Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
ACS Infect Dis ; 10(4): 1201-1211, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457660

RESUMO

Tuberculosis (TB) is the leading infectious disease caused by Mycobacterium tuberculosis and the second-most contagious killer after COVID-19. The emergence of drug-resistant TB has caused a great need to identify and develop new anti-TB drugs with novel targets. Indole propionic acid (IPA), a structural analog of tryptophan (Trp), is active against M. tuberculosis in vitro and in vivo. It has been verified that IPA exerts its antimicrobial effect by mimicking Trp as an allosteric inhibitor of TrpE, which is the first enzyme in the Trp synthesis pathway of M. tuberculosis. However, other Trp structural analogs, such as indolmycin, also target tryptophanyl-tRNA synthetase (TrpRS), which has two functions in bacteria: synthesis of tryptophanyl-AMP by catalyzing ATP + Trp and producing Trp-tRNATrp by transferring Trp to tRNATrp. So, we speculate that IPA may also target TrpRS. In this study, we found that IPA can dock into the Trp binding pocket of M. tuberculosis TrpRS (TrpRSMtb), which was further confirmed by isothermal titration calorimetry (ITC) assay. The biochemical analysis proved that TrpRS can catalyze the reaction between IPA and ATP to generate pyrophosphate (PPi) without Trp as a substrate. Overexpression of wild-type trpS in M. tuberculosis increased the MIC of IPA to 32-fold, and knock-down trpS in Mycolicibacterium smegmatis made it more sensitive to IPA. The supplementation of Trp in the medium abrogated the inhibition of M. tuberculosis by IPA. We demonstrated that IPA can interfere with the function of TrpRS by mimicking Trp, thereby impeding protein synthesis and exerting its anti-TB effect.


Assuntos
Mycobacterium tuberculosis , Propionatos , Triptofano-tRNA Ligase , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/química , Triptofano-tRNA Ligase/metabolismo , RNA de Transferência de Triptofano/metabolismo , Indóis/farmacologia , Trifosfato de Adenosina
2.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895133

RESUMO

Our previous study demonstrated that L-tryptophan (Trp)-depleted cells display a marked enhancement in Trp uptake facilitated by extracellular tryptophanyl-tRNA synthetase (TrpRS). Here, we show that Trp uptake into TrpRS-overexpressing cells is also markedly elevated upon Trp starvation. These findings indicate that a Trp-deficient condition is critical for Trp uptake, not only into cells to which TrpRS protein has been added but also into TrpRS-overexpressing cells. We also show that overexpression of TrpRS mutants, which cannot synthesize tryptophanyl-AMP, does not promote Trp uptake, and that inhibition of tryptophanyl-AMP synthesis suppresses this uptake. Overall, these data suggest that tryptophanyl-AMP production by TrpRS is critical for high-affinity Trp uptake.


Assuntos
Triptofano-tRNA Ligase , Triptofano , Humanos , Triptofano/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
3.
Microb Pathog ; 183: 106300, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567323

RESUMO

Tryptophanyl-tRNA synthetase (WRS) is a critical enzyme involved in protein synthesis, responsible for charging tRNA with the essential amino acid tryptophan. Recent studies have highlighted its novel role in stimulating innate immunity against bacterial and viral infections. However, the significance of WRS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains elusive. In this study, we aimed to investigate the complex interplay between WRS, inflammatory markers, Toll-like receptor-4 (TLR-4), and clinical outcomes in coronavirus disease 19 (COVID-19) patients. A case-control investigation comprised 127 COVID-19 patients, carefully classified as severe or moderate upon admission, and 112 healthy individuals as a comparative group. Blood samples were meticulously collected before treatment initiation, and WRS, interleukin-6 (IL-6), and C-reactive protein (CRP) concentrations were quantified using a well-established commercial ELISA kit. Peripheral blood mononuclear cells (PBMCs) were isolated from the blood samples, and RNA was extracted for cDNA synthesis. Semi-quantitative real-time polymerase chain reaction (PCR) was employed to assess the relative expression of TLR-4. COVID-19 patients exhibited elevated levels of WRS, IL-6, CRP, and TLR-4 expression compared to healthy individuals, with the severe group displaying significantly higher levels than the moderate group. Notably, severe patients demonstrated substantial fluctuations in CRP, IL-6, and WRS levels over time, a pattern not observed in their moderate counterparts. Although no significant distinctions were observed in the dynamic alterations of WRS, IL-6, CRP, and TLR-4 expression between deceased and surviving patients, a trend emerged indicating higher IL-6_1 levels in deceased patients and elevated lactate dehydrogenase (LDH) levels in severe patients who succumbed to the disease. This pioneering research highlights the dynamic alterations of WRS in COVID-19 patients, providing valuable insights into the correlation between WRS, inflammatory markers, and disease severity within this population. Understanding the role of WRS in SARS-CoV-2 infection may open new avenues for therapeutic interventions targeting innate immunity to combat COVID-19.


Assuntos
COVID-19 , Triptofano-tRNA Ligase , Humanos , Proteína C-Reativa , Estudos de Casos e Controles , Interleucina-6 , Leucócitos Mononucleares/metabolismo , SARS-CoV-2/metabolismo , Receptor 4 Toll-Like , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
4.
J Nat Prod ; 85(11): 2626-2640, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346625

RESUMO

Escherichia coli isolates commonly inhabit the human microbiota, yet the majority of E. coli's small-molecule repertoire remains uncharacterized. We previously employed erythromycin-induced translational stress to facilitate the characterization of autoinducer-3 (AI-3) and structurally related pyrazinones derived from "abortive" tRNA synthetase reactions in pathogenic, commensal, and probiotic E. coli isolates. In this study, we explored the "missing" tryptophan-derived pyrazinone reaction and characterized two other families of metabolites that were similarly upregulated under erythromycin stress. Strikingly, the abortive tryptophanyl-tRNA synthetase reaction leads to a tetracyclic indole alkaloid metabolite (1) rather than a pyrazinone. Furthermore, erythromycin induced two naphthoquinone-functionalized metabolites (MK-hCys, 2; and MK-Cys, 3) and four lumazines (7-10). Using genetic and metabolite analyses coupled with biomimetic synthesis, we provide support that the naphthoquinones are derived from 4-dihydroxy-2-naphthoic acid (DHNA), an intermediate in the menaquinone biosynthetic pathway, and the amino acids homocysteine and cysteine. In contrast, the lumazines are dependent on a flavin intermediate and α-ketoacids from the aminotransferases AspC and TyrB. We show that one of the lumazine members (9), an indole-functionalized analogue, possesses antioxidant properties, modulates the anti-inflammatory fate of isolated TH17 cells, and serves as an aryl-hydrocarbon receptor (AhR) agonist. These three systems described here serve to illustrate that new metabolic branches could be more commonly derived from well-established primary metabolic pathways.


Assuntos
Escherichia coli , Naftoquinonas , Estresse Fisiológico , Humanos , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Naftoquinonas/metabolismo , Triptofano/metabolismo , Triptofano-tRNA Ligase/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos
5.
Nature ; 603(7902): 721-727, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264796

RESUMO

Activated T cells secrete interferon-γ, which triggers intracellular tryptophan shortage by upregulating the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme1-4. Here we show that despite tryptophan depletion, in-frame protein synthesis continues across tryptophan codons. We identified tryptophan-to-phenylalanine codon reassignment (W>F) as the major event facilitating this process, and pinpointed tryptophanyl-tRNA synthetase (WARS1) as its source. We call these W>F peptides 'substitutants' to distinguish them from genetically encoded mutants. Using large-scale proteomics analyses, we demonstrate W>F substitutants to be highly abundant in multiple cancer types. W>F substitutants were enriched in tumours relative to matching adjacent normal tissues, and were associated with increased IDO1 expression, oncogenic signalling and the tumour-immune microenvironment. Functionally, W>F substitutants can impair protein activity, but also expand the landscape of antigens presented at the cell surface to activate T cell responses. Thus, substitutants are generated by an alternative decoding mechanism with potential effects on gene function and tumour immunoreactivity.


Assuntos
Triptofano-tRNA Ligase , Triptofano , Códon/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama , Neoplasias/imunologia , Fenilalanina , Linfócitos T , Triptofano/metabolismo , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
6.
Cytokine Growth Factor Rev ; 64: 7-11, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115234

RESUMO

Osteoporosis results from dysregulated bone remodeling with increased osteoclast-mediated destruction of bones. We have recently shown in vitro the truncated tryptophanyl-tRNA synthetase (mini-TrpRS)-dependent action of interferon-gamma (IFN-γ) to promote myeloid lineage multinucleation, a fundamental step in the osteoclast formation. In particular, we found that IFN-γ readily induced monocyte aggregation leading to multinuclear giant cell formation that paralleled marked upregulation of mini-TrpRS. However, blockade of mini-TrpRS with its cognate amino acid and decoy substrate D-Tryptophan prevented mini-TrpRS signaling, and markedly reduced the aggregation of monocytes and multinucleation in the presence of IFN. The cell signaling mechanism executed by mini-TrpRS appears inevitably in any inflammatory environment that involves IFN-γ with outcomes depending on the cell type involved. Here, we elaborate on these findings and discuss the potential role of the IFN-γ/mini-TrpRS signaling axis in osteoporosis pathophysiology, which may eventually materialize in a novel therapeutic perspective for this disease.


Assuntos
Osteoporose , Triptofano-tRNA Ligase , Humanos , Interferon gama , Osteoporose/tratamento farmacológico , Ligação Proteica , Transdução de Sinais , Triptofano-tRNA Ligase/química , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
7.
J Biol Chem ; 298(2): 101580, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35031320

RESUMO

The potential antimicrobial compound Chuangxinmycin (CXM) targets the tryptophanyl-tRNA synthetase (TrpRS) of both Gram-negative and Gram-positive bacteria. However, the specific steric recognition mode and interaction mechanism between CXM and TrpRS is unclear. Here, we studied this interaction using recombinant GsTrpRS from Geobacillus stearothermophilus by X-ray crystallography and molecular dynamics (MD) simulations. The crystal structure of the recombinant GsTrpRS in complex with CXM was experimentally determined to a resolution at 2.06 Å. After analysis using a complex-structure probe, MD simulations, and site-directed mutation verification through isothermal titration calorimetry, the interaction between CXM and GsTrpRS was determined to involve the key residues M129, D132, I133, and V141 of GsTrpRS. We further evaluated binding affinities between GsTrpRS WT/mutants and CXM; GsTrpRS was found to bind CXM through hydrogen bonds with D132 and hydrophobic interactions between the lipophilic tricyclic ring of CXM and M129, I133, and V141 in the substrate-binding pockets. This study elucidates the precise interaction mechanism between CXM and its target GsTrpRS at the molecular level and provides a theoretical foundation and guidance for the screening and rational design of more effective CXM analogs against both Gram-negative and Gram-positive bacteria.


Assuntos
Geobacillus stearothermophilus , Indóis , Triptofano-tRNA Ligase , Antibacterianos/farmacologia , Cristalografia por Raios X , Geobacillus stearothermophilus/efeitos dos fármacos , Geobacillus stearothermophilus/enzimologia , Indóis/farmacologia , Triptofano-tRNA Ligase/metabolismo
8.
J Mol Biol ; 434(8): 167304, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-34655653

RESUMO

We report the development of a robust user-friendly Escherichia coli (E. coli) expression system, derived from the BL21(DE3) strain, for site-specifically incorporating unnatural amino acids (UAAs) into proteins using engineered E. coli tryptophanyl-tRNA synthetase (EcTrpRS)-tRNATrp pairs. This was made possible by functionally replacing the endogenous EcTrpRS-tRNATrp pair in BL21(DE3) E. coli with an orthogonal counterpart from Saccharomyces cerevisiae, and reintroducing it into the resulting altered translational machinery tryptophanyl (ATMW-BL21) E. coli strain as an orthogonal nonsense suppressor. The resulting expression system benefits from the favorable characteristics of BL21(DE3) as an expression host, and is compatible with the broadly used T7-driven recombinant expression system. Furthermore, the vector expressing the nonsense-suppressing engineered EcTrpRS-tRNATrp pair was systematically optimized to significantly enhance the incorporation efficiency of various tryptophan analogs. Together, the improved strain and the optimized suppressor plasmids enable efficient UAA incorporation (up to 65% of wild-type levels) into several different proteins. This robust and user-friendly platform will significantly expand the scope of the genetically encoded tryptophan-derived UAAs.


Assuntos
Escherichia coli , RNA de Transferência de Triptofano , RNA de Transferência , Triptofano-tRNA Ligase , Triptofano , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagênese , RNA de Transferência/genética , RNA de Transferência/metabolismo , Triptofano/genética , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
9.
Anal Biochem ; 623: 114183, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798474

RESUMO

With the increase in throughput and sensitivity, biophysical technology has become a major component of the early drug discovery phase. Surface plasmon resonance technology (SPR) is one of the most widely used biophysical technologies. It has the advantages of circumventing labeling, molecular weight limitations, and neglect of low affinity interactions, etc., and provides a robust platform for hit to lead discovery and optimization. Here, we successfully established a reliable and repeatable tryptophanyl tRNA synthetase (TrpRS) SPR high-throughput screening and validation system by optimizing the TrpRS tag, TrpRS immobilization methodology, and the buffer conditions. When TrpRS was immobilized on Streptavidin (SA) sensor chip, the substrate competitive inhibitor indolmycin exhibited the best binding affinity in HBS-P (10 mM HEPES, 150 mM NaCl, 0.05% surfactant P-20, pH 7.4), 1 mM ATP and MgCl2, with a KD (dissociation equilibrium constant) value of 0.6 ± 0.1 µM. The Z-factor values determined in the screening assays were all larger than 0.9. We hope that our proposed research ideas and methods may provide a scientific basis for establishing SPR analysis of other drug targets, accelerate the discovery and optimization of target lead compounds, and assist the clinical application of next-generation drugs.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Ressonância de Plasmônio de Superfície/métodos , Triptofano-tRNA Ligase/antagonistas & inibidores , Triptofano-tRNA Ligase/química , Indóis/química , Indóis/metabolismo , Estreptavidina/química , Triptofano/química , Triptofano/metabolismo , Triptofano-tRNA Ligase/metabolismo
10.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926067

RESUMO

Tryptophanyl-tRNA synthetase (WRS) is an essential enzyme that catalyzes the ligation of tryptophan (Trp) to its cognate tRNAtrp during translation via aminoacylation. Interestingly, WRS also plays physiopathological roles in diseases including sepsis, cancer, and autoimmune and brain diseases and has potential as a pharmacological target and therapeutic. However, WRS is still generally regarded simply as an enzyme that produces Trp in polypeptides; therefore, studies of the pharmacological effects, therapeutic targets, and mechanisms of action of WRS are still at an emerging stage. This review summarizes the involvement of WRS in human diseases. We hope that this will encourage further investigation into WRS as a potential target for drug development in various pathological states including infection, tumorigenesis, and autoimmune and brain diseases.


Assuntos
Triptofano-tRNA Ligase/metabolismo , Triptofano-tRNA Ligase/fisiologia , Doença de Alzheimer , Humanos , Interferon gama/farmacologia , Neoplasias , Sepse , Triptofano/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/imunologia
11.
Cytokine ; 142: 155486, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721618

RESUMO

Truncated tryptophanyl-tRNA synthetase (mini-TrpRS), like any other aminoacyl-tRNA synthetases, canonically functions as a protein synthesis enzyme. Here we provide evidence for an additional signaling role of mini-TrpRS in the formation of monocyte-derived multinuclear giant cells (MGCs). Interferon-gamma (IFNγ) readily induced monocyte aggregation leading to MGC formation with paralleled marked upregulation of mini-TrpRS. Small interfering (si)RNA, targeting mini-TrpRS in the presence of IFNγ prevented monocyte aggregation. Moreover, blockade of mini-TrpRS, either by siRNA, or the cognate amino acid and decoy substrate D-Tryptophan to prevent mini-TrpRS signaling, resulted in a marked reduction in expression of the purinergic receptor P2X 7 (P2RX7) in monocytes activated by IFNγ. Our findings identify mini-TrpRS as a critical signaling molecule in a mechanism by which IFNγ initiates monocyte-derived giant cell formation.


Assuntos
Células Gigantes/citologia , Células Gigantes/enzimologia , Interferon gama/farmacologia , Monócitos/citologia , Triptofano-tRNA Ligase/metabolismo , Agregação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Humanos , Modelos Biológicos , Receptores Purinérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Regulação para Cima/efeitos dos fármacos
12.
Mol Ther ; 28(11): 2458-2472, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32592690

RESUMO

The major challenges of most adult stem cell-based therapies are their weak therapeutic effects caused by the loss of multilineage differentiation capacity and homing potential. Recently, many researchers have attempted to identify novel stimulating factors that can fundamentally increase the differentiation capacity and homing potential of various types of adult stem cells. Tryptophanyl-tRNA synthetase (WRS) is a highly conserved and ubiquitously expressed enzyme that catalyzes the first step of protein synthesis. In addition to this canonical function, we found for the first time that WRS is actively released from the site of injury in response to various damage signals both in vitro and in vivo and then acts as a potent nonenzymatic cytokine that promotes the self-renewal, migratory, and differentiation capacities of endometrial stem cells to facilitate the repair of damaged tissues. Furthermore, we also found that WRS, through its functional receptor cadherin-6 (CDH-6), activates major prosurvival signaling pathways, such as Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. Our current study provides novel and unique insights into approaches that can significantly enhance the therapeutic effects of human endometrial stem cells in various clinical applications.


Assuntos
Citocinas/metabolismo , Endométrio/citologia , Células-Tronco/metabolismo , Triptofano-tRNA Ligase/metabolismo , Biomarcadores , Diferenciação Celular/genética , Autorrenovação Celular/genética , Feminino , Humanos , Sistema de Sinalização das MAP Quinases
13.
Future Med Chem ; 12(10): 877-896, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312096

RESUMO

Background: There is an urgent need for antibiotics with novel structures and unexploited targets to counteract bacterial resistance. Methodology & results: Novel tryptophanyl-tRNA synthetase inhibitors were discovered based on virtual screening, surface plasmon resonance binding, enzymatic activity assay and antibacterial activity evaluation. Of the 29 peptide derivatives tested for antibacterial activity, some inhibited the growth of both Staphylococcus aureus and Staphylococcus epidermidis. A13 and A15 exhibited antibacterial activity against methicillin-resistant S. aureus NRS384 at an 8 µg/ml minimum inhibitory concentration. A13 snugly docked into the active site, explaining its improved inhibitory activity. Conclusion: Our results provide us with new structural clues to develop more potent tryptophanyl-tRNA synthetase inhibitors and lay a solid foundation for future drug design efforts.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Peptídeos/farmacologia , Triptofano-tRNA Ligase/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Indóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Triptofano-tRNA Ligase/metabolismo
14.
Mol Genet Genomic Med ; 8(4): e1160, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32048780

RESUMO

BACKGROUND: Excessive or prolonged usage of dexamethasone can cause serious side effects, but few studies reveal the related mechanism. Dexamethasone work differently in blood tumors and solid tumors, and the cause is still obscure. The aims of this study was to identify potential biomarkers associated with the side effects of dexamethasone in different tumors. METHODS: Gene Expression Omnibus database (GEO) datasets of blood tumors and solid tumors were retrieval to selected microarray data. The differentially expressed genes (DEGs) were identified. Gene ontology (GO) and pathway enrichment analyses, and protein-protein interaction (PPI) network analysis were performed. RESULTS: One hundred and eighty dexamethasone-specific DEGs (92 up and 88 downregulated) were obtained in lymphoma cell samples (named as DEGs-lymph), including APOD, TP53INP1, CLIC3, SERPINA9, and C3orf52. One hundred and four specific DEGs (100 up and 4 downregulated) were identified in prostate cancer cell samples (named as DEGs-prostate), including COL6A2, OSBPL5, OLAH, OGFRL1, and SLC39A14. The significantly enriched GO terms of DEGs-lymph contained cellular amino acid metabolic process and cell cycle. The most significantly enriched pathway of DEGs-lymph was cytosolic tRNA aminoacylation. The DEGs-prostate was enriched in 39 GO terms and two pathways, and the pathways were PPARA activates gene expression Homo sapiens, and insulin resistance. The PPI network of DEGs-lymph gathered into two major clusters, WARS1 and CDC25A were representatives for them, respectively. One cluster was mainly involved in cytosolic tRNA aminoacylation, aminoacyl-tRNA biosynthesis and the function of amino acid metabolism; another was associated with cell cycle and cell apoptosis. As for the PPI network of DEGs-prostate, HELZ2 was the top nodes involved in the most protein-protein pairs, which was related to the pathway of "PPARA activates gene expression Homo sapiens." CONCLUSIONS: WARS1 and CDC25A might be potential biomarkers for side effects of dexamethasone in lymphoma, and HELZ2 in prostate cancer.


Assuntos
Antineoplásicos Hormonais/efeitos adversos , Biomarcadores Tumorais/genética , Dexametasona/efeitos adversos , Linfoma/metabolismo , Neoplasias da Próstata/metabolismo , Antineoplásicos Hormonais/farmacologia , Biomarcadores Tumorais/metabolismo , Células Cultivadas , Dexametasona/farmacologia , Humanos , Linfoma/genética , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias da Próstata/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
15.
Appl Immunohistochem Mol Morphol ; 28(5): 360-368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31033497

RESUMO

AIMS: Developments in genomic pathology have led to novel molecular classification schemes in gastric cancers. Two of these new subtypes, Epstein-Barr virus (EBV)-associated and microsatellite instability-high (MSI-H), are associated with a dominant T-cell-mediated immune response. The roles of the immune modulators, indoleamine 2, 3-dioxygenase 1 (IDO1) and tryptophanyl-tRNA synthetase (WARS), have not been investigated in the context of this classification. METHODS AND RESULTS: Using in situ hybridization and immunohistochemistry we subclassified 421 primary gastric adenocarcinomas into 5 subtypes, EBV-associated, epithelial to mesenchymal transition, MSI-H, p53-aberrant, and p53-wildtype tumors. Tumor-infiltrative lymphocytes were counted and protein expression of IDO1 and WARS was graded on tissue microarrays of these 421 tumors. High tumor-infiltrative lymphocytes as well as high expression of both IDO1 and WARS was found in EBV and MSI-H tumors. The prognostic effects of IDO1 and WARS expression were tumor subtype dependent. Although high expression levels of IDO1 and WARS were associated with poor prognosis in p53-aberrant, p53-wildtype, and all cancers combined, WARS expression was associated with better prognosis in MSI tumors. CONCLUSIONS: The immunomodulators, IDO1 and WARs, are upregulated and have prognostic significance in EBV-associated and MSI-H tumors. Novel therapies targeting these proteins should be considered in the treatment of these patients.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias Gástricas/metabolismo , Triptofano-tRNA Ligase/metabolismo , Adenocarcinoma/etiologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Transição Epitelial-Mesenquimal , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Análise Serial de Tecidos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
Cytokine ; 127: 154940, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31786502

RESUMO

Phenotypic modulation of vascular smooth muscle cells (AoSMCs) between quiescent 'contractile' and active 'synthetic' states is crucial in response to normal stimuli and pathological stressors. Previous studies have revealed the ability of interferon gamma (IFN-γ) to activate and promote a synthetic phenotype in AoSMCs that parallels marked up-regulation of truncated tryptophanyl-tRNA synthetase (mini-TrpRS). Here we provide evidence to support an essential dependency of IFN-γ-induced activation and synthetic phenotype in AoSMC on mini-TrpRS. This is based upon change in AoSMC morphology from epithelioid (active synthetic) to spindle-shaped (quiescent contractile) cells and expression of proteins and genes important in mediating or regulating contractile function of AoSMCs, following blockade of mini-TrpRS induced by IFN-γ, via targeted siRNA or the decoy cognate amino acid D-Tryptophan.


Assuntos
Interferon gama/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Receptores Adrenérgicos beta 2/genética , Triptofano-tRNA Ligase/genética , Proteínas de Ligação ao Cálcio , Calmodulina , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Miócitos de Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina , Proteínas Nucleares , Fenótipo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transativadores , Triptofano/metabolismo , Triptofano/farmacologia , Triptofano-tRNA Ligase/metabolismo
17.
Proteins ; 88(5): 710-717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31743491

RESUMO

Conversion of the free energy of NTP hydrolysis efficiently into mechanical work and/or information by transducing enzymes sustains living systems far from equilibrium, and so has been of interest for many decades. Detailed molecular mechanisms, however, remain puzzling and incomplete. We previously reported that catalysis of tryptophan activation by tryptophanyl-tRNA synthetase, TrpRS, requires relative domain motion to re-position the catalytic Mg2+ ion, noting the analogy between that conditional hydrolysis of ATP and the escapement mechanism of a mechanical clock. The escapement allows the time-keeping mechanism to advance discretely, one gear at a time, if and only if the pendulum swings, thereby converting energy from the weight driving the pendulum into rotation of the hands. Coupling of catalysis to domain motion, however, mimics only half of the escapement mechanism, suggesting that domain motion may also be reciprocally coupled to catalysis, completing the escapement metaphor. Computational studies of the free energy surface restraining the domain motion later confirmed that reciprocal coupling: the catalytic domain motion is thermodynamically unfavorable unless the PPi product is released from the active site. These two conditional phenomena-demonstrated together only for the TrpRS mechanism-function as reciprocally-coupled gates. As we and others have noted, such an escapement mechanism is essential to the efficient transduction of NTP hydrolysis free energy into other useful forms of mechanical or chemical work and/or information. Some implementation of both gating mechanisms-catalysis by domain motion and domain motion by catalysis-will thus likely be found in many other systems.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Geobacillus stearothermophilus/enzimologia , Magnésio/química , Triptofano-tRNA Ligase/química , Triptofano/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Fenômenos Biomecânicos , Domínio Catalítico , Cátions Bivalentes , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/genética , Cinética , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Especificidade por Substrato , Termodinâmica , Triptofano/metabolismo , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
18.
Biosci Biotechnol Biochem ; 84(3): 471-480, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31694485

RESUMO

This study aimed to explore the influence of Tryptophanyl-tRNA synthetase (WARS) expression on the proliferation and migration of uveal melanoma (UM) cells, and the potential mechanisms. Bioinformatics analysis based on Gene Expression Omnibus (GEO) database showed that WARS expression in metastatic cancer was significantly higher than that in no-metastatic group. Kaplan-Meier analysis based on The Cancer Genome Atlas (TCGA) database showed that high WARS expression was associated with lower survival. Biological function experiments showed that overexpression of WARS in OCM-1A cells can promote cell proliferation, migration, and invasion, whereas knockdown of WARS in C918 cells showed the opposite effect. Finally, we observed that the up-regulation of WARS induced the activation of phosphatidylinositol 3-kinase/AKT (PI3K/AKT) signaling, whilst depletion of WARS resulted in opponent outcomes. Taken together, our results illustrated that WARS was overexpressed in UM cells and contributed to the viability and motility of UM cells via modulating PI3K/AKT signaling pathway.


Assuntos
Melanoma/metabolismo , Triptofano-tRNA Ligase/metabolismo , Neoplasias Uveais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Melanoma/enzimologia , Melanoma/patologia , Regulação para Cima , Neoplasias Uveais/enzimologia , Neoplasias Uveais/patologia
19.
J Biol Chem ; 294(35): 12866-12879, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31324718

RESUMO

Tryptophanyl-tRNA synthetase (WRS) is a cytosolic aminoacyl-tRNA synthetase essential for protein synthesis. WRS is also one of a growing number of intracellular proteins that are attributed distinct noncanonical "moonlighting" functions in the extracellular milieu. Moonlighting aminoacyl-tRNA synthetases regulate processes such as inflammation, but how these multifunctional enzymes are themselves regulated remains unclear. Here, we demonstrate that WRS is secreted from human macrophages, fibroblasts, and endothelial cells in response to the proinflammatory cytokine interferon γ (IFNγ). WRS signaled primarily through Toll-like receptor 2 (TLR2) in macrophages, leading to phosphorylation of the p65 subunit of NF-κB with associated loss of NF-κB inhibitor α (IκB-α) protein. This signaling initiated secretion of tumor necrosis factor α (TNFα) and CXCL8 (IL8) from macrophages. We also demonstrated that WRS is a potent monocyte chemoattractant. Of note, WRS increased matrix metalloproteinase (MMP) activity in the conditioned medium of macrophages in a TNFα-dependent manner. Using purified recombinant proteins and LC-MS/MS to identify proteolytic cleavage sites, we demonstrated that multiple MMPs, but primarily macrophage MMP7 and neutrophil MMP8, cleave secreted WRS at several sites. Loss of the WHEP domain following cleavage at Met48 generated a WRS proteoform that also results from alternative splicing, designated Δ1-47 WRS. The MMP-cleaved WRS lacked TLR signaling and proinflammatory activities. Thus, our results suggest that moonlighting WRS promotes IFNγ proinflammatory activities, and these responses can be dampened by MMPs.


Assuntos
Inflamação/metabolismo , Interferon gama/metabolismo , Metaloproteinases da Matriz/metabolismo , Triptofano-tRNA Ligase/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Humanos , Macrófagos/metabolismo
20.
J Enzyme Inhib Med Chem ; 34(1): 898-908, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30938216

RESUMO

The rapid emergence of bacterial resistance to antibiotics currently available for treating infectious diseases requires effective antimicrobial agents with new structural profiles and mechanisms of action. Twenty-three thiazolin-4-one derivatives were evaluated for their antibacterial activity by determining the growth inhibition zone diameter, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC), against gram-positive and gram-negative bacteria. Compounds 3a-c, 3e-h, 6b-c and 9a-c expressed better MIC values than moxifloxacin, against Staphylococcus aureus. Compounds 3h and 9b displayed similar effect to indolmycin, a tryptophanyl-tRNA ligase inhibitor. Due to their structural analogy to indolmycin, all compounds were subjected to molecular docking on tryptophanyl-tRNA synthetase. Compounds 3a-e, 6a-e, 8 and 9a-e exhibited better binding affinities towards the target enzymes than indolmycin. The antioxidant potential of the compounds was evaluated by four spectrophotometric methods. Thiazolin-4-ones 3e, 6e and 9e presented better antiradical activity than ascorbic acid, trolox and BHT, used as references.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Tiazóis/farmacologia , Triptofano-tRNA Ligase/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Triptofano-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA