Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(40): e2204294119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161893

RESUMO

The tripartite attachment complex (TAC) couples the segregation of the single unit mitochondrial DNA of trypanosomes with the basal body (BB) of the flagellum. Here, we studied the architecture of the exclusion zone filament (EZF) of the TAC, the only known component of which is p197, that connects the BB with the mitochondrial outer membrane (OM). We show that p197 has three domains that are all essential for mitochondrial DNA inheritance. The C terminus of p197 interacts with the mature and probasal body (pro-BB), whereas its N terminus binds to the peripheral OM protein TAC65. The large central region of p197 has a high α-helical content and likely acts as a flexible spacer. Ultrastructure expansion microscopy (U-ExM) of cell lines exclusively expressing p197 versions of different lengths that contain both N- and C-terminal epitope tags demonstrates that full-length p197 alone can bridge the ∼270-nm distance between the BB and the cytosolic face of the OM. Thus U-ExM allows the localization of distinct domains within the same molecules and suggests that p197 is the TAC subunit most proximal to the BB. In addition, U-ExM revealed that p197 acts as a spacer molecule, as two shorter versions of p197, with the repeat domain either removed or replaced by the central domain of the Trypanosoma cruzi p197 ortholog reduced the distance between the BB and the OM in proportion to their predicted molecular weight.


Assuntos
Replicação do DNA , DNA Mitocondrial , Genoma Mitocondrial , Membranas Mitocondriais , Proteínas de Protozoários , Trypanosoma brucei brucei , Corpos Basais/química , DNA Mitocondrial/genética , Epitopos/química , Flagelos/química , Membranas Mitocondriais/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética
2.
J Biol Chem ; 298(4): 101829, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35293314

RESUMO

The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Proteínas de Protozoários , Trypanosoma brucei brucei , Animais , Mamíferos/metabolismo , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
3.
Parasite ; 29: 14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35262485

RESUMO

The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the flagellar pocket collar (FPC). TbBILBO1 is the first-described FPC protein of Trypanosoma brucei. It is essential for parasite survival, FP and FPC biogenesis. In this work, we characterize TbKINX1B, a novel TbBILBO1 partner. We demonstrate that TbKINX1B is located on the basal bodies, the microtubule quartet (a set of four microtubules) and the FPC in T. brucei. Down-regulation of TbKINX1B by RNA interference in bloodstream forms is lethal, inducing an overall disturbance in the endomembrane network. In procyclic forms, the RNAi knockdown of TbKINX1B leads to a minor phenotype with a small number of cells displaying epimastigote-like morphologies, with a misplaced kinetoplast. Our results characterize TbKINX1B as the first putative kinesin to be localized both at the basal bodies and the FPC with a potential role in transporting cargo along with the microtubule quartet.


Title: TbKINX1B, un nouveau partenaire de BILBO1, et une protéine essentielle dans la forme sanguine de Trypanosoma brucei. Abstract: La poche flagellaire (PF) de l'agent pathogène Trypanosoma brucei est une structure importante à copie unique formée par l'invagination de la membrane pelliculaire. Elle est le site unique de l'endo- et de l'exocytose et est nécessaire à la pathogénicité du parasite. La PF est constituée de sous-domaines structurels distincts, le moins exploré étant le collier de poche flagellaire (CPF). TbBILBO1 est la première protéine du CPF décrite. Elle est essentielle pour la survie du parasite et la biogenèse de la PF et du CPF. Dans ce travail, nous caractérisons TbKINX1B, un nouveau partenaire de TbBILBO1. Nous démontrons que TbKINX1B est localisée au niveau des corps basaux, du quartet de microtubules (un ensemble de quatre microtubules) et du CPF chez T. brucei. La diminution de l'expression de TbKINX1B par ARN interférence dans les formes sanguines est létale, induisant une perturbation globale du réseau endomembranaire. Dans les formes procycliques, l'ARN interférence conduit à un phénotype mineur avec un petit nombre de cellules présentant des morphologies de type épimastigote, avec un kinétoplaste mal placé. Nos résultats caractérisent TbKINX1B comme la première kinésine putative à être localisée à la fois au niveau des corps basaux et du CPF avec un rôle potentiel dans le transport de cargaison le long du quartet de microtubules.


Assuntos
Trypanosoma brucei brucei , Flagelos/genética , Flagelos/metabolismo , Microtúbulos , Proteínas de Protozoários/química , Interferência de RNA , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
4.
mBio ; 12(6): e0135221, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34749530

RESUMO

The parasite Trypanosoma brucei periodically changes the expression of protective variant surface glycoproteins (VSGs) to evade its host's immune system in a process known as antigenic variation. One route to change VSG expression is the transcriptional activation of a previously silent VSG expression site (ES), a subtelomeric region containing the VSG genes. Homologous recombination of a different VSG from a large reservoir into the active ES represents another route. The conserved histone methyltransferase DOT1B is involved in transcriptional silencing of inactive ES and influences ES switching kinetics. The molecular machinery that enables DOT1B to execute these regulatory functions remains elusive, however. To better understand DOT1B-mediated regulatory processes, we purified DOT1B-associated proteins using complementary biochemical approaches. We identified several novel DOT1B interactors. One of these was the RNase H2 complex, previously shown to resolve RNA-DNA hybrids, maintain genome integrity, and play a role in antigenic variation. Our study revealed that DOT1B depletion results in an increase in RNA-DNA hybrids, accumulation of DNA damage, and ES switching events. Surprisingly, a similar pattern of VSG deregulation was observed in RNase H2 mutants. We propose that both proteins act together in resolving R-loops to ensure genome integrity and contribute to the tightly regulated process of antigenic variation. IMPORTANCE Trypanosoma brucei is a unicellular parasite that causes devastating diseases like sleeping sickness in humans and the "nagana" disease in cattle in Africa. Fundamental to the establishment and prolongation of a trypanosome infection is the parasite's ability to escape the mammalian host's immune system by antigenic variation, which relies on periodic changes of a protein surface coat. The exact mechanisms, however, which mediate these changes are still elusive. In this work, we describe a novel protein complex consisting of the histone methyltransferase DOT1B and RNase H2 which is involved in antigenic variation.


Assuntos
Histona Metiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Ribonuclease H/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase/parasitologia , Variação Antigênica , Genoma de Protozoário , Instabilidade Genômica , Histona Metiltransferases/química , Histona Metiltransferases/genética , Humanos , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Estruturas R-Loop , Ribonuclease H/química , Ribonuclease H/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/enzimologia
5.
mBio ; 12(4): e0172521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34311578

RESUMO

African trypanosomes utilize glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) to evade the host immune system. VSG turnover is thought to be mediated via cleavage of the GPI anchor by endogenous GPI-specific phospholipase C (GPI-PLC). However, GPI-PLC is topologically sequestered from VSG substrates in intact cells. Recently, A. J. Szempruch, S. E. Sykes, R. Kieft, L. Dennison, et al. (Cell 164:246-257, 2016, https://doi.org/10.1016/j.cell.2015.11.051) demonstrated the release of nanotubes that septate to form free VSG+ extracellular vesicles (EVs). Here, we evaluated the relative contributions of GPI hydrolysis and EV formation to VSG turnover in wild-type (WT) and GPI-PLC null cells. The turnover rate of VSG was consistent with prior measurements (half-life [t1/2] of ∼26 h) but dropped significantly in the absence of GPI-PLC (t1/2 of ∼36 h). Ectopic complementation restored normal turnover rates, confirming the role of GPI-PLC in turnover. However, physical characterization of shed VSG in WT cells indicated that at least 50% is released directly from cell membranes with intact GPI anchors. Shedding of EVs plays an insignificant role in total VSG turnover in both WT and null cells. In additional studies, GPI-PLC was found to have no role in biosynthetic and endocytic trafficking to the lysosome but did influence the rate of receptor-mediated endocytosis. These results indicate that VSG turnover is a bimodal process involving both direct shedding and GPI hydrolysis. IMPORTANCE African trypanosomes, the protozoan agent of human African trypanosomaisis, avoid the host immune system by switching expression of the variant surface glycoprotein (VSG). VSG is a long-lived protein that has long been thought to be turned over by hydrolysis of its glycolipid membrane anchor. Recent work demonstrating the shedding of VSG-containing extracellular vesicles has led us to reinvestigate the mode of VSG turnover. We found that VSG is shed in part by glycolipid hydrolysis but also in approximately equal part by direct shedding of protein with intact lipid anchors. Shedding of exocytic vesicles made a very minor contribution to overall VSG turnover. These results indicate that VSG turnover is a bimodal process and significantly alter our understanding of the "life cycle" of this critical virulence factor.


Assuntos
Antígenos de Protozoários/imunologia , Estágios do Ciclo de Vida , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/fisiologia , Antígenos de Protozoários/genética , Linhagem Celular , Endocitose , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética
6.
Structure ; 29(9): 1014-1028.e8, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33915106

RESUMO

The kinetochore is the macromolecular machinery that drives chromosome segregation by interacting with spindle microtubules. Kinetoplastids (such as Trypanosoma brucei), a group of evolutionarily divergent eukaryotes, have a unique set of kinetochore proteins that lack any significant homology to canonical kinetochore components. To date, KKT4 is the only kinetoplastid kinetochore protein that is known to bind microtubules. Here we use X-ray crystallography, NMR spectroscopy, and crosslinking mass spectrometry to characterize the structure and dynamics of KKT4. We show that its microtubule-binding domain consists of a coiled-coil structure followed by a positively charged disordered tail. The structure of the C-terminal BRCT domain of KKT4 reveals that it is likely a phosphorylation-dependent protein-protein interaction domain. The BRCT domain interacts with the N-terminal region of the KKT4 microtubule-binding domain and with a phosphopeptide derived from KKT8. Taken together, these results provide structural insights into the unconventional kinetoplastid kinetochore protein KKT4.


Assuntos
Cinetocoros/química , Proteínas Associadas aos Microtúbulos/química , Proteínas de Protozoários/química , Sítios de Ligação , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/metabolismo
7.
Elife ; 102021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33783358

RESUMO

Trypanosoma brucei is the causative agent of human sleeping sickness. The parasites' variant surface glycoprotein (VSG) enables them to evade adaptive immunity via antigenic variation. VSG comprises 10% of total cell protein and the high stability of VSG mRNA is essential for trypanosome survival. To determine how VSG mRNA stability is maintained, we used mRNA affinity purification to identify all its associated proteins. CFB2 (cyclin F-box protein 2), an unconventional RNA-binding protein with an F-box domain, was specifically enriched with VSG mRNA. We demonstrate that CFB2 is essential for VSG mRNA stability, describe cis acting elements within the VSG 3'-untranslated region that regulate the interaction, identify trans-acting factors that are present in the VSG messenger ribonucleoprotein particle, and mechanistically explain how CFB2 stabilizes the mRNA of this key pathogenicity factor. Beyond T. brucei, the mRNP purification approach has the potential to supply detailed biological insight into metabolism of relatively abundant mRNAs in any eukaryote.


Assuntos
Proteoma/química , Proteínas de Protozoários/química , Estabilidade de RNA , RNA Mensageiro/química , Trypanosoma brucei brucei/química , Glicoproteínas Variantes de Superfície de Trypanosoma/química
8.
Biomed Pharmacother ; 138: 111508, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33756157

RESUMO

The parasite Trypanosoma brucei is the main cause of the sleeping sickness threatening millions of populations in many African countries. The parasitic infection is currently managed by some synthetic medications, most of them suffer limited activity spectrum and/or serious adverse effects. Some studies have pointed out the promising therapeutic potential of the plant extracts rich in polyphenols to curb down parasitic infections caused by T. brucei and other trypanosomes. In this work, the main components dominating Eugenia uniflora and Syzygium samarangense plant extracts were virtually screened, through docking, as inhibitors of seven T. brucei enzymes validated as potential drug targets. The in vitro and in vivo anti-T. brucei activities of the extracts in two treatment doses were evaluated. Moreover, the extract effects on the packed cell volume level, liver, and kidney functions were assessed. Five compounds showed strong docking and minimal binding energy to five target enzymes simultaneously and three other compounds were able to bind strongly to at least four of the target enzymes. These compounds represent lead hits to develop novel trypanocidal agents of natural origin. Both extracts showed moderate in vitro anti-trypanosomal activity. Infected animal groups treated over 5 days with the studied extracts showed an appreciable in vivo anti-trypanosomal activity and ameliorated in a dose dependent manner the anaemia, liver, and kidney damages induced by the infection. In conclusion, Eugenia uniflora and Syzygium samarangense could serve as appealing sources to treat trypanosomes infections.


Assuntos
Simulação por Computador , Eugenia , Extratos Vegetais/farmacologia , Syzygium , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Masculino , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/química , Tripanossomíase/tratamento farmacológico , Tripanossomíase/patologia
9.
mSphere ; 6(1)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568455

RESUMO

Trypanosoma brucei is the protozoan parasite responsible for sleeping sickness, a lethal vector-borne disease. T. brucei has a single flagellum (cilium) that plays critical roles in transmission and pathogenesis. An emerging concept is that the flagellum is organized into subdomains, each having specialized composition and function. The overall flagellum proteome has been well studied, but a critical knowledge gap is the protein composition of individual subdomains. We have tested whether APEX-based proximity proteomics could be used to examine the protein composition of T. brucei flagellum subdomains. As APEX-based labeling has not previously been described in T. brucei, we first fused APEX2 to the DRC1 subunit of the nexin-dynein regulatory complex, a well-characterized axonemal complex. We found that DRC1-APEX2 directs flagellum-specific biotinylation, and purification of biotinylated proteins yields a DRC1 "proximity proteome" having good overlap with published proteomes obtained from purified axonemes. Having validated the use of APEX2 in T. brucei, we next attempted to distinguish flagellar subdomains by fusing APEX2 to a flagellar membrane protein that is restricted to the flagellum tip, AC1, and another one that is excluded from the tip, FS179. Fluorescence microscopy demonstrated subdomain-specific biotinylation, and principal-component analysis showed distinct profiles between AC1-APEX2 and FS179-APEX2. Comparing these two profiles allowed us to identify an AC1 proximity proteome that is enriched for tip proteins, including proteins involved in signaling. Our results demonstrate that APEX2-based proximity proteomics is effective in T. brucei and can be used to resolve the proteome composition of flagellum subdomains that cannot themselves be readily purified.IMPORTANCE Sleeping sickness is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei The disease disrupts the sleep-wake cycle, leading to coma and death if left untreated. T. brucei motility, transmission, and virulence depend on its flagellum (cilium), which consists of several different specialized subdomains. Given the essential and multifunctional role of the T. brucei flagellum, there is need for approaches that enable proteomic analysis of individual subdomains. Our work establishes that APEX2 proximity labeling can, indeed, be implemented in the biochemical environment of T. brucei and has allowed identification of proximity proteomes for different flagellar subdomains that cannot be purified. This capacity opens the possibility to study the composition and function of other compartments. We expect this approach may be extended to other eukaryotic pathogens and will enhance the utility of T. brucei as a model organism to study ciliopathies, heritable human diseases in which cilium function is impaired.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases/genética , Flagelos/genética , Enzimas Multifuncionais/genética , Proteoma/análise , Proteômica , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Flagelos/química , Humanos , Proteínas de Protozoários/química , Transdução de Sinais , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/patogenicidade
10.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 12): 604-608, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263572

RESUMO

A fragment of the Trypanosoma brucei ZC3H41 protein encompassing the ATP-dependent RNA helicase domain was successfully subcloned for expression in a bacterial system (Escherichia coli). Following expression, the protein was purified and crystallized using the vapor-diffusion method. The protein crystals were optimized at a 1:1 protein:reservoir solution ratio using PPGBA 2000. The optimized crystals diffracted to a dmin of 3.15 Å. The collected data revealed preliminary structural information regarding this newly discovered protein.


Assuntos
Proteínas de Protozoários/química , Trypanosoma brucei brucei/química , Trifosfato de Adenosina/metabolismo , Cristalização , Cristalografia por Raios X , Domínios Proteicos , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , RNA Helicases/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
11.
mBio ; 11(3)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518185

RESUMO

Sperm flagellar protein 1 (Spef1, also known as CLAMP) is a microtubule-associated protein involved in various microtubule-related functions from ciliary motility to polarized cell movement and planar cell polarity. In Trypanosoma brucei, the causative agent of trypanosomiasis, a single Spef1 ortholog (TbSpef1) is associated with a microtubule quartet (MtQ), which is in close association with several single-copied organelles and is required for their coordinated biogenesis during the cell cycle. Here, we investigated the interaction network of TbSpef1 using BioID, a proximity-dependent protein-protein interaction screening method. Characterization of selected candidates provided a molecular description of TbSpef1-MtQ interactions with nearby cytoskeletal structures. Of particular interest, we identified a new basal body protein TbSAF1, which is required for TbSpef1-MtQ anchorage to the basal bodies. The results demonstrate that MtQ-basal body anchorage is critical for the spatial organization of cytoskeletal organelles, as well as the morphology of the membrane-bound flagellar pocket where endocytosis takes place in this parasite.IMPORTANCETrypanosoma brucei contains a large array of single-copied organelles and structures. Through extensive interorganelle connections, these structures replicate and divide following a strict temporal and spatial order. A microtubule quartet (MtQ) originates from the basal bodies and extends toward the anterior end of the cell, stringing several cytoskeletal structures together along its path. In this study, we examined the interaction network of TbSpef1, the only protein specifically located to the MtQ. We identified an interaction between TbSpef1 and a basal body protein TbSAF1, which is required for MtQ anchorage to the basal bodies. This study thus provides the first molecular description of MtQ association with the basal bodies, since the discovery of this association ∼30 years ago. The results also reveal a general mechanism of the evolutionarily conserved Spef1/CLAMP, which achieves specific cellular functions via their conserved microtubule functions and their diverse molecular interaction networks.


Assuntos
Corpos Basais/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Corpos Basais/química , Microtúbulos/genética , Trypanosoma brucei brucei/química
12.
Sci Rep ; 10(1): 8268, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427974

RESUMO

Sphingosine-1-phosphate is a signaling molecule involved in the control of cell migration, differentiation, survival and other physiological processes. This sphingolipid metabolite can be degraded by the action of sphingosine-1-phosphate lyase (SPL) to form hexadecenal and ethanolamine phosphate. The importance of SPL-mediated ethanolamine phosphate formation has been characterized in only few cell types. We show that in the protozoan parasite Trypanosoma brucei, expression of TbSpl is essential for cell survival. Ablation of TbSpl expression increased sphingosine-1-phosphate levels and reduced de novo formation and steady-state levels of the glycerophospholipid phosphatidylethanolamine (PE). Growth of TbSpl-depleted parasites could be in part rescued by ethanolamine supplementation to the growth medium, indicating that the main function of TbSpl is to provide ethanolamine phosphate for PE synthesis. In contrast to most cell types analyzed, where SPL localizes to the endoplasmic reticulum, we found by high-resolution microscopy that TbSpl is a mitochondrial protein. In spite of its mitochondrial localization, TbSpl depletion had no apparent effect on mitochondrial morphology but resulted in aggregation of acidocalcisomes. Our results link mitochondria to sphingolipid metabolism and suggest possible roles for PE in acidocalcisome function.


Assuntos
Aldeído Liases/metabolismo , Mitocôndrias/enzimologia , Fosfatidiletanolaminas/biossíntese , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Aldeído Liases/química , Aldeído Liases/genética , Sequência de Aminoácidos , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Lisofosfolipídeos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
14.
Methods Mol Biol ; 2116: 673-688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221949

RESUMO

Acidocalcisomes are membrane-bounded, electron-dense, acidic organelles, rich in calcium and polyphosphate. These organelles were first described in trypanosomatids and later found from bacteria to human cells. Some of the functions of the acidocalcisome are the storage of cations and phosphorus, participation in pyrophosphate (PPi) and polyphosphate (polyP) metabolism, calcium signaling, maintenance of intracellular pH homeostasis, autophagy, and osmoregulation. Isolation of acidocalcisomes is an important technique for understanding their composition and function. Here, we provide detailed subcellular fractionation protocols using iodixanol gradient centrifugations to isolate high-quality acidocalcisomes from Trypanosoma brucei, which are subsequently validated by electron microscopy, and enzymatic and immunoblot assays with organellar markers.


Assuntos
Fracionamento Celular/métodos , Organelas/metabolismo , Trypanosoma brucei brucei/citologia , Sinalização do Cálcio , Centrifugação com Gradiente de Concentração/métodos , Difosfatos/metabolismo , Ensaios Enzimáticos/métodos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Organelas/química , Organelas/ultraestrutura , Polifosfatos/metabolismo , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Ácidos Tri-Iodobenzoicos/química , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/metabolismo
15.
Comb Chem High Throughput Screen ; 23(6): 477-503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32067612

RESUMO

BACKGROUND: The parasitic protozoal infections leishmaniasis, human African trypanosomiasis, and Chagas disease are neglected tropical diseases that pose serious health risks for much of the world's population. Current treatment options suffer from limitations, but plantderived natural products may provide economically advantageous therapeutic alternatives. Several germacranolide sesquiterpenoids have shown promising antiparasitic activities, but the mechanisms of activity have not been clearly established. OBJECTIVE: The objective is to use in silico screening of known antiparasitic germacranolides against recognized protozoal protein targets in order to provide insight into the molecular mechanisms of activity of these natural products. METHODS: Conformational analyses of the germacranolides were carried out using density functional theory, followed by molecular docking. A total of 88 Leishmania protein structures, 86 T. brucei protein structures, and 50 T. cruzi protein structures were screened against 27 antiparasitic germacranolides. RESULTS: The in-silico screening has revealed which of the protein targets of Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are preferred by the sesquiterpenoid ligands.


Assuntos
Antiparasitários/farmacologia , Produtos Biológicos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Sesquiterpenos de Germacrano/farmacologia , Antiparasitários/química , Produtos Biológicos/química , Teoria da Densidade Funcional , Avaliação Pré-Clínica de Medicamentos , Leishmania/química , Leishmania/efeitos dos fármacos , Ligantes , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Sesquiterpenos de Germacrano/química , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/química , Trypanosoma cruzi/efeitos dos fármacos
16.
J Biol Chem ; 295(3): 729-742, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31819011

RESUMO

The basal body in the human parasite Trypanosoma brucei is structurally equivalent to the centriole in animals and functions in the nucleation of axonemal microtubules in the flagellum. T. brucei lacks many evolutionarily conserved centriolar protein homologs and constructs the basal body through unknown mechanisms. Two evolutionarily conserved centriole/basal body cartwheel proteins, TbSAS-6 and TbBLD10, and a trypanosome-specific protein, BBP65, play essential roles in basal body biogenesis in T. brucei, but how they cooperate in the regulation of basal body assembly remains elusive. Here using RNAi, endogenous epitope tagging, immunofluorescence microscopy, and 3D-structured illumination super-resolution microscopy, we identified a new trypanosome-specific protein named BBP164 and found that it has an essential role in basal body biogenesis in T. brucei Further investigation of the functional interplay among BBP164 and the other three regulators of basal body assembly revealed that BBP164 and BBP65 are interdependent for maintaining their stability and depend on TbSAS-6 and TbBLD10 for their stabilization in the basal body. Additionally, TbSAS-6 and TbBLD10 are independent from each other and from BBP164 and BBP65 for maintaining their stability in the basal body. These findings demonstrate that basal body cartwheel proteins are required for stabilizing other basal body components and uncover that regulation of protein stability is an unusual control mechanism for assembly of the basal body in T. brucei.


Assuntos
Corpos Basais/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Animais , Axonema/química , Axonema/genética , Axonema/metabolismo , Corpos Basais/química , Corpos Basais/parasitologia , Centríolos/química , Centríolos/genética , Centríolos/parasitologia , Flagelos/química , Flagelos/genética , Flagelos/parasitologia , Humanos , Microtúbulos/química , Microtúbulos/parasitologia , Estabilidade Proteica , Proteínas de Protozoários/química , Interferência de RNA , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/patogenicidade
17.
J Biol Chem ; 295(6): 1489-1499, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31882537

RESUMO

Trypanosoma brucei is a protist parasite causing sleeping sickness and nagana in sub-Saharan Africa. T. brucei has a single flagellum whose base contains a bulblike invagination of the plasma membrane called the flagellar pocket (FP). Around the neck of the FP on its cytoplasmic face is a structure called the flagellar pocket collar (FPC), which is essential for FP biogenesis. BILBO1 was the first characterized component of the FPC in trypanosomes. BILBO1's N-terminal domain (NTD) plays an essential role in T. brucei FPC biogenesis and is thus vital for the parasite's survival. Here, we report a 1.6-Å resolution crystal structure of TbBILBO1-NTD, which revealed a conserved horseshoe-like hydrophobic pocket formed by an unusually long loop. Results from mutagenesis experiments suggested that another FPC protein, FPC4, interacts with TbBILBO1 by mainly contacting its three conserved aromatic residues Trp-71, Tyr-87, and Phe-89 at the center of this pocket. Our findings disclose the binding site of TbFPC4 on TbBILBO1-NTD, which may provide a basis for rational drug design targeting BILBO1 to combat T. brucei infections.


Assuntos
Flagelos/química , Trypanosoma brucei brucei/química , Ubiquitina/química , Cristalografia por Raios X , Flagelos/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia , Ubiquitina/metabolismo
18.
Science ; 365(6458): 1144-1149, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31515389

RESUMO

Mitochondrial ribosomes (mitoribosomes) are large ribonucleoprotein complexes that synthesize proteins encoded by the mitochondrial genome. An extensive cellular machinery responsible for ribosome assembly has been described only for eukaryotic cytosolic ribosomes. Here we report that the assembly of the small mitoribosomal subunit in Trypanosoma brucei involves a large number of factors and proceeds through the formation of assembly intermediates, which we analyzed by using cryo-electron microscopy. One of them is a 4-megadalton complex, referred to as the small subunit assemblosome, in which we identified 34 factors that interact with immature ribosomal RNA (rRNA) and recognize its functionally important regions. The assembly proceeds through large-scale conformational changes in rRNA coupled with successive incorporation of mitoribosomal proteins, providing an example for the complexity of the ribosomal assembly process in mitochondria.


Assuntos
Proteínas Mitocondriais/ultraestrutura , Ribossomos Mitocondriais/ultraestrutura , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Trypanosoma brucei brucei/química , Microscopia Crioeletrônica , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Interferência de RNA , Estabilidade de RNA
19.
Biomolecules ; 9(3)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866577

RESUMO

Trypanosoma brucei is a unicellular eukaryotic parasite, which causes the African sleeping sickness in humans. The recently discovered trypanosomal protein Parvulin 42 (TbPar42) plays a key role in parasite cell proliferation. Homologues of this two-domain protein are exclusively found in protozoa species. TbPar42 exhibits an N-terminal forkhead associated (FHA)-domain and a peptidyl-prolyl-cis/trans-isomerase (PPIase) domain, both connected by a linker. Using NMR and X-ray analysis as well as activity assays, we report on the structures of the single domains of TbPar42, discuss their intra-molecular interplay, and give some initial hints as to potential cellular functions of the protein.


Assuntos
Proteínas de Protozoários/química , Trypanosoma brucei brucei/química , Cristalografia por Raios X , Humanos , Modelos Moleculares
20.
Mol Biochem Parasitol ; 229: 15-23, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30772422

RESUMO

The nuclear import of proteins in eukaryotic cells is a fundamental biological process. While it has been analysed to different extents in model eukaryotic organisms, this event has rarely been studied in the early divergent protozoa of the order Kinetoplastida. The work presented here represents an overview of nuclear import in these important species of human pathogens. Initially, an in silico study of classical nuclear localization signals within the published nuclear proteomes of Trypanosoma brucei and Trypanosoma cruzi was carried out. The basic amino acids that comprise the monopartite and bipartite classical nuclear localization signals (cNLS) in trypanosomal proteins are similar to the consensus sequences observed for the nuclear proteins of yeasts, animals and plants. In addition, a summarized description of published studies that experimentally address the NLS of nuclear proteins in trypanosomatids is presented, and the clear occurrence of non-classical NLS (NLS that lack the consensus motifs of basic amino acids) in the analysed reports indicate a complex scenario for the types of receptors in these species. In general, the information presented here agrees with the hypothetical appearance of mechanisms for the recognition of nuclear proteins in early eukaryotic evolution.


Assuntos
Núcleo Celular/parasitologia , Doença de Chagas/parasitologia , Sinais de Localização Nuclear/química , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/metabolismo , Tripanossomíase Africana/parasitologia , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA