Triptofano/química , Peptídeos/química , Química Click , Proteínas/química
18.
Sci Rep ; 14(1): 6464, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499633

RESUMO

The amino acids tryptophan, tyrosine, and phenylalanine have been extensively used for different label-free protein studies, based on the intensity, lifetime, wavelength and/or polarization of their emitted fluorescence. Similar to most fluorescent organic molecules, these amino acids can undergo transitions into dark meta-stable states, such as triplet and photo-radical states. On the one hand, these transitions limit the fluorescence signal, but they are also highly environment-sensitive and can offer an additional set of parameters, reflecting interactions, folding states, and immediate environments around the proteins. In this work, by analyzing the average intensity of tyrosine emission under different excitation modulations with the transient state monitoring (TRAST) technique, we explored the photo physics of tyrosine as a basis for such environment-sensitive readouts. From how the dark state transitions of tyrosine varied with excitation intensity and solvent conditions we first established a photophysical model for tyrosine. Next, we studied Calmodulin (containing two tyrosines), and how its conformation is changed upon calcium binding. From these TRAST experiments, performed with 280 nm time-modulated excitation, we show that tyrosine dark state transitions clearly change with the calmodulin conformation, and may thus represent a useful source of information for (label-free) analyses of protein conformations and interactions.


Assuntos
Calmodulina , Tirosina , Tirosina/química , Calmodulina/metabolismo , Espectrometria de Fluorescência/métodos , Conformação Proteica , Triptofano/química , Corantes
19.
J Med Chem ; 67(8): 6365-6383, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38436574

RESUMO

Antimicrobial peptides (AMPs) have emerged as promising agents to combat the antibiotic resistance crisis due to their rapid bactericidal activity and low propensity for drug resistance. However, AMPs face challenges in terms of balancing enhanced antimicrobial efficacy with increased toxicity during modification processes. In this study, de novo d-type ß-hairpin AMPs are designed. The conformational transformation of self-assembling peptide W-4 in the environment of the bacterial membrane and the erythrocyte membrane affected its antibacterial activity and hemolytic activity and finally showed a high antibacterial effect and low toxicity. Furthermore, W-4 displays remarkable stability, minimal occurrence of drug resistance, and synergistic effects when combined with antibiotics. The in vivo studies confirm its high safety and potent wound-healing properties at the sites infected by bacteria. This study substantiates that nanostructured AMPs possess enhanced biocompatibility. These advances reveal the superiority of self-assembled AMPs and contribute to the development of nanoantibacterial materials.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Hemólise , Testes de Sensibilidade Microbiana , Nanofibras , Triptofano , Nanofibras/química , Triptofano/química , Triptofano/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/síntese química , Hemólise/efeitos dos fármacos , Animais , Humanos , Camundongos
20.
Food Chem ; 448: 139026, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531298

RESUMO

Linusorbs (LOs), significantly influence oil quality and sensory properties of flaxseed oil. Trp-containing LOs exhibit distinct oxidative behavior when γ-tocopherol (γ-T) is present. Polar fractions of crude flaxseed oil were stripped via silica absorption, and reintroduced (LO and γ-T) separately into the oil matrix to investigate their interaction during storage. Compared with crude oil, LOs account for 18.49% reduction of p-anisidine value, while LOs with γ-T contributed to most of the endogenous antioxidant effect in crude oil. γ-T was found to suppress oxidation of Trp-containing LO at early stage (Met form), while facilitate oxidation while at their mid-stage (MetO form, Methionine sulfoxide). In vitro oxidation shows that CLD more likely cleaved into peptide fragments, while few products retain intact ring structures. LC-MS/MS analysis and silicon simulation revealed proximity between MetO and Trp residues, facilitating inter- or intra-molecular reactions and ring structure rupture. Remarkably, the presence of γ-T facilitate these phenomena.


Assuntos
Óleo de Semente do Linho , Triptofano , gama-Tocoferol , Triptofano/química , Óleo de Semente do Linho/química , gama-Tocoferol/química , Oxirredução , Antioxidantes/química , Espectrometria de Massas em Tandem , Linho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA