Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(1): 57-74, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36106799

RESUMO

Global warming affects the abiotic and biotic growth environment of plants, including the spread of fungal diseases such as Dutch elm disease (DED). Dutch elm disease-resistance of different Ulmus species varies, but how this is reflected in leaf-level physiological pathogen responses has not been investigated. We studied the impacts of mechanical injury alone and mechanical injury plus inoculation with the DED-causing pathogens Ophiostoma novo-ulmi subsp. novo-ulmi and O. novo-ulmi subsp. americana on Ulmus glabra, a more vulnerable species, and U. laevis, a more resistant species. Plant stress responses were evaluated for 12 days after stress application by monitoring leaf net CO2 assimilation rate (A), stomatal conductance (gs), ratio of ambient to intercellular CO2 concentration (Ca/Ci) and intrinsic water-use efficiency (A/gs), and by measuring biogenic volatile (VOC) release by plant leaves. In U. glabra and U. laevis, A was not affected by time, stressors or their interaction. Only in U. glabra, gs and Ca/Ci decreased in time, yet recovered by the end of the experiment. Although the emission compositions were affected in both species, the stress treatments enhanced VOC emission rates only in U. laevis. In this species, mechanical injury especially when combined with the pathogens increased the emission of lipoxygenase pathway volatiles and dimethylallyl diphosphate and geranyl diphosphate pathway volatiles. In conclusion, the more resistant species U. laevis had a more stable photosynthesis, but stronger pathogen-elicited volatile response, especially after inoculation by O. novo-ulmi subsp. novo-ulmi. Thus, stronger activation of defenses might underlay higher DED-resistance in this species.


Assuntos
Ophiostoma , Ulmus , Compostos Orgânicos Voláteis , Ulmus/fisiologia , Dióxido de Carbono , Doenças das Plantas/microbiologia , Ophiostoma/fisiologia , Fotossíntese
2.
Tree Physiol ; 42(12): 2534-2545, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35866300

RESUMO

Several studies have shown that petiole xylem structure could be an important predictor of leaf gas exchange capacity, but the question of how petiole xylem structure relates to leaf gas exchange under different environment conditions remains unresolved. Moreover, knowledge of the amount of leaf gas exchange and structural variation that exists within a single species is also limited. In this study, we investigated the intraspecies coordination of leaf gas exchange and petiole xylem traits in 2-year-old seedlings of Ulmus laevis Pall. under well-watered and drought conditions. It was found that all studied petiole xylem traits of the elm seedlings were positively correlated with each other. This shows that the development of petiole xylem structure is internally well-coordinated. Nevertheless, the lower correlation coefficients between some petiole xylem traits indicate that the coordination is also individually driven. Drought stress reduced all studied leaf gas exchange traits and significantly increased intraspecies variation. In addition, drought stress also shifted the relationships between physiological traits and exhibited more structure-function relationships. This indicates the importance of petiole xylem structure in dictating water loss during drought stress and could partly explain the inconsistencies between leaf structure-function relationships studied under optimal conditions. Although several structure-function traits were related, the wide ranges of correlation coefficients indicate that the internal coordination of these traits substantially differs between individual elm seedlings. These findings are very important in the context of expected climatic change, as some degree of intraspecies variation in structure-function relationships could ensure the survival of some individuals under different environmental conditions.


Assuntos
Ulmus , Água , Água/fisiologia , Plântula , Ulmus/fisiologia , Xilema/fisiologia , Secas , Folhas de Planta/fisiologia
3.
Tree Physiol ; 42(10): 2086-2099, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35708521

RESUMO

One century after the first report of Dutch elm disease (DED), there is still no practical solution for this problem threatening European and American elms (Ulmus spp.). The long breeding cycles needed to select resistant genotypes and the lack of efficient treatments keep disease incidence at high levels. In this work, the expression of defense-related genes to the causal agent of DED, Ophiostoma novo-ulmi Brasier, was analyzed in in vitro clonal plantlets from two DED-resistant and two DED-susceptible Ulmus minor Mill. trees. In addition, the effect of the inoculation of an endophytic pink-pigmented yeast (Cystobasidium sp.) on the plant's defense system was tested both individually and in combination with O. novo-ulmi. The multifactorial nature of the resistance to DED was confirmed, as no common molecular response was found in the two resistant genotypes. However, the in vitro experimental system allowed discrimination of the susceptible from the resistant genotypes, showing higher levels of oxidative damage and phenolic compounds in the susceptible genotypes after pathogen inoculation. Inoculation of the endophyte before O. novo-ulmi attenuated the plant molecular response induced by the pathogen and moderated oxidative stress levels. Niche competition, endophyte-pathogen antagonism and molecular crosstalk between the host and the endophyte are discussed as possible mechanisms of stress reduction. In sum, our results confirm the complex and heterogeneous nature of DED resistance mechanisms and highlight the possibility of using certain endophytic yeasts as biological tools to improve tree resilience against biotic stress.


Assuntos
Ulmus , Endófitos , Doenças das Plantas , Saccharomyces cerevisiae , Árvores , Ulmus/fisiologia
4.
New Phytol ; 235(3): 907-922, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491493

RESUMO

A trait coordination network is constructed through intercorrelations of functional traits, which reflect trait-based adaptive strategies. However, little is known about how these networks change across spatial scales, and what drivers and mechanisms mediate this change. This study bridges that gap by integrating functional traits related to plant carbon gain and water economy into the coordination network of Siberian elm (Ulmus pumila), a eurybiont that survives along a 3800 km environmental gradient from humid forest to arid desert. Our results demonstrated that both stomatal density and stomatal size reached a physiological threshold at which adjustments in these traits were not sufficient to cope with the increased environmental stress. Network analysis further revealed that the mechanism for overcoming this threshold, the stomatal opening ratio, gratio , was represented by the highest values for centrality across different spatial scales, and therefore mediated the changes in the trait coordination network along environmental gradients. The mediating roles manifested as creating the highest maximum theoretical stomatal conductance (gsmax ) but lowest possible gratio for pathogen defense in humid regions, while maintaining the gratio 'sweet spot' (c. 20% in this region) for highest water use efficiency in semihumid regions, and having the lowest gsmax and highest gratio for gas exchange and leaf cooling in arid regions. These results suggested that the stomatal traits related to control of stomatal movement play fundamental roles in balancing gas exchange, leaf cooling, embolism resistance and pathogen defense. These insights will allow more accurate model parameterization for different regions, and therefore better predictions of species' responses to global change.


Assuntos
Estômatos de Plantas , Ulmus , Adaptação Fisiológica , Fenótipo , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Ulmus/fisiologia , Água/fisiologia
5.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922506

RESUMO

Ulmus pumila L. is an excellent afforestation and biofuel tree that produces high-quality wood, rich in starch. In addition, U. pumila is highly adaptable to adverse environmental conditions, which is conducive to its utilization for vegetating saline soils. However, little is known about the physiological responses and transcriptional regulatory network of U. pumila under salt stress. In this study, we exposed five main cultivars in saline-alkali land (Upu2, 5, 8, 11, and 12) to NaCl stress. Of the five cultivars assessed, Upu11 exhibited the highest salt resistance. Growth and biomass accumulation in Upu11 were promoted under low salt concentrations (<150 mM). However, after 3 months of continuous treatment with 150 mM NaCl, growth was inhibited, and photosynthesis declined. A transcriptome analysis conducted after 3 months of treatment detected 7009 differentially expressed unigenes (DEGs). The gene annotation indicated that these DEGs were mainly related to photosynthesis and carbon metabolism. Furthermore, PHOTOSYNTHETIC ELECTRON TRANSFERH (UpPETH), an important electron transporter in the photosynthetic electron transport chain, and UpWAXY, a key gene controlling amylose synthesis in the starch synthesis pathway, were identified as hub genes in the gene coexpression network. We identified 25 and 62 unigenes that may interact with PETH and WAXY, respectively. Overexpression of UpPETH and UpWAXY significantly increased the survival rates, net photosynthetic rates, biomass, and starch content of transgenic Arabidopsis plants under salt stress. Our findings clarify the physiological and transcriptional regulators that promote or inhibit growth under environmental stress. The identification of salt-responsive hub genes directly responsible for photosynthesis and starch synthesis or metabolism will provide targets for future genetic improvements.


Assuntos
Redes Reguladoras de Genes , Fotossíntese , Proteínas de Plantas/metabolismo , Estresse Salino , Tolerância ao Sal , Amido/biossíntese , Ulmus/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Amido/genética , Ulmus/genética
6.
J Plant Physiol ; 261: 153420, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33906025

RESUMO

Long-lived trees benefit from fungal symbiotic interactions in the adaptation to constantly changing environments. Previous studies revealed a core fungal endobiome in Ulmus minor which has been suggested to play a critical role in plant functioning. Here, we hypothesized that these core endophytes are involved in abiotic stress tolerance. To test this hypothesis, two core endophytes (Cystobasidiales and Chaetothyriales) were inoculated into in vitro U. minor plantlets, which were further subjected to drought. Given that elm genotypes resistant to Dutch elm disease (DED) tend to show higher abiotic stress tolerance than susceptible ones, we tested the endophyte effect on two DED-resistant and two DED-susceptible genotypes. Drought stress was moderate; endophyte presence attenuated stomata closure in response to drought in one genotype but this stress did not affect plant survival. In comparison, long-term in-vitro culture proved stressful to mock-inoculated plants, especially in DED-susceptible genotypes. Interestingly, no endophyte-inoculated plant died during the experiment, as compared to high mortality in mock-inoculated plants. In surviving plants, endophyte presence stimulated root and shoot growth, photosynthetic rates, antioxidant activity and molecular changes involving auxin-signaling. These changes and the observed endophyte stability in elm tissues throughout the experiment suggest endophytes are potential tools to improve survival and stress tolerance of DED-resistant elms in elm restoration programs.


Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Endófitos/fisiologia , Fotossíntese , Raízes de Plantas/crescimento & desenvolvimento , Plântula/fisiologia , Ulmus/fisiologia , Secas , Genótipo , Longevidade/fisiologia , Doenças das Plantas/genética , Raízes de Plantas/microbiologia , Ulmus/crescimento & desenvolvimento , Ulmus/microbiologia
7.
Sci Rep ; 10(1): 16281, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004864

RESUMO

Plants respond to insect eggs with transcriptional changes, resulting in enhanced defence against hatching larvae. However, it is unknown whether phylogenetically distant plant species show conserved transcriptomic responses to insect eggs and subsequent larval feeding. We used Generally Applicable Gene set Enrichment (GAGE) on gene ontology terms to answer this question and analysed transcriptome data from Arabidopsis thaliana, wild tobacco (Nicotiana attenuata), bittersweet nightshade (Solanum dulcamara) and elm trees (Ulmus minor) infested by different insect species. The different plant-insect species combinations showed considerable overlap in their transcriptomic responses to both eggs and larval feeding. Within these conformable responses across the plant-insect combinations, the responses to eggs and feeding were largely analogous, and about one-fifth of these analogous responses were further enhanced when egg deposition preceded larval feeding. This conserved transcriptomic response to eggs and larval feeding comprised gene sets related to several phytohormones and to the phenylpropanoid biosynthesis pathway, of which specific branches were activated in different plant-insect combinations. Since insect eggs and larval feeding activate conserved sets of biological processes in different plant species, we conclude that plants with different lifestyles share common transcriptomic alarm responses to insect eggs, which likely enhance their defence against hatching larvae.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Insetos , Nicotiana/fisiologia , Óvulo , Defesa das Plantas contra Herbivoria , Solanum/fisiologia , Ulmus/fisiologia , Animais , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Larva , Lepidópteros , Defesa das Plantas contra Herbivoria/fisiologia , Solanum/metabolismo , Nicotiana/metabolismo , Transcriptoma/fisiologia , Ulmus/metabolismo
8.
Environ Sci Pollut Res Int ; 27(3): 3350-3360, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31845267

RESUMO

Japanese elm (Ulmus davidiana var. japonica) is a native species in cool-temperate forests in Japan. We investigated growth, physiological reactions, and leaf defense capacity of Japanese elm seedlings under nitrogen (N) loading (45.3 kg N ha-1 year-1) and seasonal insect dynamics in a free-air ozone (O3)-enriched environment (about 54.5 nmol O3 mol-1) over a growing season. Higher leaf N content and lower condensed tannin content in the presence of N loading and lower condensed tannin content in elevated O3 were observed, suggesting that both N loading and elevated O3 decreased the leaf defense capacity and that N loading further enhanced the leaf quality as food resource of insect herbivores. Two major herbivores were observed on the plants, elm leaf beetle (Pyrrhalta maculicollis) and elm sawfly (Arge captiva). The peak number of observed insects was decreased by N loading. Visible foliar injury caused by N loading might directly induce the reduction of number of the observed elm sawfly individuals. While elevated O3 slightly suppressed the chemical defense capacity, significantly lower number of elm leaf beetle was observed in elevated O3. We conclude that N loading and elevated O3 can alter not only the leaf defense capacity of Japanese elm seedlings but also the dynamics of elm leaf beetle and sawfly herbivores.


Assuntos
Ozônio , Folhas de Planta/fisiologia , Ulmus/fisiologia , Adaptação Fisiológica , Animais , Herbivoria , Insetos , Japão , Nitrogênio , Plântula
9.
J Exp Bot ; 69(21): 5141-5155, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053069

RESUMO

Seed ageing is a major problem in the conservation of germplasm resources. The involvement of possible signalling molecules during seed deterioration needs to be identified. In this study, we confirmed that nitric oxide (NO), a key signalling molecule in plants, plays a positive role in the resistance of elm seeds to deterioration. To explore which metabolic pathways were affected by NO, an untargeted metabolomic analysis was conducted, and 163 metabolites could respond to both NO and the ageing treatment. The primary altered pathways include glutathione, methionine, and carbohydrate metabolism. The genes involved in glutathione and methionine metabolism were up-regulated by NO at the transcriptional level. Using a biotin switch method, proteins with an NO-dependent post-translational modification were screened during seed deterioration, and 82 putative S-nitrosylated proteins were identified. Eleven of these proteins were involved in carbohydrate metabolism, and the activities of the three enzymes were regulated by NO. In combination, the results of the metabolomic and S-nitrosoproteomic studies demonstrated that NO could activate glycolysis and inhibit the pentose phosphate pathway. In summary, the combination of these results demonstrated that NO could modulate carbohydrate metabolism at the post-translational level and regulate glutathione and methionine metabolism at the transcriptional level. It provides initial insights into the regulatory mechanisms of NO in seed deterioration.


Assuntos
Morte Celular/fisiologia , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Ulmus/fisiologia , Envelhecimento , Sementes/fisiologia
10.
Environ Entomol ; 47(4): 840-847, 2018 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-29672728

RESUMO

Gall formation is induced by an insect, which changes normal plant development and results in the formation of a new organ, following distinct stages of metabolic and developmental alterations. Research on mechanisms of recognition and responses to biotic stress may help to understand the interactions between galling aphids and their host plants. In this study, Tetraneura ulmi L. (Hemiptera: Eriosomatinae) galls and Ulmus pumila L. (Rosales: Ulmaceae) leaves were used as a model. Concentrations of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances, electrolyte leakage, as well as the activity of ascorbate peroxidase, guaiacol peroxidase, and catalase (CAT) were determined in galls and two parts of galled leaves (with and without visible damage). Biochemical analyses were performed at three stages of gall development: initial, fully developed, and mature galls. A slight increment in H2O2 content with a strong enhancement of ascorbate peroxidase and CAT activities were observed in galls and galled leaves in the first stage. In subsequent stages of gall development, a progressing increase in H2O2 production and cell membrane damage was associated with declining antioxidant enzyme activities, especially in gall tissues. The stages of gall development are likely to be part of cell death triggered by aphid feeding. It seems that the gall is the result of a biochemical struggle between the host plant and the gall inducer.


Assuntos
Antioxidantes/metabolismo , Hemípteros/fisiologia , Herbivoria , Estresse Oxidativo , Ulmus/fisiologia , Animais , Hemípteros/crescimento & desenvolvimento , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Tumores de Planta/etiologia , Ulmus/enzimologia
11.
Glob Chang Biol ; 24(8): 3537-3545, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29460318

RESUMO

Autumn phenology remains a relatively neglected aspect in climate change research, which hinders an accurate assessment of the global carbon cycle and its sensitivity to climate change. Leaf coloration, a key indicator of the growing season end, is thought to be triggered mainly by high or low temperature and drought. However, how the control of leaf coloration is split between temperature and drought is not known for many species. Moreover, whether growing season and autumn temperatures interact in influencing the timing of leaf coloration is not clear. Here, we revealed major climate drivers of leaf coloration dates and their interactions using 154 phenological datasets for four winter deciduous tree species at 89 stations, and the corresponding daily mean/minimum air temperature and precipitation data across China's temperate zone from 1981 to 2012. Results show that temperature is more decisive than drought in causing leaf coloration, and the growing season mean temperature plays a more important role than the autumn mean minimum temperature. Higher growing season temperature and lower autumn minimum temperature would induce earlier leaf coloration date. Moreover, the mean temperature over the growing season correlates positively with the autumn minimum temperature. This implies that growing season mean temperature may offset the requirement of autumn minimum temperature in triggering leaf coloration. Our findings deepen the understanding of leaf coloration mechanisms in winter deciduous trees and suggest that leaf life-span control depended on growing season mean temperature and autumn low temperature control and their interaction are major environmental cues. In the context of climate change, whether leaf coloration date advances or is delayed may depend on intensity of the offset effect of growing season temperature on autumn low temperature.


Assuntos
Mudança Climática , Secas , Temperatura , Árvores/fisiologia , China , Cor , Pigmentação , Folhas de Planta/fisiologia , Populus/fisiologia , Robinia/fisiologia , Salix/fisiologia , Estações do Ano , Ulmus/fisiologia
12.
Tree Physiol ; 38(2): 252-262, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040781

RESUMO

Dutch elm disease (DED) is a vascular disease that has killed over 1 billion elm trees. The pathogen spreads throughout the xylem network triggering vessel blockage, which results in water stress, tissue dehydration and extensive leaf wilting in susceptible genotypes. We investigated the differences between four Ulmus minor Mill. clones of contrasting susceptibility to Ophiostoma novo-ulmi Brasier regarding morphological, anatomical and physiological traits affecting water transport, in order to gain a better understanding of the mechanisms underlying DED susceptibility. We analyzed the differential response to water shortage and increased air vapor pressure deficit (VPD) to investigate whether resistance to water stress might be related to DED tolerance. Sixteen plants per clone, aged 2 years, were grown inside a greenhouse under differential watering. Stomatal conductance was measured under ambient and increased VPD. Growth, bark water content and stem hydraulic and anatomical parameters were measured 22 days after starting differential watering. Vessel lumen area, lumen fraction and hydraulic conductance were highest in susceptible clones. Stomatal conductance was lowest under low VPD and decreased faster under increased VPD in resistant clones. We found a negative relationship between the decrease in stomatal conductance at increased VPD and specific hydraulic conductance, revealing a narrower hydraulic margin for sustaining transpiration in resistant clones. The effect of water shortage was greater on radial stem growth than on leaf area, which could be explained through an extensive use of capacitance water to buffer xylem water potential. Water shortage reduced stomatal conductance and vessel lumen area. Bark water content under conditions of water shortage only decreased in susceptible clones. Higher hydraulic constraints to sap flow in resistant clones may determine higher stomatal sensitivity to VPD and so contribute to DED resistance by limiting pathogen expansion and reducing water loss and metabolic impairment in cells involved in fighting against infection.


Assuntos
Antibiose , Ophiostoma/fisiologia , Ulmus/fisiologia , Casca de Planta/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Ulmus/microbiologia , Água/metabolismo
13.
Tree Physiol ; 37(6): 815-826, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369592

RESUMO

Plant surface properties influence solid-liquid interactions and matter exchange between the organs and their surrounding environment. In the case of fruits, surface processes may be of relevance for seed production and dispersal. To gain insight into the relationship between surface structure, chemical composition and function of aerial reproductive organs, we performed diverse experiments with the dry, winged fruits, or samaras, of Ulmus laevis Pall. and Ulmus minor Mill. both at the time of full maturity (green samaras) and of samara dispersal (dry samaras). Samaras of both elm species showed positive photosynthetic rates and absorbed water through their epidermal surfaces. The surface wettability, free energy, polarity and solubility parameter were lower in U. laevis than in U. minor and decreased for dry samaras in both species. Ulmus laevis samaras had a high degree of surface nano-roughness mainly conferred by cell wall folds containing pectins that substantially increased after hydration. The samaras in this species also had a thicker cuticle that could be isolated by enzymatic digestion, whereas that of U. minor samaras had higher amounts of soluble lipids. Dry samaras of U. laevis had higher floatability and lower air sustentation than those of U. minor. We concluded that samaras contribute to seed development by participating in carbon and water exchange. This may be especially important for U. minor, whose samaras develop before leaf emergence. The trichomes present along U. laevis samara margin may enhance water absorption and samara floatability even in turbulent waters. In general, U. minor samaras show traits that are consistent with a more drought tolerant character than U. laevis samaras, in line with the resources available both at the tree and ecosystem level for these species. Samara features may additionally reflect different adaptive strategies for seed dispersal and niche differentiation between species, by favoring hydrochory for U. laevis and anemochory for U. minor.


Assuntos
Dispersão de Sementes , Sementes/fisiologia , Ulmus/fisiologia , Propriedades de Superfície
14.
Plant Physiol Biochem ; 114: 72-87, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28279897

RESUMO

Reactive oxygen species (ROS)-related mitochondrial dysfunction is considered to play a vital role in seed deterioration. However, the detailed mechanisms remain largely unknown. To address this, a comparison of mitochondrial proteomes was performed, and we identified several proteins that changed in abundance with accompanying ROS eruption and mitochondrial aggregation and diffusion. These are involved in mitochondrial metabolisms, stress resistance, maintenance of structure and intracellular transport during seed aging. Reduction of ROS content by the mitochondrial-specific scavenger MitoTEMPO suppressed these changes, whereas pre-treatment of seeds with methyl viologen (MV) had the opposite effect. Furthermore, voltage-dependent anion channels (VDAC) were found to increase both in abundance and carbonylation level, accompanied by increased cytochrome c (cyt c) release from mitochondria to cytosol, indicating the profound effect of ROS and VDAC on mitochondria-dependent cell death. Carbonylation detection revealed the specific target proteins of oxidative modification in mitochondria during ageing. Notably, membrane proteins accounted for a large proportion of these targets. An in vitro assay demonstrated that the oxidative modification was concomitant with a change of VDAC function and a loss of activity in malate dehydrogenase. Our data suggested that ROS eruption induced alteration and modification of specific mitochondrial proteins that may be involved in the process of mitochondrial deterioration, which eventually led to loss of seed viability.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Ulmus/metabolismo , Morte Celular , Respiração Celular , Citocromos c/metabolismo , Germinação , Microscopia Confocal , Mitocôndrias/metabolismo , Compostos Organofosforados/farmacologia , Paraquat/farmacologia , Piperidinas/farmacologia , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/fisiologia , Fatores de Tempo , Ulmus/efeitos dos fármacos , Ulmus/fisiologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo
15.
Int J Phytoremediation ; 19(1): 56-64, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27483131

RESUMO

Quantifying vegetation response to explosive compounds has focused predominantly on morphological impacts and uptake efficiency. A more comprehensive understanding of the total impacts of explosives on vegetation can be gained using a multivariate approach. We hypothesized that multiple variables representing morphological and physiological responses will more clearly differentiate species and treatments than any single variable. Individuals of three plant species were placed in soils contaminated with Composition B, which comprises 60% hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 40% 2,4,6-trinitrotoluene (TNT), and grown for 2 months. Response metrics used included photosynthetic operation, water relations, growth characteristics, as well as nitrogen and carbon concentrations and isotopic compositions. Individual metrics showed high variability in response across the three species tested. Water relations and nitrogen isotopic composition exhibited the most consistent response across species. By comparing multiple variables simultaneously, better separation of both species and exposure was observed. The inclusion of novel metrics can reinforce previously established concepts and provide a new perspective. Additionally, the inclusion of various other metrics can greatly increase the ability to identify and differentiate particular groups. By using multivariate analyses and standard vegetation metrics, new aspects of the vegetation response to explosive compounds can be identified.


Assuntos
Poluentes Ambientais/toxicidade , Substâncias Explosivas/toxicidade , Plantas/efeitos dos fármacos , Triazinas/toxicidade , Trinitrotolueno/toxicidade , Cyperus/anatomia & histologia , Cyperus/efeitos dos fármacos , Cyperus/fisiologia , Plantas/anatomia & histologia , Plantas/metabolismo , Ulmus/anatomia & histologia , Ulmus/efeitos dos fármacos , Ulmus/fisiologia , Vitis/anatomia & histologia , Vitis/efeitos dos fármacos , Vitis/fisiologia
16.
New Phytol ; 213(2): 597-610, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27575435

RESUMO

Combining hydraulic- and carbon-related measurements helps to understand drought-induced plant mortality. Here, we investigated the role that plant respiration (R) plays in determining carbon budgets under drought. We measured the hydraulic conductivity of stems and roots, and gas exchange and nonstructural carbohydrate (NSC) concentrations of leaves, stems and roots of seedlings of two resprouting species exposed to drought or well-watered conditions: Ulmus minor (riparian tree) and Quercus ilex (dryland tree). With increasing water stress (occurring more rapidly in larger U. minor), declines in leaf, stem and root R were less pronounced than that in leaf net photosynthetic CO2 uptake (Pn ). Daytime whole-plant carbon gain was negative below -4 and -6 MPa midday xylem water potential in U. minor and Q. ilex, respectively. Relative to controls, seedlings exhibiting shoot dieback suffered c. 80% loss of hydraulic conductivity in both species, and reductions in NSC concentrations in U. minor. Higher drought-induced depletion of NSC reserves in U. minor was related to higher plant R, faster stomatal closure, and premature leaf-shedding. Differences in drought resistance relied on the ability to maintain hydraulic conductivity during drought, rather than tolerating conductivity loss. Root hydraulic failure elicited shoot dieback and precluded resprouting without root NSC reserves being apparently limiting for R.


Assuntos
Carboidratos/química , Secas , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Plântula/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Carbono/metabolismo , Respiração Celular , Gases/metabolismo , Caules de Planta/fisiologia , Estômatos de Plantas/fisiologia , Quercus/fisiologia , Plântula/anatomia & histologia , Plântula/crescimento & desenvolvimento , Especificidade da Espécie , Vapor , Ulmus/fisiologia , Água
17.
Tree Physiol ; 37(4): 428-440, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974652

RESUMO

Nighttime water flow varies between plant species and is a phenomenon for which the magnitude, purpose and consequences are widely discussed. A potential benefit of nighttime stomata opening may be increased nutrient availability during the night since transpiration affects the mass flow of soil water towards plant roots. We investigated how nitrogen (N) and phosphorus (P) fertilization, and short-term drought affected stomatal conductance of Fraxinus excelsior L. and Ulmus laevis Pallas during the day (gs) and night (gn), and how these factors affected growth for a period of 18 weeks. Both species were found to open their stomata during the night, and gn responded to nutrients and water in a different manner than gs. Under N-deficiency, F. excelsior had higher gn, especially when P was sufficient, and lower pre-dawn leaf water potential (Ψpd), supporting our assumption that nutrient limitation leads to increases in nighttime water uptake. Under P-deficiency, F. excelsior had higher relative root production and, thus, adjusted its biomass allocation under P shortage, while sufficient N but not P contributed to overall higher biomasses. In contrast, U. laevis had higher gn and lower root:shoot ratio under high nutrient (especially N) availability, whereas both sufficient N and P produced higher biomasses. Compared with well-watered trees, the drought treatment did not affect any growth parameter but it resulted in lower gn, minimum stomatal conductance and Ψpd of F. excelsior. For U. laevis, only gs during July was lower when drought-treated. In summary, the responses of gs and gn to nutrients and drought depended on the species and its nutrient uptake strategy, and also the timing of measurement during the growing season. Eutrophication of floodplain forests dominated by F. excelsior and U. laevis may, therefore, considerably change nighttime transpiration rates, leading to ecosystem-level changes in plant-water dynamics. Such changes may have more severe consequences in the future as a higher frequency of drought events is predicted under climate change.


Assuntos
Fraxinus/fisiologia , Fotoperíodo , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Ulmus/fisiologia , Secas , Fertilizantes , Nitrogênio/análise , Fósforo/análise , Folhas de Planta/fisiologia , Solo , Árvores/fisiologia , Água/fisiologia
18.
PLoS One ; 11(12): e0151935, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27935944

RESUMO

BACKGROUND: EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. CHANGES IN FOREST STRUCTURE: We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest type. The spatial relationships between remnant and novel forests, shifts in ecotone structure and the loss of historic forest types point to significant challenges for land managers if landscape restoration is a priority. The spatial signals of novelty and ecological change also point to potential challenges in using modern spatial distributions of species and communities and their relationship to underlying geophysical and climatic attributes in understanding potential responses to changing climate. The signal of human settlement on modern forests is broad, spatially varying and acts to homogenize modern forests relative to their historic counterparts, with significant implications for future management.


Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal/tendências , Dispersão Vegetal/fisiologia , Árvores/fisiologia , Biomassa , Cedrus/fisiologia , Ecossistema , Florestas , Cicutas (Apiáceas)/fisiologia , Humanos , Larix/fisiologia , Meio-Oeste dos Estados Unidos , Filogeografia , Caules de Planta/fisiologia , Quercus/fisiologia , Tilia/fisiologia , Ulmus/fisiologia
19.
Chemistry ; 22(28): 9498-503, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27128523

RESUMO

Fall leaves of the common wych elm tree (Ulmus glabra) were studied with respect to chlorophyll catabolites. Over a dozen colorless, non-fluorescent chlorophyll catabolites (NCCs) and several yellow chlorophyll catabolites (YCCs) were identified tentatively. Three NCC fractions were isolated and their structures were characterized by spectroscopic means. Two of these, Ug-NCC-27 and Ug-NCC-43, carried a glucopyranosyl appendage. Ug-NCC-53, the least polar of these NCCs, was identified as the formal product of an intramolecular esterification of the propionate and primary glucopyranosyl hydroxyl groups of Ug-NCC-43. Thus, the glucopyranose moiety and three of the pyrrole units of Ug-NCC-53 span a 20-membered ring, installing a bicyclo[17.3.1]glycoside moiety. This structural motif is unprecedented in heterocyclic natural products, according to a thorough literature search. The remarkable, three-dimensional bicyclo[17.3.1]glycoside architecture reduces the flexibility of the linear tetrapyrrole. This feature of Ug-NCC-53 is intriguing, considering the diverse biological effects of known bicyclo[n.3.1]glycosidic natural products.


Assuntos
Clorofila/química , Corantes Fluorescentes/química , Glicosilação , Folhas de Planta/química , Ulmus/química , Cor , Análise Espectral , Ulmus/fisiologia
20.
Tree Physiol ; 36(3): 335-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26843210

RESUMO

To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees.


Assuntos
Ophiostoma/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal/fisiologia , Característica Quantitativa Herdável , Ulmus/fisiologia , Hibridização Genética , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Análise de Componente Principal , Fatores de Tempo , Ulmus/microbiologia , Água , Xilema/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA