Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
Mol Phylogenet Evol ; 199: 108160, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019201

RESUMO

Hordeum is an economically and evolutionarily important genus within the Triticeae tribe of the family Poaceae, and contains 33 widely distributed and diverse species which cytologically represent four subgenomes (H, Xa, Xu and I). These wild species (except Hordeum spontaneum, which is the primary gene pool of barley) are secondary or tertiary gene-pool germplasms for barley and wheat improvement, and uncovering their complicated evolutionary relationships would benefit for future breeding programs. Here, we developed a complexity-reduced pipeline via capturing genome-wide distributed fragments via two novel target-enriched assays (HorCap v1.0 and BarPlex v1.0) in conjugation with high-throughput sequencing of the enrichments. Both assays were tested for genotyping 40 species from three genera (Hordeum, Triticum, and Aegilops) containing 82 samples 67 accessions. Either of both assays worked efficiently in genotyping, while integration of both assays can significantly improve the robustness and resolution of the Hordeum phylogenetic trees. Interestingly, the incomplete lineage sorting (ILS) was inferred for the first time as the major factor causing phylogenetic discordance among the four subgenomes, whereas in New World species (carrying I genome) post-speciation introgression events were revealed. Through revising the evolutionary relationships of the Hordeum species based on an ancestral state reconstruction for the diploids and parental donor inference for the polyploids, our results raised new queries about the Hordeum phylogeny. Moreover, both newly-developed assays are applicable in genotyping and phylogenetic analysis of Hordeum and other Triticeae wild species.


Assuntos
Hordeum , Filogenia , Hordeum/genética , Hordeum/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Triticum/genética , Triticum/classificação , Genoma de Planta , Genótipo , Aegilops/genética , Aegilops/classificação , Análise de Sequência de DNA
2.
Nature ; 632(8026): 823-831, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885696

RESUMO

Harnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker-trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.


Assuntos
Biodiversidade , Produtos Agrícolas , Variação Genética , Fenótipo , Melhoramento Vegetal , Triticum , Alelos , Produtos Agrícolas/genética , Introgressão Genética , Variação Genética/genética , Genoma de Planta/genética , Haplótipos/genética , Desequilíbrio de Ligação/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Triticum/classificação , Triticum/genética , Sequenciamento Completo do Genoma , Filogenia , Estudos de Associação Genética , Segurança Alimentar
3.
Food Funct ; 15(12): 6673-6683, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38817195

RESUMO

Volatile profiling was conducted on four wheat varieties Triticum aestivum cv. Chinese Spring (CS), Highbury (High), Paragon (Para), Pavon76 (Pav76), and one wild relative Triticum timopheevii (P95). Headspace solid-phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS) was used to explore differences in flavor formation mechanisms in different flours before and after starch gelatinization. Solvent retention capacity (SRC) analysis revealed subtle differences in water absorption, gluten strength, and starch characteristics across wheat flour types. Rapid Visco Analysis (RVA) of whole wheat flour demonstrated significant variations in pasting properties among wheat varieties, with P95 exhibiting higher viscosities compared to CS and High potentially influenced by starch gelatinization, protein-starch interactions, and lipid content. Aroma contributions of P95 clustered positively in PCA plots, contrasting with the four main varieties, indicative of species-level differentiation. Furthermore, the study highlighted the roles of viscosity, protein structure, lipid content, and fatty acid composition in modulating the release and perception of volatile aroma compounds during heating. This study sheds light on how the distinct characteristics of wheat flour influence aroma profiles, revealing species-level differences and the pivotal role of physiochemical properties in shaping flavor development mechanisms.


Assuntos
Farinha , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Triticum , Compostos Orgânicos Voláteis , Triticum/química , Triticum/classificação , Farinha/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Amido/química , Humanos , Odorantes/análise , Paladar , Viscosidade , Masculino , Adulto , Feminino
4.
J Sci Food Agric ; 104(11): 6831-6843, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38597889

RESUMO

BACKGROUND: The continuous cultivation of rice-wheat in the same field is a key element of double-cropping systems in the Indo-Gangetic plains. Yields of such cropping systems are increasingly challenged as climate change drives increases in temperature, terminal stress and uneven rainfall, delaying rice harvesting and subsequently delaying sowing of wheat. In this paper, we evaluate the optimum sowing dates to achieve high grain yield and quality of wheat cultivars in northwest India. Three cultivars of wheat, HD-2967, HD-3086 and PBW-723, were sown on three different dates at the research farm of ICAR-IARI, New Delhi, to generate different weather conditions at different phenological stages. Different biophysical attributes, photosynthetic rate, stomatal conductance and transpiration rate, were measured at different phenological stages. Yield and grain quality parameters such as protein, starch, amylopectin, amylose and gluten were measured in different cultivars sown on different dates. RESULTS: Biophysical parameters were found to be higher in timely sown crops followed by late-sown and very late-sown crops. Further, the different sowing dates had a significant (P < 0.05) impact on the grain quality parameters such as protein, starch, amylopectin, amylose and gluten content. Percentage increases in the value of starch and amylose content under timely sown were ~7% and 11.6%, ~5% and 8.4%, compared to the very late-sown treatment. In contrast, protein and amylopectin contents were found to increase by ~9.7% and 7.5%, ~13.8% and 16.6% under very late-sown treatment. CONCLUSION: High-temperature stress during the grain-filling periods significantly decreased the grain yield. Reduction in the grain yield was associated with a reduction in starch and amylose content in the grains. The protein content in the grains is less affected by terminal heat stress. Cultivar HD-3086 had higher growth, yield as well as quality parameters, compared to HD-2967 and PBW-723 in all treatments, hence could be adopted by farmers in northwest India. © 2024 Society of Chemical Industry.


Assuntos
Produção Agrícola , Triticum , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/química , Triticum/classificação , Índia , Produção Agrícola/métodos , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Amido/metabolismo , Amido/análise , Amido/química , Amilose/metabolismo , Amilose/análise , Estações do Ano , Fotossíntese , Amilopectina/metabolismo , Amilopectina/química , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Agricultura/métodos
5.
PeerJ ; 11: e15924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671358

RESUMO

Multiple genetic factors control tillering, a key agronomy trait for wheat (Triticum aestivum L.) yield. Previously, we reported a dwarf-monoculm mutant (dmc) derived from wheat cultivar Guomai 301, and found that the contents of gibberellic acid 3 (GA3) in the tiller primordia of dmc were significantly higher. Transcriptome analysis indicated that some wheat gibberellin oxidase (TaGAox) genes TaGA20ox-A2, TaGA20ox-B2, TaGA3ox-A2, TaGA20ox-A4, TaGA2ox-A10 and TaGA2ox-B10 were differentially expressed in dmc. Therefore, this study systematically analyzed the roles of gibberellin oxidase genes during wheat tillering. A total of 63 TaGAox genes were identified by whole genome analysis. The TaGAoxs were clustered to four subfamilies, GA20oxs, GA2oxs, GA3oxs and GA7oxs, including seven subgroups based on their protein structures. The promoter regions of TaGAox genes contain a large number of cis-acting elements closely related to hormone, plant growth and development, light, and abiotic stress responses. Segmental duplication events played a major role in TaGAoxs expansion. Compared to Arabidopsis, the gene collinearity degrees of the GAoxs were significantly higher among wheat, rice and maize. TaGAox genes showed tissue-specific expression patterns. The expressions of TaGAox genes (TaGA20ox-B2, TaGA7ox-A1, TaGA2ox10 and TaGA3ox-A2) were significantly affected by exogenous GA3 applications, which also significantly promoted tillering of Guomai 301, but didn't promote dmc. TaGA7ox-A1 overexpression transgenic wheat lines were obtained by Agrobacterium mediated transformation. Genomic PCR and first-generation sequencing demonstrated that the gene was integrated into the wheat genome. Association analysis of TaGA7ox-A1 expression level and tiller number per plant demonstrated that the tillering capacities of some TaGA7ox-A1 transgenic lines were increased. These data demonstrated that some TaGAoxs as well as GA signaling were involved in regulating wheat tillering, but the GA signaling pathway was disturbed in dmc. This study provided valuable clues for functional characterization of GAox genes in wheat.


Assuntos
Oxigenases de Função Mista , Oxirredutases , Proteínas de Plantas , Triticum , Agricultura , Agrobacterium/genética , Arabidopsis , Giberelinas/farmacologia , Oxirredutases/genética , Oxirredutases/metabolismo , Triticum/classificação , Triticum/enzimologia , Triticum/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Motivos de Aminoácidos/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/farmacologia
6.
Nature ; 620(7975): 830-838, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532937

RESUMO

Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.


Assuntos
Produção Agrícola , Genoma de Planta , Genômica , Triticum , Triticum/classificação , Triticum/genética , Produção Agrícola/história , História Antiga , Sequenciamento Completo do Genoma , Introgressão Genética , Hibridização Genética , Pão/história , Genoma de Planta/genética , Centrômero/genética
7.
Nature ; 617(7959): 118-124, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100915

RESUMO

Modern green revolution varieties of wheat (Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b (Rht-B1b) and Rht-D1b alleles1. However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling2-5. Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.


Assuntos
Biomassa , Brassinosteroides , Grão Comestível , Transdução de Sinais , Triticum , Alelos , Brassinosteroides/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Deleção de Genes , Genes de Plantas , Giberelinas/metabolismo , Fenótipo , Triticum/classificação , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Proteínas de Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo
8.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163834

RESUMO

Fusarium graminearum, the main causal agent of Fusarium Head Blight (FHB), is one of the most damaging pathogens in wheat. Because of the complex organization of wheat resistance to FHB, this pathosystem represents a relevant model to elucidate the molecular mechanisms underlying plant susceptibility and to identify their main drivers, the pathogen's effectors. Although the F. graminearum catalog of effectors has been well characterized at the genome scale, in planta studies are needed to confirm their effective accumulation in host tissues and to identify their role during the infection process. Taking advantage of the genetic variability from both species, a RNAseq-based profiling of gene expression was performed during an infection time course using an aggressive F. graminearum strain facing five wheat cultivars of contrasting susceptibility as well as using three strains of contrasting aggressiveness infecting a single susceptible host. Genes coding for secreted proteins and exhibiting significant expression changes along infection progress were selected to identify the effector gene candidates. During its interaction with the five wheat cultivars, 476 effector genes were expressed by the aggressive strain, among which 91% were found in all the infected hosts. Considering three different strains infecting a single susceptible host, 761 effector genes were identified, among which 90% were systematically expressed in the three strains. We revealed a robust F. graminearum core effectome of 357 genes expressed in all the hosts and by all the strains that exhibited conserved expression patterns over time. Several wheat compartments were predicted to be targeted by these putative effectors including apoplast, nucleus, chloroplast and mitochondria. Taken together, our results shed light on a highly conserved parasite strategy. They led to the identification of reliable key fungal genes putatively involved in wheat susceptibility to F. graminearum, and provided valuable information about their putative targets.


Assuntos
Proteínas Fúngicas/genética , Fusarium/patogenicidade , Doenças das Plantas/genética , Triticum/crescimento & desenvolvimento , Núcleo Celular/microbiologia , Cloroplastos/microbiologia , Resistência à Doença , Fusarium/classificação , Fusarium/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Mitocôndrias/microbiologia , Doenças das Plantas/microbiologia , Análise de Sequência de RNA , Distribuição Tecidual , Triticum/classificação , Triticum/microbiologia
9.
Sci Rep ; 12(1): 15, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996967

RESUMO

The nutritional integrity of wheat is jeopardized by rapidly rising atmospheric carbon dioxide (CO2) and the associated emergence and enhanced virulence of plant pathogens. To evaluate how disease resistance traits may impact wheat climate resilience, 15 wheat cultivars with varying levels of resistance to Fusarium Head Blight (FHB) were grown at ambient and elevated CO2. Although all wheat cultivars had increased yield when grown at elevated CO2, the nutritional contents of FHB moderately resistant (MR) cultivars were impacted more than susceptible cultivars. At elevated CO2, the MR cultivars had more significant differences in plant growth, grain protein, starch, fructan, and macro and micro-nutrient content compared with susceptible wheat. Furthermore, changes in protein, starch, phosphorus, and magnesium content were correlated with the cultivar FHB resistance rating, with more FHB resistant cultivars having greater changes in nutrient content. This is the first report of a correlation between the degree of plant pathogen resistance and grain nutritional content loss in response to elevated CO2. Our results demonstrate the importance of identifying wheat cultivars that can maintain nutritional integrity and FHB resistance in future atmospheric CO2 conditions.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Triticum/química , Triticum/imunologia , Resistência à Doença , Magnésio/análise , Magnésio/metabolismo , Valor Nutritivo , Fósforo/análise , Fósforo/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/classificação , Sementes/imunologia , Sementes/metabolismo , Triticum/classificação , Triticum/metabolismo
10.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008990

RESUMO

Stripe rust is one of the most devastating diseases in wheat. Nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain receptors (NLRs) recognize pathogenic effectors and trigger plant immunity. We previously identified a unique NLR protein YrU1 in the diploid wheat Triticum urartu, which contains an N-terminal ANK domain and a C-terminal WRKY domain and confers disease resistance to stripe rust fungus Puccinia striiformis f. sp. Tritici (Pst). However, how YrU1 functions in disease resistance is not clear. In this study, through the RNA-seq analysis, we found that the expression of a NAC member TuNAC69 was significantly up-regulated after inoculation with Pst in the presence of YrU1. TuNAC69 was mainly localized in the nucleus and showed transcriptional activation in yeast. Knockdown TuNAC69 in diploid wheat Triticum urartu PI428309 that contains YrU1 by virus-induced gene silencing reduced the resistance to stripe rust. In addition, overexpression of TuNAC69 in Arabidopsis enhanced the resistance to powdery mildew Golovinomyces cichoracearum. In summary, our study indicates that TuNAC69 participates in the immune response mediated by NLR protein YrU1, and likely plays an important role in disease resistance to other pathogens.


Assuntos
Diploide , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Proteínas de Plantas/genética , Transativadores/genética , Triticum/genética , Triticum/microbiologia , Sequência de Aminoácidos , Repetição de Anquirina , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Família Multigênica , Proteínas NLR , Fenótipo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Transativadores/química , Transativadores/metabolismo , Triticum/classificação , Triticum/metabolismo
11.
Braz. J. Pharm. Sci. (Online) ; 58: e18837, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1374558

RESUMO

Abstract Recently, the acetate wheat starch (AWS) has been prepared by acetylation with an acetyl content of 2.42%, containing of rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) with 25.0%; 22.9% and 34.5%, respectively. In this study, this kind of starch was continuously evaluated with the postprandial blood glucose response and determined short-chain fatty acids (SCFAs) metabolized from AWS in the gastrointestinal tract of healthy mice by HPLC. The result showed that the mice fed with AWS exhibited a very limited increase in blood glucose level and remained stable for 2 hours after meals efficiently comparing with the control group fed with natural wheat starch (NWS). Simultaneously, the content of SCFAs produced in the caecum of the mice fed with AWS was significantly higher than mice fed with NWS, especially with acetic and propionic acids by 28% and 26%, respectively. Thus, AWS has shown to limit the postprandial hyperglycemia in mice effectively through the resistance to amylase hydrolysis in the small intestine. When going into the caecum, it is fermented to form SCFAs providing a part of energy for the body's activities, avoiding rotten fermentation causing digestive disorders which are inherent restrictions of normal high cellulose and fiber food.


Assuntos
Animais , Masculino , Feminino , Camundongos , Amido/efeitos adversos , Triticum/classificação , Hiperglicemia/patologia , Acetatos/agonistas , Cromatografia Líquida de Alta Pressão/métodos , Trato Gastrointestinal/anormalidades , Alimentos/classificação , Glucose/farmacologia
12.
Sci Rep ; 11(1): 23773, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893626

RESUMO

Previous molecular characterization studies conducted in Canadian wheat cultivars shed some light on the impact of plant breeding on genetic diversity, but the number of varieties and markers used was small. Here, we used 28,798 markers of the wheat 90K single nucleotide polymorphisms to (a) assess the extent of genetic diversity, relationship, population structure, and divergence among 174 historical and modern Canadian spring wheat varieties registered from 1905 to 2018 and 22 unregistered lines (hereinafter referred to as cultivars), and (b) identify genomic regions that had undergone selection. About 91% of the pairs of cultivars differed by 20-40% of the scored alleles, but only 7% of the pairs had kinship coefficients of < 0.250, suggesting the presence of a high proportion of redundancy in allelic composition. Although the 196 cultivars represented eight wheat classes, our results from phylogenetic, principal component, and the model-based population structure analyses revealed three groups, with no clear structure among most wheat classes, breeding programs, and breeding periods. FST statistics computed among different categorical variables showed little genetic differentiation (< 0.05) among breeding periods and breeding programs, but a diverse level of genetic differentiation among wheat classes and predicted groups. Diversity indices were the highest and lowest among cultivars registered from 1970 to 1980 and from 2011 to 2018, respectively. Using two outlier detection methods, we identified from 524 to 2314 SNPs and 41 selective sweeps of which some are close to genes with known phenotype, including plant height, photoperiodism, vernalization, gluten strength, and disease resistance.


Assuntos
Variação Genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Seleção Genética , Triticum/genética , Alelos , Canadá , Evolução Molecular , Ligação Genética , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Fenótipo , Locos de Características Quantitativas , Triticum/classificação
13.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830258

RESUMO

The Growth-regulating factors (GRF) are a family of plant-specific transcription factors that have roles in plant growth, development and stress response. In this study the diversity of the TaGRF3-2A (TraesCS2A02G435100) gene was investigated in Russian bread wheat germplasm by means of next generation sequencing and molecular markers, and the results compared with those from multiple wheat genome and exome sequencing projects. The results showed that an allele possessing c.495G>T polymorphism found in Bezostaya 1 and designated as TaGRF3-2Ab, is connected with earlier heading and better grain filling under conditions of the Krasnodar Krai. TaGRF3-2Ab is more frequent among Russian winter wheat cultivars than in other germplasms found in the world, implying that it is adaptive for the Chernozem region. A new rare mutation of the TaGRF3-2A was found in the spring wheat cultivar Novosibirskaya 67. The molecular markers developed will facilitate utilization of TaGRF3-2A mutations in future agronomic studies and wheat improvement. Albeit GRF3-2Ab may be good at maintaining high milling quality of the grain, it should be used with caution in breeding of winter wheat cultivars in the perspective of climate change.


Assuntos
Alelos , Genes de Plantas , Locos de Características Quantitativas , Característica Quantitativa Herdável , Triticum/genética , Adaptação Fisiológica/genética , Pão/análise , Clima , Grão Comestível , Marcadores Genéticos , Humanos , Repetições de Microssatélites , Fenótipo , Filogenia , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Federação Russa , Banco de Sementes , Triticum/classificação
14.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769361

RESUMO

In the present study, four large-scale field trials using two doubled haploid wheat populations were conducted in different environments for two years. Grain protein content (GPC) and 21 other yield-related traits were investigated. A total of 227 QTL were mapped on 18 chromosomes, which formed 35 QTL clusters. The potential candidate genes underlying the QTL clusters were suggested. Furthermore, adding to the significant correlations between yield and its related traits, correlation variations were clearly shown within the QTL clusters. The QTL clusters with consistently positive correlations were suggested to be directly utilized in wheat breeding, including 1B.2, 2A.2, 2B (4.9-16.5 Mb), 2B.3, 3B (68.9-214.5 Mb), 4A.2, 4B.2, 4D, 5A.1, 5A.2, 5B.1, and 5D. The QTL clusters with negative alignments between traits may also have potential value for yield or GPC improvement in specific environments, including 1A.1, 2B.1, 1B.3, 5A.3, 5B.2 (612.1-613.6 Mb), 7A.1, 7A.2, 7B.1, and 7B.2. One GPC QTL (5B.2: 671.3-672.9 Mb) contributed by cultivar Spitfire was positively associated with nitrogen use efficiency or grain protein yield and is highly recommended for breeding use. Another GPC QTL without negatively pleiotropic effects on 2A (50.0-56.3 Mb), 2D, 4D, and 6B is suggested for quality wheat breeding.


Assuntos
Cromossomos de Plantas/genética , Ligação Genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Fenótipo , Triticum/classificação
15.
Sci Rep ; 11(1): 20953, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697303

RESUMO

The geometric and color features of agricultural material along with related physical properties are critical to characterize and express its physical quality. The experiments were conducted to classify the physical characteristics like size, shape, color and texture and then workout the relationship between manual observations and using image processing techniques for weight and volume of the four wheat refractions i.e. sound, damaged, shriveled and broken grains of wheat variety PBW 725. A flatbed scanner was used to acquire the images and digital image processing method was used to process the images and output of image analysis was compared with the actual measurements data using digital vernier caliper. A linear relationship was observed between the axial dimensions of refractions between manual measurement and image processing method with R2 in the range of 0.798-0.947. The individual kernel weight and thousand grain weight of the refractions were observed to be in the range of 0.021-0.045 and 12.56-46.32 g respectively. Another linear relationship was found between individual kernel weight and projected area estimated using image processing methodology with R2 in the range of 0.841-0.920. The sphericity of the refractions varied in the range of 0.52-0.71. Analyses of the captured images suggest ellipsoid shape with convex geometry while the same observation was recorded by physical measurements also. A linear relationship was observed between the volume of refractions derived from measured dimensions and calculated from image with R2 in the range of 0.845-0.945. Various color and grey level co-variance matrix texture features were extracted from acquired images using the open-source Python programming language and OpenCV library which can exploit different machine and deep learning algorithms to properly classify these refractions.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Triticum/anatomia & histologia , Triticum/crescimento & desenvolvimento , Algoritmos , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/classificação , Produtos Agrícolas/crescimento & desenvolvimento , Aprendizado de Máquina , Sementes/anatomia & histologia , Sementes/classificação , Sementes/crescimento & desenvolvimento , Triticum/classificação
16.
Sci Rep ; 11(1): 17742, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493739

RESUMO

Understanding the genetic basis of performance stability is essential to maintain productivity, especially under severe conditions. In the present study, 268 Iranian bread wheat landraces and cultivars were evaluated in four well-watered and two rain-fed conditions for different traits. According to breeding programs, cultivars were in a group with a high mean and stability in terms of GY, GN, and SW traits, while in terms of PH, they had a low mean and high stability. The stability of cultivars and landraces was related to dynamic and static stability, respectively. The highest number of marker pairs and lowest LD decay distance in both cultivars and landraces was observed on the B genome. Population structure differentiated indigenous cultivars and landraces, and the GWAS results for each were almost different despite the commonalities. Chromosomes 1B, 3B, 7B, 2A, and 4A had markers with pleiotropic effects on the stability of different traits. Due to two rain-fed environments, the Gene Ontology (GO) confirmed the accuracy of the results. The identified markers in this study can be helpful in breeding high-performance and stable genotypes and future breeding programs such as fine mapping and cloning.


Assuntos
Interação Gene-Ambiente , Característica Quantitativa Herdável , Triticum/genética , Cromossomos de Plantas/genética , Secas , Ontologia Genética , Marcadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Irã (Geográfico) , Polimorfismo de Nucleotídeo Único , Chuva , Sementes , Especificidade da Espécie , Triticum/classificação , Triticum/crescimento & desenvolvimento
17.
Funct Integr Genomics ; 21(5-6): 535-542, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34405283

RESUMO

The release of high-quality chromosome-level genome sequences of members of the Triticeae tribe has greatly facilitated genetic and genomic analyses of important crops such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to the large diploid genome size of Triticeae plants (ca. 5 Gbp), transcript analysis is an important method for identifying genetic and genomic differences among Triticeae species. In this review, we summarize our results of RNA-Seq analyses of diploid wheat accessions belonging to the genera Aegilops and Triticum. We also describe studies of the molecular relationships among these accessions and provide insight into the evolution of common hexaploid wheat. DNA markers based on polymorphisms within species can be used to map loci of interest. Even though the genome sequence of diploid Aegilops tauschii, the D-genome donor of common wheat, has been released, the diploid barley genome continues to provide key information about the physical structures of diploid wheat genomes. We describe how a series of RNA-Seq analyses of wheat relatives has helped uncover the structural and evolutionary features of genomic and genetic systems in wild and cultivated Triticeae species.


Assuntos
Evolução Molecular , Marcadores Genéticos , Genoma de Planta , RNA-Seq , Triticum/classificação , Triticum/genética , Hordeum/genética
18.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34282738

RESUMO

Grain yield is a complex polygenic trait representing a multiplicative end product of contributing yield attributes governed by simple to complex gene interactions. Deciphering the genetics and inheritance of traits/genes influencing yield is a prerequisite to harness the yield potential in any crop species. The objective of the present investigation was to estimate genetic variance components and type of gene action controlling yield and its component traits using six populations (P1, P2, F1, F2, BC1 and BC2) of the three bread wheat crosses. Cross I (25th HRWSN 2105 × WH 1080), cross II (22ndSAWYT323 × RSP 561) and cross III (22ndSAWYT333 × WH 1080) involving elite stripe rust resistant wheat genetic stocks in combination with commercial check varieties were used for analysis. A combination of morpho-physiological, biochemical and disease influencing traits were evaluated, thus exploring the possibility of multi-trait integration in future. Results revealed that the estimated mean effects (m) were highly significant for all the traits in all crosses, indicating that selected traits were quantitatively inherited. The estimate of dominant gene effect was highly significant for plant height, number of tillers per plant in all the three crosses. Grain yield per plant was highly significant in the cross II while total protein content was highly significant in both crosses II and III. Glycine betaine content showed significant additive genes effect. Duplicate epistasis was the most significant for traits like plant height, total protein content and grain yield per plant. Dominance gene effect was more important than additive gene effects in the inheritance of grain yield and most other traits studied. The magnitude of additive X additive gene effects was high and positively significant whereas dominance × dominance was negatively significant for most of the traits studied in the three crosses. Additive × dominance gene effects was of minor significance, thus indicating that selection for grain yield and its components should be delayed to later generations of breeding.


Assuntos
Grão Comestível/genética , Epistasia Genética , Melhoramento Vegetal , Triticum/genética , Pão/normas , Mapeamento Cromossômico , Cruzamentos Genéticos , Humanos , Hibridização Genética , Herança Multifatorial/genética , Fenótipo , Locos de Características Quantitativas , Triticum/classificação , Triticum/crescimento & desenvolvimento
19.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34299055

RESUMO

Fusarium culmorum is a worldwide, soil-borne plant pathogen. It causes diseases of cereals, reduces their yield, and fills the grain with toxins. The main direction of modern breeding is to select wheat genotypes the most resistant to Fusarium diseases. This study uses seedlings and plants at the anthesis stage to analyze total soluble carbohydrates, total and cell-wall bound phenolics, chlorophyll content, antioxidant activity, hydrogen peroxide content, mycotoxin accumulation, visual symptoms of the disease, and Fusarium head blight index (FHBi). These results determine the resistance of three durum wheat accessions. We identify physiological or biochemical markers of durum wheat resistance to F. culmorum. Our results confirm correlations between FHBi and mycotoxin accumulation in the grain, which results in grain yield decrease. The degree of spike infection (FHBi) may indicate accumulation mainly of deoxynivalenol and nivalenol in the grain. High catalase activity in the infected leaves could be considered a biochemical marker of durum sensitivity to this fungus. These findings allowed us to formulate a strategy for rapid evaluation of the disease severity and the selection of plants with higher level, or resistance to F. culmorum infection.


Assuntos
Biomarcadores/metabolismo , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Plântula/fisiologia , Tricotecenos/metabolismo , Triticum/fisiologia , Genótipo , Plântula/microbiologia , Triticum/classificação , Triticum/genética , Triticum/microbiologia
20.
Mol Biotechnol ; 63(10): 953-962, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34131856

RESUMO

Recent advances in plant genomics revealed numerous factors related to drought tolerance, including a family of WRKY transcription factors. The aim of this study was to evaluate polymorphism of the TaWRKY2-D1 across a range of bread wheat cultivars, interspecific hybrids, and wild wheat relatives within the Triticum genus as a potential molecular target for marker-assistant selection. The initial sequencing of the TaWRKY2-D1 gene in six Ukrainian commercial cultivars detected some sequence variations along the ~ 1.8 kb of gene promoter and the followed coding region composed of four exons and three introns. Based on the gained sequence information, five sets of primers covering different gene regions were designed to annotate theTaWRKY2-D1 genetic diversity in 202 wheat cultivars, including 77 accessions from the CIMMYT collection, 72 commercial varieties cultivated in Ukraine, and 53 hybrids and wild wheat species. The combination of developed DNA markers enabled effective and reproducible annotation of cultivars genetic diversity. The primers set targeting introns adjusted to the gene's exon 3, turned out to be the most informative for screening heterogeneity of the TaWRKY2-D1. The developed molecular markers represent effective, informative means for selecting drought tolerance germplasm donors to promote wheat breeding programs.


Assuntos
Polimorfismo Genético , Fatores de Transcrição/genética , Triticum/classificação , Pão/classificação , Secas , Anotação de Sequência Molecular , Melhoramento Vegetal , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Análise de Sequência de DNA/métodos , Triticum/genética , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA