Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Cell Rep ; 37(5): 109923, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731611

RESUMO

The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.


Assuntos
Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Animais , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Camelídeos Americanos/imunologia , Linhagem Celular , Membrana Celular/imunologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endocitose/efeitos dos fármacos , Epitopos , Exocitose/efeitos dos fármacos , Ligação Proteica , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Tripanossomicidas/imunologia , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
2.
Open Biol ; 11(10): 210132, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637654

RESUMO

The recently developed ultrastructure expansion microscopy (U-ExM) technique allows us to increase the spatial resolution within a cell or tissue for microscopic imaging through the physical expansion of the sample. In this study, we validate the use of U-ExM in Trypanosoma brucei measuring the expansion factors of several different compartments/organelles and thus verify the isotropic expansion of the cell. We furthermore demonstrate the use of this sample preparation protocol for future studies by visualizing the nucleus and kDNA, as well as proteins of the cytoskeleton, the basal body, the mitochondrion and the endoplasmic reticulum. Lastly, we discuss the challenges and opportunities of U-ExM.


Assuntos
DNA de Cinetoplasto/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Trypanosoma brucei brucei/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura
3.
Open Biol ; 11(9): 210131, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34465213

RESUMO

Expansion microscopy (ExM) has become a powerful super-resolution method in cell biology. It is a simple, yet robust approach, which does not require any instrumentation or reagents beyond those present in a standard microscopy facility. In this study, we used kinetoplastid parasites Trypanosoma brucei and Leishmania major, which possess a complex, yet well-defined microtubule-based cytoskeleton, to demonstrate that this method recapitulates faithfully morphology of structures as previously revealed by a combination of sophisticated electron microscopy (EM) approaches. Importantly, we also show that due to the rapidness of image acquisition and three-dimensional reconstruction of cellular volumes ExM is capable of complementing EM approaches by providing more quantitative data. This is demonstrated on examples of less well-appreciated microtubule structures, such as the neck microtubule of T. brucei or the pocket, cytosolic and multivesicular tubule-associated microtubules of L. major. We further demonstrate that ExM enables identifying cell types rare in a population, such as cells in mitosis and cytokinesis. Three-dimensional reconstruction of an entire volume of these cells provided details on the morphology of the mitotic spindle and the cleavage furrow. Finally, we show that established antibody markers of major cytoskeletal structures function well in ExM, which together with the ability to visualize proteins tagged with small epitope tags will facilitate studies of the kinetoplastid cytoskeleton.


Assuntos
Cinetocoros/metabolismo , Kinetoplastida/metabolismo , Leishmania major/metabolismo , Microscopia Eletrônica/métodos , Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Cinetocoros/ultraestrutura , Kinetoplastida/ultraestrutura , Leishmania major/ultraestrutura , Microtúbulos/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura
4.
PLoS Pathog ; 17(5): e1009588, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010336

RESUMO

Microtubules are inherently dynamic cytoskeletal polymers whose length and organization can be altered to perform essential functions in eukaryotic cells, such as providing tracks for intracellular trafficking and forming the mitotic spindle. Microtubules can be bundled to create more stable structures that collectively propagate force, such as in the flagellar axoneme, which provides motility. The subpellicular microtubule array of the protist parasite Trypanosoma brucei, the causative agent of African sleeping sickness, is a remarkable example of a highly specialized microtubule bundle. It is comprised of a single layer of microtubules that are crosslinked to each other and to the overlying plasma membrane. The array microtubules appear to be highly stable and remain intact throughout the cell cycle, but very little is known about the pathways that tune microtubule properties in trypanosomatids. Here, we show that the subpellicular microtubule array is organized into subdomains that consist of differentially localized array-associated proteins at the array posterior, middle, and anterior. The array-associated protein PAVE1 stabilizes array microtubules at the cell posterior and is essential for maintaining its tapered shape. PAVE1 and the newly identified protein PAVE2 form a complex that binds directly to the microtubule lattice, demonstrating that they are a true kinetoplastid-specific MAP. TbAIR9, which localizes to the entirety of the subpellicular array, is necessary for maintaining the localization of array-associated proteins within their respective subdomains of the array. The arrangement of proteins within the array likely tunes the local properties of array microtubules and creates the asymmetric shape of the cell, which is essential for parasite viability.


Assuntos
Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/parasitologia , Ciclo Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura
5.
Sci China Life Sci ; 64(4): 621-632, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33420923

RESUMO

African trypanosomatid parasites escape host acquired immune responses through periodic antigenic variation of their surface coat. In this study, we describe a mechanism by which the parasites counteract innate immune responses. Two TatD DNases were identified in each of Trypanosoma evansi and Trypanosoma brucei. These DNases are bivalent metal-dependent endonucleases localized in the cytoplasm and flagella of the parasites that can also be secreted by the parasites. These enzymes possess conserved functional domains and have efficient DNA hydrolysis activity. Host neutrophil extracellular traps (NETs) induced by the parasites could be hydrolyzed by native and recombinant TatD DNases. NET disruption was prevented, and the survival rate of parasites was decreased, in the presence of the DNase inhibitor aurintricarboxylic acid. These data suggest that trypanosomes can counteract host innate immune responses by active secretion of TatD DNases to degrade NETs.


Assuntos
Desoxirribonucleases/imunologia , Armadilhas Extracelulares/imunologia , Evasão da Resposta Imune/imunologia , Proteínas de Protozoários/imunologia , Trypanosoma brucei brucei/imunologia , Trypanosoma/imunologia , Sequência de Aminoácidos , Animais , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/parasitologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia Imunoeletrônica , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Filogenia , Infecções Protozoárias em Animais/imunologia , Infecções Protozoárias em Animais/parasitologia , Proteínas de Protozoários/classificação , Proteínas de Protozoários/metabolismo , Ratos Sprague-Dawley , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Trypanosoma/metabolismo , Trypanosoma/ultraestrutura , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura
6.
J Cell Biol ; 220(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33165561

RESUMO

Cilia and flagella are required for cell motility and sensing the external environment and can vary in both length and stability. Stable flagella maintain their length without shortening and lengthening and are proposed to "lock" at the end of growth, but molecular mechanisms for this lock are unknown. We show that CEP164C contributes to the locking mechanism at the base of the flagellum in Trypanosoma brucei. CEP164C localizes to mature basal bodies of fully assembled old flagella, but not to growing new flagella, and basal bodies only acquire CEP164C in the third cell cycle after initial assembly. Depletion of CEP164C leads to dysregulation of flagellum growth, with continued growth of the old flagellum, consistent with defects in a flagellum locking mechanism. Inhibiting cytokinesis results in CEP164C acquisition on the new flagellum once it reaches the old flagellum length. These results provide the first insight into the molecular mechanisms regulating flagella growth in cells that must maintain existing flagella while growing new flagella.


Assuntos
Flagelos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Corpos Basais/metabolismo , Ciclo Celular , Linhagem Celular , Flagelos/ultraestrutura , Técnicas de Silenciamento de Genes , Interferência de RNA , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/ultraestrutura
7.
J Struct Biol ; 211(2): 107536, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32473201

RESUMO

Complete genome sequencing of the kinetoplastid protozoans Trypanosoma cruzi, Trypanosoma brucei and Leishmania major (Tritryp), published in 2005, opened up new perspectives for drug development targeting Chagas disease, African sleeping sickness and Leishmaniasis, neglected diseases affecting millions of most economically disadvantaged people. Still, half of the Tritryp genes code for proteins of unknown function. Moreover, almost 50% of conserved eukaryotic protein domains are missing in the Tritryp genomes. This suggests that functional and structural characterization of proteins of unknown function could reveal novel protein folds used by the trypanosomes for common cellular processes. Furthermore, proteins without homologous counterparts in humans may provide potential targets for therapeutic intervention. Here we describe the crystal structure of the T. cruzi protein Q4D6Q6, a conserved and kinetoplastid-specific protein essential for cell viability. Q4D6Q6 is a representative of a family of 20 orthologs, all annotated as proteins of unknown function. Q4D6Q6 monomers adopt a ßßαßßαßß topology and form a propeller-like tetramer. Oligomerization was verified in solution using NMR, SAXS, analytical ultra-centrifugation and gel filtration chromatography. A rigorous search for similar structures using the DALI server revealed similarities with propeller-like structures of several different functions. Although a Q4D6Q6 function could not be inferred from such structural comparisons, the presence of an oxidized cysteine at position 69, part of a cluster with phosphorylated serines and hydrophobic residues, identifies a highly reactive site and suggests a role of this cysteine as a nucleophile in a post-translational modification reaction.


Assuntos
Proteínas de Protozoários/ultraestrutura , Trypanosoma cruzi/ultraestrutura , Animais , Humanos , Leishmania major/ultraestrutura , Modelos Moleculares , Proteínas de Protozoários/genética , Espalhamento a Baixo Ângulo , Trypanosoma brucei brucei/ultraestrutura , Trypanosoma cruzi/genética , Difração de Raios X
8.
Parasit Vectors ; 13(1): 169, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32248844

RESUMO

BACKGROUND: Trypanosoma brucei exhibits a complex life-cycle alternating between tsetse flies and mammalian hosts. When parasites infect the fly, cells differentiate to adapt to life in various tissues, which is accompanied by drastic morphological and biochemical modifications especially in the proventriculus. This key step represents a bottleneck for salivary gland infection. METHODS: Here, we monitored flagellum assembly in trypanosomes during differentiation from the trypomastigote to the epimastigote stage, i.e. when the nucleus migrates to the posterior end of the cell, by using three-dimensional electron microscopy (focused ion beam scanning electron microscopy, FIB-SEM) and immunofluorescence assays. RESULTS: The combination of light and electron microscopy approaches provided structural and molecular evidence that the new flagellum is assembled while the nucleus migrates towards the posterior region of the body. Two major differences with well-known procyclic cells are reported. First, growth of the new flagellum begins when the associated basal body is found in a posterior position relative to the mature flagellum. Secondly, the new flagellum acquires its own flagellar pocket before rotating on the left side of the anterior-posterior axis. FIB-SEM revealed the presence of a structure connecting the new and mature flagellum and serial sectioning confirmed morphological similarities with the flagella connector of procyclic cells. We discuss the potential function of the flagella connector in trypanosomes from the proventriculus. CONCLUSIONS: These findings show that T. brucei finely modulates its cytoskeletal components to generate highly variable morphologies.


Assuntos
Flagelos/fisiologia , Trypanosoma brucei brucei/fisiologia , Moscas Tsé-Tsé/parasitologia , Animais , Diferenciação Celular , Citoesqueleto/parasitologia , Flagelos/genética , Imunofluorescência , Estágios do Ciclo de Vida , Masculino , Microscopia Eletrônica , Proteínas de Protozoários , Trypanosoma brucei brucei/ultraestrutura
9.
J Struct Biol ; 209(1): 107406, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747559

RESUMO

The essential SAS2-related acetyltransferase 1 (Esa1), as a acetyltransferase of MYST family, is indispensable for the cell cycle and transcriptional regulation. The Tudor domain consists of 60 amino acids and belongs to the Royal family, which serves as a module interacting with methylated histone and/or DNA. Although Tudor domain has been widely studied in higher eukaryotes, its structure and function remain unclear in Trypanosoma brucei (T. brucei), a protozoan unicellular parasite causing sleeping sickness in human and nagana in cattle in sub-Saharan Africa. Here, we determined a high-resolution structure of TbEsa1 presumed Tudor domain from T. brucei by X-ray crystallography. TbEsa1 Tudor domain adopts a conserved Tudor-like fold, which is comprised of a five-stranded ß-barrel surrounded by two short α-helices. Furthermore, we revealed a non-specific DNA binding pattern of TbEsa1 Tudor domain. However, TbEsa1 Tudor domain showed no methyl-histone binding ability, due to the absence of key aromatic residues forming a conserved aromatic cage.


Assuntos
Histona Acetiltransferases/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/microbiologia , Domínio Tudor/genética , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Bovinos , Cristalografia por Raios X , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Modelos Moleculares , Ligação Proteica/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/enzimologia , Tripanossomíase Africana/genética
10.
J Mol Biol ; 432(2): 410-426, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31726063

RESUMO

Prozymes are pseudoenzymes that stimulate the function of weakly active enzymes through complex formation. The major Trypanosoma brucei protein arginine methyltransferase, TbPRMT1 enzyme (ENZ), requires TbPRMT1 prozyme (PRO) to form an active heterotetrameric complex. Here, we present the X-ray crystal structure of the TbPRMT1 ENZ-Δ52PRO tetrameric complex with the cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.4 Å resolution. The individual ENZ and PRO units adopt the highly-conserved PRMT domain architecture and form an antiparallel heterodimer that corresponds to the canonical homodimer observed in all previously reported PRMTs. In turn, two such heterodimers assemble into a tetramer both in the crystal and in solution with twofold rotational symmetry. ENZ is unstable in absence of PRO and incapable of forming a homodimer due to a steric clash of an ENZ-specific tyrosine within the dimerization arm, rationalizing why PRO is required to complement ENZ to form a PRMT dimer that is necessary, but not sufficient for PRMT activity. The PRO structure deviates from other, active PRMTs in that it lacks the conserved η2 310-helix within the Rossmann fold, abolishing cofactor binding. In addition to its chaperone function for ENZ, PRO substantially contributes to substrate binding. Heterotetramerization is required for catalysis, as heterodimeric ENZ-PRO mutants lack binding affinity and methyltransferase activity toward the substrate protein TbRGG1. Together, we provide a structural basis for TbPRMT1 ENZ activation by PRO heterotetramer formation, which is conserved across all kinetoplastids, and describe a chaperone function of the TbPRMT1 prozyme, which represents a novel mode of PRMT regulation.


Assuntos
Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Proteína-Arginina N-Metiltransferases/ultraestrutura , S-Adenosil-Homocisteína/química , Trypanosoma brucei brucei/ultraestrutura , Sequência de Aminoácidos/genética , Catálise , Cristalografia por Raios X , Dimerização , Metilação , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Especificidade por Substrato/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
11.
Elife ; 82019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710293

RESUMO

The 96-nm axonemal repeat includes dynein motors and accessory structures as the foundation for motility of eukaryotic flagella and cilia. However, high-resolution 3D axoneme structures are unavailable for organisms among the Excavates, which include pathogens of medical and economic importance. Here we report cryo electron tomography structures of the 96-nm repeat from Trypanosoma brucei, a protozoan parasite in the Excavate lineage that causes African trypanosomiasis. We examined bloodstream and procyclic life cycle stages, and a knockdown lacking DRC11/CMF22 of the nexin dynein regulatory complex (NDRC). Sub-tomogram averaging yields a resolution of 21.8 Å for the 96-nm repeat. We discovered several lineage-specific structures, including novel inter-doublet linkages and microtubule inner proteins (MIPs). We establish that DRC11/CMF22 is required for the NDRC proximal lobe that binds the adjacent doublet microtubule. We propose that lineage-specific elaboration of axoneme structure in T. brucei reflects adaptations to support unique motility needs in diverse host environments.


Assuntos
Axonema/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Trypanosoma brucei brucei/ultraestrutura , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
12.
Nucleic Acids Res ; 47(21): 11304-11325, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665448

RESUMO

Kinetoplastids are protists defined by one of the most complex mitochondrial genomes in nature, the kinetoplast. In the sleeping sickness parasite Trypanosoma brucei, the kinetoplast is a chain mail-like network of two types of interlocked DNA molecules: a few dozen ∼23-kb maxicircles (homologs of the mitochondrial genome of other eukaryotes) and thousands of ∼1-kb minicircles. Maxicircles encode components of respiratory chain complexes and the mitoribosome. Several maxicircle-encoded mRNAs undergo extensive post-transcriptional RNA editing via addition and deletion of uridines. The process is mediated by hundreds of species of minicircle-encoded guide RNAs (gRNAs), but the precise number of minicircle classes and gRNA genes was unknown. Here we present the first essentially complete assembly and annotation of the kinetoplast genome of T. brucei. We have identified 391 minicircles, encoding not only ∼930 predicted 'canonical' gRNA genes that cover nearly all known editing events (accessible via the web at http://hank.bio.ed.ac.uk), but also ∼370 'non-canonical' gRNA genes of unknown function. Small RNA transcriptome data confirmed expression of the majority of both categories of gRNAs. Finally, we have used our data set to refine definitions for minicircle structure and to explore dynamics of minicircle copy numbers.


Assuntos
Genoma Mitocondrial , Anotação de Sequência Molecular , Análise de Sequência de DNA , Trypanosoma brucei brucei/genética , Animais , Sequência de Bases , Sequência Conservada , DNA Circular/análise , DNA Circular/genética , DNA de Cinetoplasto/genética , Ordem dos Genes , Genoma de Protozoário , RNA Guia de Cinetoplastídeos/genética , Trypanosoma brucei brucei/ultraestrutura
13.
Exp Parasitol ; 205: 107753, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31469986

RESUMO

Trypanosoma brucei causes human African trypanosomiasis and Nagana disease in cattle, imposing substantial medical and economic burden in sub-Saharan Africa. The current treatments have limitations, including the requirement for elaborated protocols, development of drug resistance, and they are prone to adverse side effects. In vitro screening of a library of 14 dinuclear-thiolato bridged arene ruthenium complexes, originally developed for treatment of cancer cells, resulted in the identification of 7 compounds with IC50 values ranging from 3 to 26 nM. Complex [(η6-p-MeC6H4Pri)2Ru2(µ2-SC6H4-o-Pri)3]Cl (2) (IC50 = 4 nM) and complex [(η6-p-MeC6H4Pri)2Ru2(µ2-SCH2C6H4-p-But)2(µ2-SC6H4-p-OH)]BF4(9) (IC50 = 26 nM) were chosen for further assessments. Application of complex 2 and 9 at 20 nM and 200 nM, respectively, for 4.5 h induced alterations in the trypanosome mitochondrion as evidenced by immunofluorescence employing an antibody against mitochondrial Hsp70 and Mitotracker labeling. Transmission electron microscopy of parasites taken at 2 and 4h of treatment demonstrated massive alterations in the mitochondrial ultrastructure, while other organelles and structural elements of the parasites remained unaffected. Complex 2 treated trypanosomes exhibited a distorted mitochondrial membrane, and the mitochondrial matrix was transformed into an amorphous mass with different degrees of electron densities. Complex 9 did not notably impair the integrity of the membrane, but the interior of the mitochondrion appeared either completely translucent, or was filled with filamentous structures of unknown nature. Dose- and time-dependent effects of these two compounds on the mitochondrial membrane potential were detected by tetramethylrhodamine ethyl ester assay. Thus, the mitochondrion and associated metabolic processes are an important target of dinuclear thiolato-bridged arene ruthenium complexes in T. brucei.


Assuntos
Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/parasitologia , Animais , Relação Dose-Resposta a Droga , Imunofluorescência , Humanos , Concentração Inibidora 50 , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Compostos de Rutênio/química , Fatores de Tempo , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/sangue
14.
J Cell Sci ; 132(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31217284

RESUMO

Trypanosoma brucei possesses a motile flagellum that determines cell morphology and the cell division plane. Inheritance of the newly assembled flagellum during the cell cycle is controlled by the Polo-like kinase homolog TbPLK, which also regulates cytokinesis initiation. How TbPLK is targeted to its subcellular locations remains poorly understood. Here we report the trypanosome-specific protein BOH1 that cooperates with TbPLK to regulate flagellum inheritance and cytokinesis initiation in the procyclic form of T. brucei BOH1 localizes to an unusual sub-domain in the flagellum-associated hook complex, bridging the hook complex, the centrin arm and the flagellum attachment zone. Depletion of BOH1 disrupts hook-complex morphology, inhibits centrin-arm elongation and abolishes flagellum attachment zone assembly, leading to flagellum mis-positioning and detachment. Further, BOH1 deficiency impairs the localization of TbPLK and the cytokinesis regulator CIF1 to the cytokinesis initiation site, providing a molecular mechanism for its role in cytokinesis initiation. These findings reveal the roles of BOH1 in maintaining hook-complex morphology and regulating flagellum inheritance, and establish BOH1 as an upstream regulator of the TbPLK-mediated cytokinesis regulatory pathway.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citocinese , Flagelos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Flagelos/ultraestrutura , Técnicas de Silenciamento de Genes , Ligação Proteica , Domínios Proteicos , Proteínas de Protozoários/química , Trypanosoma brucei brucei/ultraestrutura , Quinase 1 Polo-Like
15.
Exp Parasitol ; 199: 40-46, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30840850

RESUMO

Human African trypanosomosis (HAT) and animal African trypanosomosis (AAT) are diseases of economic importance in humans and animals that affect more than 36 African countries. The currently available trypanocidal drugs are associated with side effects, and the parasites are continually developing resistance. Thus, effective and safe drugs are needed for the treatment of HAT and AAT. This study aimed to evaluate the effects of azithromycin (AZM) on Trypanosoma brucei brucei-infected mice. Mice were randomly divided into 7 groups consisting of a vehicle control group, 5 test groups and a diminazene aceturate (DA)-treated group. Mice were treated orally for 7 and 28 days, as short-term and long-term treatments, respectively. Short-term AZM treatment cured 23% (16 of 70) of the overall treated mice whereas long-term treatment resulted in the survival of 70% of the mice in the groups that received AZM at doses of 300 and 400 mg/kg. Trypanosomes treated in vitro with 25 µg/mL of AZM were subjected to transmission electron microscopy, which revealed the presence of increased numbers of glycosomes and acidocalcisomes in comparison to the vehicle group. The current study showed the trypanocidal effect of AZM on T. b. brucei in vivo. The demonstrated efficacy increased with an increase in treatment period and an increased concentration of AZM.


Assuntos
Anti-Infecciosos/administração & dosagem , Azitromicina/administração & dosagem , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Administração Oral , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Peso Corporal/efeitos dos fármacos , Feminino , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Parasitemia/tratamento farmacológico , Distribuição Aleatória , Taxa de Sobrevida , Fatores de Tempo , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/mortalidade
16.
J Cell Biol ; 217(12): 4284-4297, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30275108

RESUMO

Intraflagellar transport (IFT) is the rapid bidirectional movement of large protein complexes driven by kinesin and dynein motors along microtubule doublets of cilia and flagella. In this study, we used a combination of high-resolution electron and light microscopy to investigate how and where these IFT trains move within the flagellum of the protist Trypanosoma brucei Focused ion beam scanning electron microscopy (FIB-SEM) analysis of trypanosomes showed that trains are found almost exclusively along two sets of doublets (3-4 and 7-8) and distribute in two categories according to their length. High-resolution live imaging of cells expressing mNeonGreen::IFT81 or GFP::IFT52 revealed for the first time IFT trafficking on two parallel lines within the flagellum. Anterograde and retrograde IFT occurs on each of these lines. At the distal end, a large individual anterograde IFT train is converted in several smaller retrograde trains in the space of 3-4 s while remaining on the same side of the axoneme.


Assuntos
Flagelos/metabolismo , Microtúbulos/metabolismo , Trypanosoma brucei brucei/metabolismo , Transporte Biológico Ativo/fisiologia , Flagelos/genética , Flagelos/ultraestrutura , Microtúbulos/genética , Microtúbulos/ultraestrutura , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/ultraestrutura
17.
Science ; 362(6413)2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30213880

RESUMO

Ribosomal RNA (rRNA) plays key functional and architectural roles in ribosomes. Using electron microscopy, we determined the atomic structure of a highly divergent ribosome found in mitochondria of Trypanosoma brucei, a unicellular parasite that causes sleeping sickness in humans. The trypanosomal mitoribosome features the smallest rRNAs and contains more proteins than all known ribosomes. The structure shows how the proteins have taken over the role of architectural scaffold from the rRNA: They form an autonomous outer shell that surrounds the entire particle and stabilizes and positions the functionally important regions of the rRNA. Our results also reveal the "minimal" set of conserved rRNA and protein components shared by all ribosomes that help us define the most essential functional elements.


Assuntos
Evolução Molecular , Ribossomos Mitocondriais/química , Proteínas de Protozoários/química , Proteínas Ribossômicas/química , Trypanosoma brucei brucei/ultraestrutura , Ribossomos Mitocondriais/ultraestrutura , Modelos Moleculares , Proteínas de Protozoários/ultraestrutura , RNA Ribossômico/química , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura
18.
Elife ; 72018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30047863

RESUMO

Tryparedoxin peroxidases, distant relatives of glutathione peroxidase 4 in higher eukaryotes, are responsible for the detoxification of lipid-derived hydroperoxides in African trypanosomes. The lethal phenotype of procyclic Trypanosoma brucei that lack the enzymes fulfils all criteria defining a form of regulated cell death termed ferroptosis. Viability of the parasites is preserved by α-tocopherol, ferrostatin-1, liproxstatin-1 and deferoxamine. Without protecting agent, the cells display, primarily mitochondrial, lipid peroxidation, loss of the mitochondrial membrane potential and ATP depletion. Sensors for mitochondrial oxidants and chelatable iron as well as overexpression of a mitochondrial iron-superoxide dismutase attenuate the cell death. Electron microscopy revealed mitochondrial matrix condensation and enlarged cristae. The peroxidase-deficient parasites are subject to lethal iron-induced lipid peroxidation that probably originates at the inner mitochondrial membrane. Taken together, ferroptosis is an ancient cell death program that can occur at individual subcellular membranes and is counterbalanced by evolutionary distant thiol peroxidases.


Assuntos
Apoptose , Ferro/metabolismo , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Citoproteção , Peroxidação de Lipídeos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Oxidantes/metabolismo , Parasitos/metabolismo , Fenótipo , Superóxido Dismutase/metabolismo , Trypanosoma brucei brucei/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 115(26): E5916-E5925, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891682

RESUMO

In the unicellular parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, complex swimming behavior is driven by a flagellum laterally attached to the long and slender cell body. Using microfluidic assays, we demonstrated that T. brucei can penetrate through an orifice smaller than its maximum diameter. Efficient motility and penetration depend on active flagellar beating. To understand how active beating of the flagellum affects the cell body, we genetically engineered T. brucei to produce anucleate cytoplasts (zoids and minis) with different flagellar attachment configurations and different swimming behaviors. We used cryo-electron tomography (cryo-ET) to visualize zoids and minis vitrified in different motility states. We showed that flagellar wave patterns reflective of their motility states are coupled to cytoskeleton deformation. Based on these observations, we propose a mechanism for how flagellum beating can deform the cell body via a flexible connection between the flagellar axoneme and the cell body. This mechanism may be critical for T. brucei to disseminate in its host through size-limiting barriers.


Assuntos
Citoesqueleto , Flagelos , Trypanosoma brucei brucei , Microscopia Crioeletrônica , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Flagelos/metabolismo , Flagelos/ultraestrutura , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura
20.
PLoS One ; 13(5): e0197541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768499

RESUMO

The protozoan Trypanosoma brucei sp. cause diseases in humans and animals. Studies of T. brucei cell biology have revealed unique features, such as major endocytic events being limited to a single region, and mitochondrial genome segregation mediated via basal bodies. Further understanding of trypanosome cell biology can be facilitated with super-resolution fluorescence microscopy. Lack of a plasma membrane probe for fixed trypanosomes remains a persistent problem in need of a working solution. Herein, we report protocols developed using mCLING in super-resolution structured illumination fluorescence microscopy (SR-SIM). mCLING comprehensively labels flagellar membranes, including nascent intracellular stages. To extend its usefulness for trypanosome biology we optimized mCLING in combination with organelle-specific antibodies for immunofluorescence of basal bodies or mitochondria. Then in work with live trypanosomes, we demonstrated internalization of mCLING into endocytic stations that overlap with LysoTracker in acidic organelles. Greater detail of the intracellular location of mCLING was obtained with SR-SIM after pulsing trypanosomes with the probe, and allowing continuous uptake of fluorescent concanavalin A (ConA) destined for lysosomes. In most cases, ConA and mCLING vesicles were juxtaposed but not coincident. A video of the complete image stack at the 15 min time point shows zones of mCLING staining surrounding patches of ConA, consistent with persistence of mCLING in membranes of compartments that contain luminal ConA. In summary, these studies establish mCLING as a versatile trypanosome membrane probe compatible with super-resolution microscopy that can be used for detailed analysis of flagellar membrane biogenesis. In addition, mCLING can be used for immunofluorescence in fixed, permeabilized trypanosomes. Its robust staining of the plasma membrane eliminates a need to overlay transmitted light images on fluorescence pictures obtained from widefield, confocal, or super-resolution microscopy.


Assuntos
Membrana Celular/ultraestrutura , Flagelos/ultraestrutura , Trypanosoma brucei brucei/ultraestrutura , Endocitose , Citometria de Fluxo/métodos , Imunofluorescência , Corantes Fluorescentes , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA