Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Microbiol Spectr ; 10(1): e0257721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138171

RESUMO

Entomopathogenic Photorhabdus bacteria (Enterobacteriaceae: Gamma-proteobacteria), the natural symbionts of Heterorhabditis nematodes, are a rich source for the discovery of biologically active secondary metabolites (SMs). This study describes the isolation of three nematicidal SMs from in vitro culture supernatants of the Arizona-native Photorhabdus luminescens sonorensis strain Caborca by bioactivity-guided fractionation. Nuclear magnetic resonance spectroscopy and comparison to authentic synthetic standards identified these bioactive metabolites as trans-cinnamic acid (t-CA), (4E)-5-phenylpent-4-enoic acid (PPA), and indole. PPA and t-CA displayed potent, concentration-dependent nematicidal activities against the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans), two economically and globally important plant parasitic nematodes (PPNs) that are ubiquitous in the United States. Southwest. Indole showed potent, concentration-dependent nematistatic activity by inducing the temporary rigid paralysis of the same targeted nematodes. While paralysis was persistent in the presence of indole, the nematodes recovered upon removal of the compound. All three SMs were found to be selective against the tested PPNs, exerting little effects on non-target species such as the bacteria-feeding nematode Caenorhabditis elegans or the entomopathogenic nematodes Steinernema carpocapsae, Heterorhabditis bacteriophora, and Hymenocallis sonorensis. Moreover, none of these SMs showed cytotoxicity against normal or neoplastic human cells. The combination of t-CA + PPA + indole had a synergistic nematicidal effect on both targeted PPNs. Two-component mixtures prepared from these SMs revealed complex, compound-, and nematode species-dependent interactions. These results justify further investigations into the chemical ecology of Photorhabdus SMs, and recommend t-CA, PPA and indole, alone or in combinations, as lead compounds for the development of selective and environmentally benign nematicides against the tested PPNs. IMPORTANCE Two phenylpropanoid and one alkaloid secondary metabolites were isolated and identified from culture filtrates of Photorhabdus l. sonorensis strain Caborca. The three identified metabolites showed selective nematicidal and/or nematistatic activities against two important plant parasitic nematodes, the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans). The mixture of all three metabolites had a synergistic nematicidal effect on both targeted nematodes, while other combinations showed compound- and nematode-dependent interactions.


Assuntos
Anti-Helmínticos/farmacologia , Photorhabdus/química , Doenças das Plantas/parasitologia , Metabolismo Secundário , Tylenchoidea/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/metabolismo , Cinamatos/química , Cinamatos/metabolismo , Cinamatos/farmacologia , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Estrutura Molecular , Photorhabdus/metabolismo , Tylenchoidea/crescimento & desenvolvimento
2.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163425

RESUMO

Root-knot nematodes (RKNs) are devastating parasites that invade thousands of plants. In this study, five RKN effectors, which might interact with Prunussogdiana resistance protein PsoRPM3, were screened and identified. In situ hybridisation results showed that MiCal, MiGST_N_4, MiEFh and MiACPS are expressed in the subventral oesophageal glands (SvG), and MiTSPc hybridization signals are found in the dorsal esophageal gland (DG) of Meloidogyne incognita in the pre-J2. RT-qPCR data indicated that the expression of MiCal, MiGST_N_4, MiEFh, and MiACPS genes are highly expressed in M. incognita of pra-J2 and J3/J4 stages. The expression of MiTSPc increased significantly in the female stage of M. incognita. Moreover, all effectors found in this study localize in the cytoplasm and nucleus when transiently expressed in plant cells. In addition, MiGST_N_4, MiEFh, MiACPS and MiTSPc can elicit the ROS burst and strong hypersensitive response (HR), as well as significant ion leakage. Our data suggest that MiGST_N_4, MiEFh, MiACPS and MiTSPc effectors may be involved in triggering the immune response of the host plant.


Assuntos
Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Prunus/crescimento & desenvolvimento , Tylenchoidea/patogenicidade , Animais , Resistência à Doença , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Proteínas de Plantas/metabolismo , Prunus/metabolismo , Prunus/parasitologia , Análise de Sequência de DNA , Distribuição Tecidual , Tylenchoidea/genética , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/metabolismo , Regulação para Cima
3.
Cytogenet Genome Res ; 161(5): 257-271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34320507

RESUMO

Sweetpotato, Ipomoea batatas (L.) Lam., is an important and widely grown crop, yet its production is affected severely by biotic and abiotic stresses. The nucleotide binding site (NBS)-encoding genes have been shown to improve stress tolerance in several plant species. However, the characterization of NBS-encoding genes in sweetpotato is not well-documented to date. In this study, a comprehensive analysis of NBS-encoding genes has been conducted on this species by using bioinformatics and molecular biology methods. A total of 315 NBS-encoding genes were identified, and 260 of them contained all essential conserved domains while 55 genes were truncated. Based on domain architectures, the 260 NBS-encoding genes were grouped into 6 distinct categories. Phylogenetic analysis grouped these genes into 3 classes: TIR, CC (I), and CC (II). Chromosome location analysis revealed that the distribution of NBS-encoding genes in chromosomes was uneven, with a number ranging from 1 to 34. Multiple stress-related regulatory elements were detected in the promoters, and the NBS-encoding genes' expression profiles under biotic and abiotic stresses were obtained. According to the bioinformatics analysis, 9 genes were selected for RT-qPCR analysis. The results revealed that IbNBS75, IbNBS219, and IbNBS256 respond to stem nematode infection; Ib-NBS240, IbNBS90, and IbNBS80 respond to cold stress, while IbNBS208, IbNBS71, and IbNBS159 respond to 30% PEG treatment. We hope these results will provide new insights into the evolution of NBS-encoding genes in the sweetpotato genome and contribute to the molecular breeding of sweetpotato in the future.


Assuntos
Adaptação Fisiológica/genética , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ipomoea batatas/genética , Adaptação Fisiológica/imunologia , Animais , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Ipomoea batatas/classificação , Ipomoea batatas/imunologia , Ipomoea batatas/parasitologia , Anotação de Sequência Molecular , Nucleotídeos/genética , Nucleotídeos/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Imunidade Vegetal/genética , Estresse Fisiológico , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/patogenicidade
4.
Sci Rep ; 11(1): 11156, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045504

RESUMO

Dicers and dicer-like enzymes play an essential role in small RNA processing in eukaryotes. Nematodes are thought to encode one dicer, DCR-1; only that for Caenorhabditis spp. is well-characterised. Using genomic sequences of eight root-knot nematodes (Meloidogyne spp.), we identified putative coding sequences typical of eukaryotic DICERS. We noted that the primary and secondary structures of DICERS they encode were different for different Meloidogyne species and even for isolates of the same species, suggesting paralogy for the gene. One of the genes for M. incognita (Midcr-1.1) expressed in eggs, juvenile stage 2 and adults, with the highest expression in the adult females. All the Meloidogyne DICERS had seven major domains typical of those for Caenorhabditis spp. and humans with very similar protein folding. RNAi of Midcr-1.1 in J2s using seven dsRNAs, each based on sequences encoding the domains, induced mild paralysis but measurable knockdown was detected in J2s treated with five of the dsRNAs. For four of the dsRNAs, the RNAi effect lasted and reduced the nematode's infectivity. Also, host plant delivery of dsRNAs complementary to coding sequences of the Dicer Dimerisation domain impaired development, reducing nematode infection by 71%. These results confirm the importance of the gene to nematode health.


Assuntos
Proteínas de Helminto/genética , Ribonuclease III/genética , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/genética , Animais , Proteínas de Helminto/metabolismo , Interferência de RNA , Ribonuclease III/metabolismo , Tylenchoidea/metabolismo
5.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348829

RESUMO

Plant parasitic nematodes, including the beet cyst nematode Heterodera schachtii, constitute a devastating problem for crops worldwide. The limited availability of sustainable management options illustrates the need for new eco-friendly control means. Plant metabolites represent an invaluable source of active compounds for the discovery of such novel antagonistic agents. Here, we evaluated the impact of eight plant terpenoids on the H. schachtii parasitism of Arabidopsis thaliana. None of the metabolites affected the plant development (5 or 10 ppm). Nootkatone decreased the number of adult nematodes on A. thaliana to 50%, with the female nematodes being smaller compared to the control. In contrast, three other terpenoids increased the parasitism and/or female size. We discovered that nootkatone considerably decreased the number of nematodes that penetrated A. thaliana roots, but neither affected the nematode viability or attraction to plant roots, nor triggered the production of plant reactive oxygen species or changed the plant's sesquiterpene profile. However, we demonstrated that nootkatone led to a significant upregulation of defense-related genes involved in salicylic and jasmonic acid pathways. Our results indicate that nootkatone is a promising candidate to be developed into a novel plant protection agent acting as a stimulator of plant immunity against parasitic nematodes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Raízes de Plantas/imunologia , Sesquiterpenos Policíclicos/farmacologia , Tylenchoidea/crescimento & desenvolvimento , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Feminino , Doenças das Plantas/parasitologia , Extratos Vegetais/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Tylenchoidea/efeitos dos fármacos
6.
J Agric Food Chem ; 68(50): 14824-14831, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33322905

RESUMO

Soil-borne pathogens and weeds could synergistically affect vegetable growth and result in serious losses. The investigation of antagonistic metabolites from a marine-derived entomopathogenic fungus, Beauveria felina, obtained polyhydroxy steroid (1), tricyclic diterpenoid (2), isaridin (3), and destruxin cyclodepsipeptides (4-6). The structures and absolute configurations of new 1-3 were elucidated by extensive spectroscopic and X-ray crystallographic analyses, as well as electronic circular dichroism (ECD) calculations. Compounds 1 and 2 showed antifungal activities against carbendazim-resistant strains of Botrytis cinerea, with the minimum inhibitory concentration (MIC) values ranging from 16 to 32 µg/mL, which were significantly better than those of carbendazim (MIC = 256 µg/mL). Compound 5 exhibited significant antagonistic activity against the radicle growth of Amaranthus retroflexus seedlings, which was almost identical to that of the positive control (2,4-dichlorophenoxyacetic acid). The structure-activity differences of 4-6 suggested that the Cl atom in HMPA1 and ß-Me in Pro2 should be the key factors to their herbicidal activities. Besides, compounds 3-6 showed moderate nematicidal activities against Meloidogyne incognita. These antagonistic effects of 1-6 were first reported and further revealed the synergistically antagonistic potential of B. felina to be developed into the biopesticide.


Assuntos
Antifúngicos/farmacologia , Antinematódeos/farmacologia , Beauveria/química , Beauveria/metabolismo , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Antinematódeos/química , Antinematódeos/metabolismo , Beauveria/isolamento & purificação , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Cristalografia por Raios X , Depsipeptídeos/química , Depsipeptídeos/metabolismo , Depsipeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Água do Mar/microbiologia , Metabolismo Secundário , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/crescimento & desenvolvimento
7.
Plant Sci ; 301: 110670, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33218636

RESUMO

The cereal cyst nematode, Heterodera avenae is distributed worldwide and causes substantial damage in bread wheat, Triticum aestivum. This nematode is extremely difficult to manage because of its prolonged persistence as unhatched eggs encased in cysts. Due to its sustainable and target-specific nature, RNA interference (RNAi)-based strategy has gained unprecedented importance for pest control. To date, RNAi strategy has not been exploited to manage H. avenae in wheat. In the present study, 40 H. avenae target genes with different molecular function were rationally selected for in vitro soaking analysis in order to assess their susceptibility to RNAi. In contrast to target-specific downregulation of 18 genes, 7 genes were upregulated and 15 genes showed unaltered expression (although combinatorial soaking showed some of these genes are RNAi susceptible), suggesting that a few of the target genes were refractory or recalcitrant to RNAi. However, RNAi of 37 of these genes negatively altered nematode behavior in terms of reduced penetration, development and reproduction in wheat. Subsequently, wheat plants were transformed with seven H. avenae target genes (that showed greatest abrogation of nematode parasitic success) for host-induced gene silencing (HIGS) analysis. Transformed plants were molecularly characterized by PCR, RT-qPCR and Southern hybridization. Production of target gene-specific double- and single-stranded RNA (dsRNA/siRNA) was detected in transformed plants. Transgenic expression of galectin, cathepsin L, vap1, serpin, flp12, RanBPM and chitinase genes conferred 33.24-72.4 % reduction in H. avenae multiplication in T1 events with single copy ones exhibiting greatest reduction. A similar degree of resistance observed in T2 plants indicated the consistent HIGS effect in the subsequent generations. Intriguingly, cysts isolated from RNAi plants were of smaller size with translucent cuticle compared to normal size, dark brown control cysts, suggesting H. avenae developmental retardation due to HIGS. Our study reinforces the potential of HIGS to manage nematode problems in crop plant.


Assuntos
Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/prevenção & controle , Triticum/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Animais , Catepsina L/genética , Catepsina L/metabolismo , Galectinas/genética , Galectinas/metabolismo , Expressão Gênica , Inativação Gênica , Proteínas de Helminto/metabolismo , Doenças das Plantas/parasitologia , Transgenes , Triticum/genética , Tylenchoidea/genética , Tylenchoidea/fisiologia
8.
BMC Microbiol ; 20(1): 299, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008296

RESUMO

BACKGROUND: Root-knot nematode is one of the most significant diseases of vegetable crops in the world. Biological control with microbial antagonists has been emerged as a promising and eco-friendly treatment to control pathogens. The aim of this study was to screen and identify novel biocontrol agents against root-knot nematode, Meloidogyne incognita. RESULTS: A total of 890 fungal isolates were obtained from rhizosphere soil of different crops and screened by nematicidal activity assays. Snef1910 strain showed high virulence against second stage juveniles (J2s) of M. incognita and identified as Trichoderma citrinoviride by morphology analysis and biomolecular assay. Furthermore, T. citrinoviride Snef1910 significantly inhibited egg hatching with the hatching inhibition percentages of 90.27, 77.50, and 67.06% at 48, 72, and 96 h after the treatment, respectively. The results of pot experiment showed that the metabolites of T. citrinoviride Snef1910 significantly decreased the number of root galls, J2s, and nematode egg masses and J2s population density in soil and significantly promoted the growth of tomato plants. In the field experiment, the biocontrol application showed that the control efficacy of T. citrinoviride Snef1910 against root-knot nematode was more than 50%. Meanwhile, T. citrinoviride Snef1910 increased the tomato plant biomass. CONCLUSIONS: T. citrinoviride strain Snef1910 could be used as a potential biological control agent against root-knot nematode, M. incognita.


Assuntos
Agentes de Controle Biológico , Hypocreales/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/parasitologia , Tylenchoidea/microbiologia , Animais , Produtos Agrícolas/parasitologia , Humanos , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Rizosfera , Solo/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/patogenicidade
9.
J Agric Food Chem ; 68(40): 11088-11095, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32924513

RESUMO

The present study reports on the powerful nematicidal activity of a series of electron-deficient alkynes against the root-knot nematode Meloidogyne incognita (Kofoid and White) Chitwood. Interestingly, we found that the conjugation of electron-withdrawing carbonyl groups to an alkyne triple bond was extremely proficient in inducing nematode paralysis and death. In particular, dimethylacetylenedicarboxylate (10), 3-butyn-2-one (1), and methyl propiolate (4), with EC50/48 h of 1.54 ± 0.16, 2.38 ± 0.31, and 2.83 ± 0.28 mg/L, respectively, were shown to be the best tested compounds. Earlier studies reported on the ability of alkynoic esters and alkynones to induce a chemoselective cysteine modification of unprotected peptides. Thus, also following our previous findings on the impairment of vacuolar-type proton translocating ATPase functionality by activated carbonyl derivatives, we speculate that the formation of a vinyl sulfide linkage might be responsible for the nematicidal activity of the presented electron-deficient alkynes.


Assuntos
Alcinos/química , Antinematódeos/química , Antinematódeos/farmacologia , Tylenchoidea/efeitos dos fármacos , Animais , Estrutura Molecular , Tylenchoidea/crescimento & desenvolvimento
10.
J Agric Food Chem ; 68(34): 9100-9109, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786872

RESUMO

Plant root chemistry is altered by the parasitism of plant-parasitic nematodes (PPN). Here, we investigated the influence of the infective stage juveniles (J2) of Meloidogyne javanica in inducing tomato (Solanum lycopersicum) root volatiles and chemotactic effect on conspecifics. In olfactometer assays, J2 avoided the roots of 2-day infected plants but preferred 7-day-infected tomato compared to healthy plants. Chemical analysis showed a 2-7-fold increase in the amounts of monoterpenes emitted from tomato roots infected with M. javanica relative to healthy roots. In further bioassays, the monoterpenes ß-pinene, (+)-(2)-carene, α-phellandrene, and ß-phellandrene differentially attracted (51-87%) J2 relative to control. Concurrent reduction and increase in the levels of methyl salicylate and (Z)-methyl dihydrojasmonate, respectively, in the root volatiles reduced J2 responses. These results demonstrate that the host plant can alter its root volatile composition to inhibit PPN attack. The observed plant-produced inhibition of J2 warrants further investigation as a potential management tool for growers.


Assuntos
Doenças das Plantas/parasitologia , Raízes de Plantas/química , Solanum lycopersicum/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/química , Animais , Interações Hospedeiro-Parasita , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Tylenchoidea/fisiologia , Compostos Orgânicos Voláteis/metabolismo
11.
Sci Rep ; 10(1): 12710, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728104

RESUMO

Plant-parasitic nematodes pose a significant threat to agriculture causing annual yield losses worth more than 100 billion US$. Nematode control often involves the use of nematicides, but many of them including non-selective fumigants have been phased out, particularly due to ecotoxicological concerns. Thus new control strategies are urgently needed. Spirotetramat (SPT) is used as phloem-mobile systemic insecticide targeting acetyl-CoA carboxylase (ACC) of pest insects and mites upon foliar application. However, in nematodes the mode of action of SPT and its effect on their development have not been studied so far. Our studies revealed that SPT known to be activated in planta to SPT-enol acts as a developmental inhibitor of the free-living nematode Caenorhabditis elegans and the plant-parasitic nematode Heterodera schachtii. Exposure to SPT-enol leads to larval arrest and disruption of the life cycle. Furthermore, SPT-enol inhibits nematode ACC activity, affects storage lipids and fatty acid composition. Silencing of H. schachtii ACC by RNAi induced similar phenotypes and thus mimics the effects of SPT-enol, supporting the conclusion that SPT-enol acts on nematodes by inhibiting ACC. Our studies demonstrated that the inhibition of de novo lipid biosynthesis by interfering with nematode ACC is a new nematicidal mode of action addressed by SPT, a well-known systemic insecticide for sucking pest control.


Assuntos
Acetil-CoA Carboxilase/genética , Antinematódeos/farmacologia , Compostos Aza/farmacologia , Cromadoria/crescimento & desenvolvimento , Compostos de Espiro/farmacologia , Acetil-CoA Carboxilase/antagonistas & inibidores , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Cromadoria/efeitos dos fármacos , Cromadoria/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Estágios do Ciclo de Vida/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/metabolismo
12.
Toxins (Basel) ; 12(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408606

RESUMO

To date, there has been great demand for ecofriendly nematicides with beneficial properties to the nematode hosting plants. Great efforts are made towards the chemical characterization of botanical extracts exhibiting nematicidal activity against Meloidogyne spp., but only a small percentage of these data are actually used by the chemical industry in order to develop new formulates. On the other hand, the ready to use farmer produced water extracts based on edible plants could be a sustainable and economic solution for low income countries. Herein, we evaluate the nematicidal potential of Stevia rebaudiana grown in Greece against Meloidogyne incognita and Meloidogyne javanica, two most notorious phytoparasitic nematode species causing great losses in tomato cultivation worldwide. In an effort to recycle the plant's remnants, after leaves selection for commercial use, we use both leaves and wooden stems to test for activity. In vitro tests demonstrate significant paralysis activity of both plant parts' water extracts against the second-stage juvenile (J2) of the parasites; while, in vivo bioassays demonstrated the substantial efficacy of leaves' powder (95% at 1 g kg-1) followed by stems. Interestingly, the incorporation of up to 50 g powder/kg of soil is not phytotoxic, which demonstrates the ability to elevate the applied concentration of the nematicidal stevia powder under high inoculum level. Last but not least, the chemical composition analyses using cutting edge analytical methodologies, demonstrated amongst components molecules of already proven nematicidal activity, was exemplified by several flavonoids and essential oil components. Interestingly, and to our knowledge, for the flavonoids, morin and robinin, the anthocyanidin, keracyanin, and a napthalen-2-ol derivative is their first report in Stevia species.


Assuntos
Antinematódeos/farmacologia , Agentes de Controle Biológico/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Solanum lycopersicum/parasitologia , Stevia , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Relação Dose-Resposta a Droga , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta/parasitologia , Raízes de Plantas/parasitologia , Caules de Planta/parasitologia , Stevia/química , Tylenchoidea/crescimento & desenvolvimento
13.
J Agric Food Chem ; 68(24): 6502-6510, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32463695

RESUMO

Banana plants (Musa spp.) are susceptible to infection by many plant-parasitic nematodes, including Meloidogyne incognita. In this study, a mixed fermentation broth of chicken manure (CM) and cassava ethanol wastewater (CEW) was used to inhibit M. incognita by reducing egg hatching and by having a lethal effect on second-stage juvenile nematodes (J2s). It also alleviated nematode damage and promoted banana plant growth. Using gas chromatography-mass spectrometry (GC-MS), we identified methyl palmitate and methyl stearate as bioactive compounds. These bioactive compounds repelled J2s and inhibited egg hatching; reduced root galls, egg masses, and nematodes in soil; and downregulated the essential parasitic nematode genes Mi-flp-18 and 16D10. A Caenorhabditis elegans offspring assay showed that low concentrations of the fermentation broth, methyl palmitate, and methyl stearate were safe for its life cycle. This study explored the effective and environmentally safe strategies for controlling root-knot nematodes.


Assuntos
Antinematódeos/farmacologia , Musa/parasitologia , Palmitatos/farmacologia , Doenças das Plantas/parasitologia , Estearatos/farmacologia , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/química , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Palmitatos/química , Raízes de Plantas/parasitologia , Estearatos/química , Tylenchoidea/crescimento & desenvolvimento
14.
BMC Microbiol ; 20(1): 48, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32126973

RESUMO

BACKGROUND: The root-knot nematode Meloidogyne graminicola has become a serious threat to rice production as a result of the cultivation changes from transplanting to direct seeding. The nematicidal activity of Aspergillus welwitschiae have been investigated in vitro, and the disease control efficacy of the active compound has been evaluated under greenhouse and field conditions. RESULTS: The active compound αß-dehydrocurvularin (αß-DC), isolated by nematicidal assay-directed fractionation, showed significant nematicidal activity against M. graminicola, with a median lethal concentration (LC50) value of 122.2 µg mL- 1. αß-DC effectively decreased the attraction of rice roots to nematodes and the infection of nematodes and also suppressed the development of nematodes under greenhouse conditions. Moreover, αß-DC efficiently reduced the root gall index under field conditions. CONCLUSIONS: To our knowledge, this is the first report to describe the nematicidal activity of αß-DC against M. graminicola. The results obtained under greenhouse and field conditions provide a basis for developing commercial formulations from αß-DC to control M. graminicola in the future.


Assuntos
Antiparasitários/farmacologia , Aspergillus/química , Oryza/crescimento & desenvolvimento , Tylenchoidea/efeitos dos fármacos , Zearalenona/análogos & derivados , Animais , Antiparasitários/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia , Feminino , Efeito Estufa , Estrutura Molecular , Oryza/parasitologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Zearalenona/química , Zearalenona/isolamento & purificação , Zearalenona/farmacologia
15.
Molecules ; 25(3)2020 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050419

RESUMO

Root-knot nematode diseases cause severe yield and economic losses each year in global agricultural production. Virgibacillus dokdonensis MCCC 1A00493, a deep-sea bacterium, shows a significant nematicidal activity against Meloidogyne incognita in vitro. However, information about the active substances of V. dokdonensis MCCC 1A00493 is limited. In this study, volatile organic compounds (VOCs) from V. dokdonensis MCCC 1A00493 were isolated and analyzed through solid-phase microextraction and gas chromatography-mass spectrometry. Four VOCs, namely, acetaldehyde, dimethyl disulfide, ethylbenzene, and 2-butanone, were identified, and their nematicidal activities were evaluated. The four VOCs had a variety of active modes on M. incognita juveniles. Acetaldehyde had direct contact killing, fumigation, and attraction activities; dimethyl disulfide had direct contact killing and attraction activities; ethylbenzene had an attraction activity; and 2-butanone had a repellent activity. Only acetaldehyde had a fumigant activity to inhibit egg hatching. Combining this fumigant activity against eggs and juveniles could be an effective strategy to control the different developmental stages of M. incognita. The combination of direct contact and attraction activities could also establish trapping and killing strategies against root-knot nematodes. Considering all nematicidal modes or strategies, we could use V. dokdonensis MCCC 1A00493 to set up an integrated strategy to control root-knot nematodes.


Assuntos
Antinematódeos/isolamento & purificação , Doenças das Plantas/prevenção & controle , Tylenchoidea/efeitos dos fármacos , Virgibacillus/química , Compostos Orgânicos Voláteis/isolamento & purificação , Acetaldeído/isolamento & purificação , Acetaldeído/farmacologia , Animais , Antinematódeos/farmacologia , Organismos Aquáticos , Derivados de Benzeno/isolamento & purificação , Derivados de Benzeno/farmacologia , Butanonas/isolamento & purificação , Butanonas/farmacologia , Quimiotaxia/efeitos dos fármacos , Dissulfetos/isolamento & purificação , Dissulfetos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/parasitologia , Contagem de Ovos de Parasitas , Doenças das Plantas/parasitologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Microextração em Fase Sólida , Tylenchoidea/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/farmacologia
16.
J Agric Food Chem ; 68(2): 523-529, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31908169

RESUMO

The present work sought to contribute to the development of new nematicides. Benzaldehydes were initially converted to nitrile oxides that underwent 1,3-dipolar cycloaddition reactions with methyl acrylate to generate 4,5-dihydroisoxazoles. In in vitro tests, methyl 3-phenyl-4,5-dihydroisoxazole-5-carboxylate (1) and methyl 3-(4-chlorophenyl)-4,5-dihydroisoxazole-5-carboxylate (4) increased the mortality of Meloidogyne exigua and Meloidogyne incognita second-stage juveniles (J2). Compounds 1 and 4 presented necessary concentrations of 398 and 501 µg mL-1, respectively, to kill 50% of M. incognita J2 (LC50 values), while the value for carbofuran (positive control) was 168 µg mL-1. In in vivo tests, compounds 1 and 4 reduced the number of M. incognita galls in tomato roots by 70 and 40%, respectively, and the number of eggs by 89 and 44%. Using an in silico approach, we showed that compounds 1 and 4 were toxic to the nematodes by binding to the allosteric binding sites of the agonist-binding domains of the nematode nicotinic acetylcholine receptors. These results opened up possibilities for further investigations aimed at developing novel commercial nematicides.


Assuntos
Antinematódeos/toxicidade , Isoxazóis/toxicidade , Doenças das Plantas/parasitologia , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/química , Simulação por Computador , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Isoxazóis/química , Solanum lycopersicum/parasitologia , Raízes de Plantas/parasitologia , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/metabolismo
17.
Int J Mol Sci ; 20(21)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684025

RESUMO

MicroRNAs (miRNAs) are an extensive class of small regulatory RNAs. Knowing the specific expression and functions of miRNAs during root-knot nematode (RKN) (Meloidogyne incognita) development could provide fundamental information about RKN development as well as a means to design new strategies to control RKN infection, a major problem of many important crops. Employing high throughput deep sequencing, we identified a total of 45 conserved and novel miRNAs from two developmental stages of RKN, eggs and J2 juveniles, during their infection of cotton (Gossypium hirsutum L.). Twenty-one of the miRNAs were differentially expressed between the two stages. Compared with their expression in eggs, two miRNAs were upregulated (miR252 and miRN19), whereas 19 miRNAs were downregulated in J2 juveniles. Nine miRNAs were expressed at high levels, with >1000 reads per mapped million (RPM) sequenced reads in both eggs and J2 juveniles (miR1, miR124, miR2-3p, miR252, miR279, miR57-5p, miR7904, miR87, and miR92). Three miRNAs were only expressed in eggs (miR4738, miRN3, and miRN5). These differentially expressed miRNAs may control RKN development by regulating specific protein-coding genes in pathways associated with RKN growth and development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , RNA de Helmintos/genética , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Tylenchoidea/genética , Animais , Perfilação da Expressão Gênica/métodos , Proteínas de Helminto/genética , Estágios do Ciclo de Vida/genética , Transdução de Sinais/genética , Tylenchoidea/crescimento & desenvolvimento
18.
Int J Parasitol ; 49(13-14): 1061-1073, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31733196

RESUMO

Meloidogyne incognita is a polyphagous plant-parasitic nematode that causes considerable yield loss in agricultural and horticultural crops. The management options available for M. incognita are extremely limited. Here we identified and characterised a M. incognita homolog of Caenorhabditis elegans sterol-binding protein (Mi-SBP-1), a transcriptional regulator of several lipogenesis pathway genes, and used RNA interference-mediated gene silencing to establish its utility as a target for the management of M. incognita. Mi-sbp-1 is predicted to be a helix-loop-helix domain containing DNA binding transcription factor, and is present in the M. incognita genome in three copies. The RNA-Seq analysis of Mi-sbp-1 silenced second stage juveniles confirmed the key role of this gene in lipogenesis regulation in M. incognita. In vitro and host-induced gene silencing of Mi-sbp-1 in M. incognita second stage juveniles resulted in loss of nematodes' ability to utilise the stored fat reserves, slower nematode development, and reduced parasitism on adzuki bean and tobacco plants. The multiplication factor for the Mi-sbp-1 silenced nematodes on adzuki bean plants was reduced by 51% compared with the control nematodes in which Mi-sbp-1 was not silenced. Transgenic expression of the double-stranded RNA construct of the Mi-sbp-1 gene in tobacco plants caused 40-45% reduction in M. incognita multiplication, 30-43.8% reduction in the number of egg masses, and 33-54% reduction in the number of eggs per egg mass compared with the wild type control plants. Our results confirm that Mi-sbp-1 is a key regulator of lipogenesis in M. incognita and suggest that it can be used as an effective target for its management. The findings of this study can be extended to develop methods to manage other economically important parasitic nematodes.


Assuntos
Lipogênese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tylenchoidea/enzimologia , Tylenchoidea/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Inativação Gênica , Doenças das Plantas/parasitologia , Nicotiana/parasitologia , Resultado do Tratamento , Tylenchoidea/crescimento & desenvolvimento , Vigna/parasitologia
19.
Dokl Biochem Biophys ; 488(1): 350-353, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768858

RESUMO

A study of the processes of lipid peroxidation and the activity of the peroxidase enzyme, as well as photosynthetic pigments in susceptible tomato plants treated with salicylic acid (SA), during infection with the root-knot nematode Meloidogyneincognita. It was shown that, in the roots of SA-treated plants, the activity of lipid peroxidation is higher compared to the untreated plants, especially in the case of nematode invasion. A significant increase in the activity of lipid peroxidation in SA-treated invasive plants compared with untreated was noted during the transition of larvae to the sedentary stage and the beginning of the formation of feeding areas-giant cells (3-5 days after invasion). This, apparently, contributes to the inhibition of the development of the parasite and the reduction of plant infection and also indicates the involvement of oxidative processes in the mechanism of the induced resistance of plants to root-knot nematodes. In the SA-treated plants, the qualitative and quantitative composition of photosynthetic pigments, disturbed by invasion, was restored and corresponded to the control level.


Assuntos
Ácido N-Acetilneuramínico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Doenças das Plantas/parasitologia , Raízes de Plantas , Solanum lycopersicum , Tylenchoidea/crescimento & desenvolvimento , Animais , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia
20.
Int J Parasitol ; 49(11): 837-841, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31525369

RESUMO

Meloidogyne incognita is an economically important plant parasitic nematode. Here we demonstrate substantial variation in the invasiveness of four M. incognita populations relative to tomato. Infective (J2) stage transcriptomes reveal significant variation in the expression of protein-coding and non-coding RNAs between populations. We identify 33 gene expression markers that correlate with invasiveness, and which map to genes with predicted roles in host finding and invasion, including neuropeptides, ion channels, G Protein-Coupled Receptors, cell wall-degrading enzymes and microRNAs. These data demonstrate a surprising diversity in microRNA complements between populations, and identify gene expression markers for invasiveness of M. incognita, to our knowledge for the first time.


Assuntos
Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Transcriptoma , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/patogenicidade , Animais , Perfilação da Expressão Gênica , Proteínas de Helminto/genética , MicroRNAs/análise , Tylenchoidea/genética , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA