Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 1774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973747

RESUMO

Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5-7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.


Assuntos
Doença de Chagas/parasitologia , Proteoma , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma rangeli/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Biologia Computacional , Regulação Viral da Expressão Gênica , Redes Reguladoras de Genes , Genômica , Interações Hospedeiro-Patógeno , Humanos , Filogenia , Mapas de Interação de Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Via Secretória , Transdução de Sinais , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Trypanosoma rangeli/genética , Trypanosoma rangeli/imunologia
2.
BMC Genomics ; 19(1): 770, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355302

RESUMO

BACKGROUND: Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host. RESULTS: Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21-25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi. CONCLUSIONS: Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids.


Assuntos
Genoma de Protozoário , Genômica , Trypanosoma cruzi/genética , Trypanosoma rangeli/genética , Trypanosoma/genética , Biologia Computacional/métodos , Metabolismo Energético/genética , Genômica/métodos , Genótipo , Tipagem Molecular , Família Multigênica , Filogenia , Pseudogenes , Trypanosoma/classificação , Trypanosoma/metabolismo , Trypanosoma/patogenicidade , Trypanosoma cruzi/classificação , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/patogenicidade , Trypanosoma rangeli/classificação , Trypanosoma rangeli/metabolismo , Trypanosoma rangeli/patogenicidade , Virulência/genética
3.
Mol Biochem Parasitol ; 216: 21-29, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28645481

RESUMO

Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The velocity of glucose consumption is about 40% higher than that of procyclic Trypanosoma brucei, and four times faster than by T. cruzi epimastigotes under the same culture conditions.


Assuntos
Enzimas/metabolismo , Glucose/metabolismo , Trypanosoma rangeli/metabolismo , Animais , Metabolismo dos Carboidratos , Permeabilidade da Membrana Celular , Cães , Glicólise , Espaço Intracelular/metabolismo , Microcorpos/enzimologia , Microcorpos/metabolismo , Transporte Proteico , Trypanosoma rangeli/enzimologia
4.
J Phys Chem B ; 118(22): 5807-16, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24814976

RESUMO

Chagas' disease, also known as American trypanosomiasis, is a lethal, chronic disease that currently affects more than 10 million people in Central and South America. The trans-sialidase from Trypanosoma cruzi (T. cruzi, TcTS) is a crucial enzyme for the survival of this parasite: sialic acids from the host are transferred to the cell surface glycoproteins of the trypanosome, thereby evading the host's immune system. On the other hand, the sialidase of T. rangeli (TrSA), which shares 70% sequence identity with TcTS, is a strict hydrolase and shows no trans-sialidase activity. Therefore, TcTS and TrSA represent an excellent framework to understand how different catalytic activities can be achieved with extremely similar structures. By means of combined quantum mechanics-molecular mechanics (QM/MM, SCC-DFTB/Amberff99SB) calculations and umbrella sampling simulations, we investigated the hydrolysis mechanisms of TcTS and TrSA and computed the free energy profiles of these reactions. The results, together with our previous computational investigations, are able to explain the catalytic mechanism of sialidases and describe how subtle differences in the active site make TrSA a strict hydrolase and TcTS a more efficient trans-sialidase.


Assuntos
Glicoproteínas/metabolismo , Neuraminidase/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma rangeli/enzimologia , Tripanossomíase/parasitologia , Domínio Catalítico , Glicoproteínas/química , Humanos , Hidrólise , Lactose/análogos & derivados , Lactose/química , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/química , Teoria Quântica , Termodinâmica , Trypanosoma cruzi/química , Trypanosoma cruzi/metabolismo , Trypanosoma rangeli/química , Trypanosoma rangeli/metabolismo , Tripanossomíase/enzimologia
5.
Biotechnol Lett ; 36(6): 1315-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24563319

RESUMO

Biocatalytic trans-sialylation is relevant for the design of biomimetic oligosaccharides such as human milk oligosaccharides. t-Butanol and ionic liquids, EAN (ethylammonium nitrate), [MMIm][MeSO4] (1,3-dimethylimidazolium methyl sulfate), and [C2OHMIm][PF6] (1-(2-hydroxyethyl)-3-methylimidazolium hexafluorophosphate), were examined as co-solvents for the improvement of the synthesis versus hydrolysis ratio in the trans-sialylation of lactose, catalysed by an engineered sialidase from Trypanosoma rangeli. The use of 25 % (v/v) t-butanol as co-solvent significantly increased 3'-sialyllactose production by 40 % from 1.04 ± 0.09 to 1.47 ± 0.01 mM. The synthesis versus hydrolysis ratio increased correspondingly by 1.2-times. 1-2.5 % (v/v) EAN or [C2OHMIm][PF6] improved the synthesis versus hydrolysis ratio up to 2.5-times but simultaneously decreased the 3'-sialyllactose yield, probably due to enzyme inactivation caused by the ionic liquid. [MMIm][MeSO4] had a detrimental effect on the trans-sialylation yield and on the ratio between synthesis and hydrolysis.


Assuntos
Neuraminidase/metabolismo , Oligossacarídeos/metabolismo , Trypanosoma rangeli/metabolismo , Hidrólise , Neuraminidase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solventes , Trypanosoma rangeli/genética
6.
Enzyme Microb Technol ; 55: 85-93, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24411449

RESUMO

An engineered sialidase, Tr6, from Trypanosoma rangeli was used for biosynthetic production of 3'-sialyllactose, a human milk oligosaccharide case compound, from casein glycomacropeptide (CGMP) and lactose, components abundantly present in industrial dairy side streams. Four different enzyme re-use methods were compared to optimize the biocatalytic productivity, i.e. 3'-sialyllactose formation per amount of Tr6 employed: (i) His-tag immobilization on magnetic Cu²âº-iminodiacetic acid-functionalized nanoparticles (MNPs), (ii) membrane immobilization, (iii) calcium alginate encapsulation of cross-linked Tr6, and (iv) Tr6 catalysis in a membrane reactor. Tr6 immobilized on MNPs gave a biocatalytic productivity of 84 mg 3'-sialyllactose/mg Tr6 after seven consecutive reaction runs. Calcium-alginate and membrane immobilization were inefficient. Using free Tr6 in a 10 kDa membrane reactor produced a 9-fold biocatalytic productivity increase compared to using free Tr6 in a batch reactor giving 306 mg 3'-sialyllactose/mg Tr6 after seven consecutive reaction runs. The 3'-sialyllactose yield on α-2,3-bound sialic acid in CGMP was 74%. Using circular dichroism, a temperature denaturation midpoint of Tr6, Tm, of 57.2 °C was determined. The thermal stability of free Tr6 was similarly high and the Tr6 was stable at the reaction temperature (25 °C) for at least 24 h.


Assuntos
Neuraminidase/metabolismo , Oligossacarídeos/biossíntese , Proteínas de Protozoários/metabolismo , Trypanosoma rangeli/metabolismo , Alginatos , Animais , Biocatálise , Configuração de Carboidratos , Sequência de Carboidratos , Caseínas/metabolismo , Bovinos , Celulose , Reagentes de Ligações Cruzadas , Composição de Medicamentos , Enzimas Imobilizadas , Ácido Glucurônico , Ácidos Hexurônicos , Membranas Artificiais , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Nanopartículas , Neuraminidase/genética , Fragmentos de Peptídeos/metabolismo , Pichia , Estabilidade Proteica , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Trypanosoma rangeli/genética
7.
PLoS One ; 9(1): e83902, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24404142

RESUMO

This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been used to investigate the structural requirements for trans-sialidase activity. We observed that the T. cruzi trans-sialidase has a seven-amino-acid motif (197-203) at the border of the substrate binding cleft. The motif differs substantially in chemical properties and substitution probability from the homologous sialidase, and we hypothesised that this motif is important for trans-sialidase activity. The 197-203 motif is strongly positively charged with a marked change in hydrogen bond donor capacity as compared to the sialidase. To investigate the role of this motif, we expressed and characterised a T. rangeli sialidase mutant, Tr13. Conditions for efficient trans-sialylation were determined, and Tr13's acceptor specificity demonstrated promiscuity with respect to the acceptor molecule enabling sialylation of glycans containing terminal galactose and glucose and even monomers of glucose and fucose. Sialic acid is important in association with human milk oligosaccharides, and Tr13 was shown to sialylate a number of established and potential prebiotics. Initial evaluation of prebiotic potential using pure cultures demonstrated, albeit not selectively, growth of Bifidobacteria. Since the 197-203 motif stands out in the native trans-sialidase, is markedly different from the wild-type sialidase compared to previous mutants, and is shown here to confer efficient and broad trans-sialidase activity, we suggest that this motif can serve as a framework for future optimization of trans-sialylation towards prebiotic production.


Assuntos
Neuraminidase/metabolismo , Polissacarídeos/metabolismo , Trypanosoma rangeli/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Neuraminidase/química , Neuraminidase/genética , Polissacarídeos/química , Conformação Proteica , Engenharia de Proteínas , Alinhamento de Sequência , Especificidade por Substrato , Trypanosoma rangeli/genética
8.
J Proteomics ; 82: 52-63, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23466310

RESUMO

Sympatric distribution and sharing of hosts and antigens by Trypanosoma rangeli and Trypanosoma cruzi, the etiological agent of Chagas' disease, often incur in misdiagnosis and improper epidemiological inferences. Many secreted and surface proteins (SP) have been described as important antigens shared by these species. This work describes the T. rangeli surfaceome obtained by gel-free (LC-ESI-MS/MS) and gel-based (GeLC-ESI-MS/MS) proteomic approaches, and immunoblotting analyses and the comparison of these SP with T. cruzi. A total of 138 T. rangeli proteins and 343 T. cruzi proteins were obtained, among which, 42 and 157 proteins were exclusively identified in T. rangeli or T. cruzi trypomastigotes, respectively. Immunoblotting assays using sera from experimentally infected mice revealed a distinct band pattern for each species. MS/MS analysis of T. rangeli exclusive bands revealed two unique GP63-related proteins and flagellar calcium-binding protein. Also, a ~32kDa band composed of 12 distinct proteins was exclusively recognized by anti-T. cruzi serum. This highly sensitive proteomic assessment of surface proteins characterized the T. rangeli surfaceome, revealing several differences and similarities between these two parasites. The study reports new T. rangeli-specific proteins with promising use in differential diagnosis from T. cruzi. BIOLOGICAL SIGNIFICANCE: In this manuscript, we report the first proteomic analysis of the T. rangeli surface (surfaceome), a non-pathogenic parasite occurring in sympatry with T. cruzi, the etiological agent of Chagas disease. This comparative proteomic analysis was performed using high-throughput in-gel and gel-free proteomic approaches combined with immunoblotting, allowing us to identify new T. rangeli-specific proteins with promising use in differential serodiagnosis, among several other protein not previously reported for this taxon. Additionally, cross-recognition assays showed that T. cruzi surface proteins were recognized by heterologous serum (anti-T. rangeli) that strengthens the possibility of misdiagnosis of Chagas disease in humans and other mammals. Thus, this work provides new insights to understand the serological cross-reactivity between T. cruzi and T. rangeli, as well as, the identification of targets for specific T. rangeli diagnosis as revealed by the comparative surfaceome analysis. We strongly believe that this research is of importance to the readers of Journal of Proteomics since it provides new potential markers for diagnosis of both T. cruzi and T. rangeli parasites increasing the spectrum of specific targets for unambiguous diagnosis of T. rangeli and T. cruzi infections, besides describing new approaches to assess the trypanosomatids proteome.


Assuntos
Proteômica , Proteínas de Protozoários/metabolismo , Trypanosoma rangeli/metabolismo , Tripanossomíase/metabolismo , Animais , Humanos , Camundongos , Testes Sorológicos/métodos , Tripanossomíase/diagnóstico
9.
Exp Parasitol ; 133(4): 447-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23333618

RESUMO

The genes encoding the Trypanosoma rangeli heat shock protein 70kDa were sequenced and their genomic organization determined. This human parasite has medical relevance as it shares antigens, hosts and geographical regions with the etiological agent of Chagas' disease, Trypanosoma cruzi. The T. rangeli HSP70 genes are highly conserved regarding their tandem organization, and deduced amino acid sequences among T. rangeli KP1(+) and KP1(-) groups and other trypanosomatids. Nevertheless, a variable number of the immunogenic GMPG motif was observed among HSP70 copies within the same T. rangeli isolate and among different isolates. Interestingly, a polymorphism at nucleotide level affecting the SphI restriction site allowed the differentiation of KP1(-) and KP1(+) groups.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Polimorfismo Genético , Trypanosoma rangeli/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Southern Blotting , DNA de Protozoário/química , Genoma , Genótipo , Proteínas de Choque Térmico HSP70/química , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Alinhamento de Sequência , Análise de Sequência , Trypanosoma rangeli/classificação , Trypanosoma rangeli/metabolismo
10.
PLoS One ; 7(10): e47285, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077586

RESUMO

BACKGROUND: Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. METHODOLOGY/PRINCIPAL FINDINGS: Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. CONCLUSIONS/SIGNIFICANCE: Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission.


Assuntos
Doença de Chagas/transmissão , Glicolipídeos/metabolismo , Óxido Nítrico/biossíntese , Rhodnius/metabolismo , Trypanosoma cruzi/metabolismo , Trypanosoma rangeli/metabolismo , Animais , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Interações Hospedeiro-Parasita , Insetos Vetores/metabolismo , Insetos Vetores/parasitologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Rhodnius/parasitologia , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/metabolismo , Trypanosoma cruzi/patogenicidade , Trypanosoma rangeli/patogenicidade , Vanadatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA