Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Mol Ecol ; 33(12): e17375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699973

RESUMO

Assessing direct fitness effects of individual genetic diversity is challenging due to the intensive and long-term data needed to quantify survival and reproduction in the wild. But resolving these effects is necessary to determine how inbreeding and outbreeding influence eco-evolutionary processes. We used 8 years of capture-recapture data and single nucleotide polymorphism genotypes for 1906 individuals to test for effects of individual heterozygosity on stage-specific survival probabilities in the salamander Gyrinophilus porphyriticus. The life cycle of G. porphyriticus includes an aquatic larval stage followed by metamorphosis into a semi-aquatic adult stage. In our study populations, the larval stage lasts 6-10 years, metamorphosis takes several months, and lifespan can reach 20 years. Previous studies showed that metamorphosis is a sensitive life stage, leading us to predict that fitness effects of individual heterozygosity would occur during metamorphosis. Consistent with this prediction, monthly probability of survival during metamorphosis declined with multi-locus heterozygosity (MLH), from 0.38 at the lowest MLH (0.10) to 0.06 at the highest MLH (0.38), a reduction of 84%. Body condition of larvae also declined significantly with increasing MLH. These relationships were consistent in the three study streams. With evidence of localised inbreeding within streams, these results suggest that outbreeding disrupts adaptations in pre-metamorphic and metamorphic individuals to environmental gradients along streams, adding to evidence that headwater streams are hotspots of microgeographic adaptation. Our results also underscore the importance of incorporating life history in analyses of the fitness effects of individual genetic diversity and suggest that metamorphosis and similar discrete life stage transitions may be critical periods of viability selection.


Assuntos
Larva , Metamorfose Biológica , Urodelos , Animais , Metamorfose Biológica/genética , Urodelos/genética , Urodelos/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Heterozigoto , Rios , Aptidão Genética , Genética Populacional , Endogamia , Variação Genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38320446

RESUMO

The Chinese giant salamander (CGS) Andrias davidianus is the largest extant amphibian and has recently become an important species for aquaculture with high economic value. Meanwhile, its wild populations and diversity are in urgent need of protection. Exploring the mechanism of its early gonadal differentiation will contribute to the development of CGS aquaculture and the recovery of its wild population. In this study, transcriptomic and phenotypic research was conducted on the critical time points of early gonadal differentiation of CGS. The results indicate that around 210 days post-hatching (dph) is the critical window for female CGS's gonadal differentiation, while 270 dph is that of male CGS. Besides, the TRPM1 gene may be the crucial gene among many candidates determining the sex of CGS. More importantly, in our study, key genes involved in CGS's gonadal differentiation and development are identified and their potential pathways and regulatory models at early stage are outlined. This is an initial exploration of the molecular mechanisms of CGS's early gonadal differentiation at multiple time points, providing essential theoretical foundations for its captive breeding and offering unique insights into the conservation of genetic diversity in wild populations from the perspective of sex development.


Assuntos
Gônadas , Diferenciação Sexual , Transcriptoma , Urodelos , Animais , Urodelos/genética , Urodelos/crescimento & desenvolvimento , Feminino , Masculino , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Diferenciação Sexual/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
3.
Zoolog Sci ; 38(5): 397-404, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34664914

RESUMO

Vulnerability of animals immediately after hatching may induce plasticity in early ontology that becomes important for subsequent survival and growth. Ezo salamanders (Hynobius retardatus) are amphibians inhabiting ponds in Hokkaido, Japan where ezo brown frogs (Rana pirica) spawn on occasion. The salamander larvae must achieve sufficient size in order to successfully capture frog tadpoles, and we examined whether the presence of tadpoles causes development of greater body and/or gape size in newly hatched salamander larvae, which will in turn result in advantageous future prey-predator interactions. To examine this hypothesis, we conducted three laboratory experiments to demonstrate the phenotypic plasticity of salamander hatchlings in response to the presence or absence of frog tadpoles and to screen the type of signals involved in the expression of the phenotypic plasticity. First, salamander hatchlings were reared alone or with tadpoles, and the growth and morphological traits of the hatchlings were compared. The results showed that hatchling larvae grew faster with a more developed gape in the presence of tadpoles. Next, to identify the type of signals inducing this plasticity, two separate experiments with manipulated chemical and visual signals from tadpoles were conducted. The findings showed that faster growth and a more developed gape were induced by chemical but not visual signals. This plasticity may be an adaptive strategy because it increases the likelihood of preying on tadpoles in future prey-predator interactions.


Assuntos
Adaptação Fisiológica , Urodelos/crescimento & desenvolvimento , Animais , Sinais (Psicologia) , Larva/crescimento & desenvolvimento , Larva/fisiologia , Boca/anatomia & histologia , Boca/crescimento & desenvolvimento , Comportamento Predatório , Ranidae , Urodelos/fisiologia , Água/química
4.
Dev Dyn ; 250(6): 880-895, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32885536

RESUMO

BACKGROUND: Regeneration of complex patterned structures is well described among, although limited to a small sampling of, amphibians. This limitation impedes our understanding of the full range of regenerative competencies within this class of vertebrates, according to phylogeny, developmental life stage, and age. To broaden the phylogenetic breath of this research, we characterized the regenerative capacity of the Texas blind salamander (Eurycea rathbuni), a protected salamander native to the Edwards Aquifer of San Marcos, Texas and colonized by the San Marcos Aquatic Resource Center. As field observations suggested regenerative abilities in this population, the forelimb stump of a live captured female was amputated in the hopes of restoring the structure, and thus locomotion in the animal. Tails were clipped from two males to additionally document tail regeneration. RESULTS: We show that the Texas blind salamander exhibits robust limb and tail regeneration, like all other studied Plethodontidae. Regeneration in this species is associated with wound epithelium formation, blastema formation, and subsequent patterning and differentiation of the regenerate. CONCLUSIONS: The study has shown that the Texas blind salamander is a valuable model to study regenerative processes, and that therapeutic surgeries offer a valuable means to help maintain and conserve this vulnerable species.


Assuntos
Membro Anterior/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Urodelos/fisiologia , Animais , Diferenciação Celular/fisiologia , Feminino , Masculino , Filogenia , Urodelos/crescimento & desenvolvimento
5.
Int J Dev Biol ; 65(4-5-6): 313-321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930368

RESUMO

Salamanders are the only vertebrates that can regenerate limbs as adults. This makes them ideal models to investigate the cellular and molecular mechanisms of tissue regeneration. Ambystoma mexicanum and Nothopthalmus viridescens have long served as primary salamander models of limb regeneration, and the recent sequencing of the axolotl genome now provides a blueprint to mine regeneration insights from other salamander species. In particular, there is a need to study South American plethodontid salamanders that present different patterns of limb development and regeneration. A broader sampling of species using next-generation sequencing approaches is needed to reveal shared and unique mechanisms of regeneration, and more generally, the evolutionary history of salamander limb regeneration.


Assuntos
Ambystoma mexicanum , Extremidades , Regeneração , Urodelos , Ambystoma mexicanum/genética , Ambystoma mexicanum/crescimento & desenvolvimento , Animais , Extremidades/crescimento & desenvolvimento , Urodelos/genética , Urodelos/crescimento & desenvolvimento , Cicatrização
6.
Zoolog Sci ; 37(6): 563-574, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33269872

RESUMO

Amphibians exhibit phenotypic plasticity, which allows flexible adaptation to fluctuating environments. Although genes involved in expression of plastic phenotypes have been identified, the endocrine bases of plastic responses are largely unknown. Larvae of the Hokkaido salamander (Hynobius retardatus) plastically display distinct phenotypes, an "offensive phenotype" characterized as larger body with broadened gape and a "defensive phenotype" characterized as enlarged gills and tail and less active behavior, in the presence of prey larval amphibians and predatory larval dragonfly, respectively. In the presence of both prey and predators, the degree of induction of both phenotypes is reduced, suggesting cross-talk between the molecular signaling pathways of these phenotypes. We conducted a transcriptomic analysis to examine how endocrine regulation affects the phenotypic expression by focusing on the pituitary gland. We found that five endocrine genes, i.e., calcitonin related polypeptide alpha (CALCA), growth hormone (GH), neuropeptide B (NPB), parathyroid hormone 2 (PTH2), and prolactin 1 (PRL1), were involved in the expression of both phenotypes. However, we conducted only RNA-seq analysis, and no confirmation of significant up-regulation or down-regulation has been conducted. These results suggest that these genes were up-regulated for induction of the offensive phenotype and down-regulated for induction of the defensive phenotype. Phylogenetic analysis indicated that possible gene duplications of PRL and CALCA have occurred during amphibian evolution. Based on these findings, it is suggested that a trade-off of molecular signaling pathways exists between the two distinct phenotypic expressions. The results also suggest that hormonal-gene duplications might have contributed to the acquisition of phenotypic plasticity in amphibians.


Assuntos
Adaptação Fisiológica/genética , Comportamento Predatório , Urodelos/genética , Animais , Perfilação da Expressão Gênica , Larva/genética , Larva/metabolismo , Odonatos , Filogenia , Hipófise/fisiologia , Hormônios Hipofisários/genética , Hormônios Hipofisários/metabolismo , Ranidae , Urodelos/crescimento & desenvolvimento , Urodelos/metabolismo
7.
PLoS One ; 15(11): e0242913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253322

RESUMO

Infectious diseases are considered major threats to biodiversity, however strategies to mitigate their impacts in the natural world are scarce and largely unsuccessful. Chytridiomycosis is responsible for the decline of hundreds of amphibian species worldwide, but an effective disease management strategy that could be applied across natural habitats is still lacking. In general amphibian larvae can be easily captured, offering opportunities to ascertain the impact of altering the abundance of hosts, considered to be a key parameter affecting the severity of the disease. Here, we report the results of two experiments to investigate how altering host abundance affects infection intensity in amphibian populations of a montane area of Central Spain suffering from lethal amphibian chytridiomycosis. Our laboratory-based experiment supported the conclusion that varying density had a significant effect on infection intensity when salamander larvae were housed at low densities. Our field experiment showed that reducing the abundance of salamander larvae in the field also had a significant, but weak, impact on infection the following year, but only when removals were extreme. While this suggests adjusting host abundance as a mitigation strategy to reduce infection intensity could be useful, our evidence suggests only heavy culling efforts will succeed, which may run contrary to objectives for conservation.


Assuntos
Anfíbios/genética , Batrachochytrium/genética , Micoses/microbiologia , Urodelos/genética , Anfíbios/crescimento & desenvolvimento , Anfíbios/microbiologia , Animais , Batrachochytrium/patogenicidade , Biodiversidade , Quitridiomicetos/genética , Ecossistema , Larva , Micoses/genética , Dinâmica Populacional , Espanha/epidemiologia , Urodelos/crescimento & desenvolvimento , Urodelos/microbiologia
8.
PLoS One ; 15(8): e0237737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822355

RESUMO

Individual growth rates are intrinsically related to survival and lifetime reproductive success and hence, are key determinants of population growth. Efforts to quantify age-size relationships are hampered by difficulties in aging individuals in wild populations. In addition, species with complex life-histories often show distinct shifts in growth that cannot be readily accommodated by traditional modelling techniques. Amphibians are often characterized by rapid larval growth, cessation of growth prior to metamorphosis, and resumption of growth in the adult stage. Compounding issues of non-linear growth, amphibian monitoring programs typically sample larval and adult populations using dissimilar methods. Here we present the first multistage growth model that combines disparate data collected across life-history stages. We model the growth of the endangered Reticulated Flatwoods Salamander, Ambystoma bishopi, in a Bayesian framework, that accounts for unknown ages, individual heterogeneity, and reconciles dip-net and drift fence sampling designs. Flatwoods salamanders achieve 60% of growth in the first 3 months of life but can survive for up to 13 years as a terrestrial adult. We find evidence for marked variability in growth rate, the timing and age at metamorphosis, and maximum size, within populations. Average size of metamorphs in a given year appeared strongly dependent on hydroperiod, and differed by >10mm across years with successful recruitment. In contrast, variation in the sizes of emerging metamorphs appeared relatively constant across years. An understanding of growth will contribute to the development of population viability analyses for flatwoods salamanders, will guide management actions, and will ultimately aid the recovery of the species. Our model formulation has broad applicability to amphibians, and likely any stage-structured organism in which homogenous data cannot be collected across life-stages. The tendency to ignore stage-structure or omit non-conforming data in growth analyses can no longer be afforded given the high stakes of management decisions, particularly for endangered or at-risk populations.


Assuntos
Ambystoma/crescimento & desenvolvimento , Urodelos/crescimento & desenvolvimento , Animais , Tamanho Corporal , Espécies em Perigo de Extinção , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Modelos Biológicos
9.
Evolution ; 74(8): 1804-1814, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32323308

RESUMO

Rates of climatic niche evolution vary widely across the tree of life and are strongly associated with rates of diversification among clades. However, why the climatic niche evolves more rapidly in some clades than others remains unclear. Variation in life history traits often plays a key role in determining the environmental conditions under which species can survive, and therefore, could impact the rate at which lineages can expand in available climatic niche space. Here, we explore the relationships among life-history variation, climatic niche breadth, and rates of climatic niche evolution. We reconstruct a phylogeny for the genus Desmognathus, an adaptive radiation of salamanders distributed across eastern North America, based on nuclear and mitochondrial genes. Using this phylogeny, we estimate rates of climatic niche evolution for species with long, short, and no aquatic larval stage. Rates of climatic niche evolution are unrelated to the mean climatic niche breadth of species with different life histories. Instead, we find that the evolution of a short larval period promotes greater exploration of climatic space, leading to increased rates of climatic niche evolution across species having this trait. We propose that morphological and physiological differences associated with variation in larval stage length underlie the heterogeneous ability of lineages to explore climatic niche space. Rapid rates of climatic niche evolution among species with short larval periods were an important dimension of the clade's adaptive radiation and likely contributed to the rapid rate of lineage accumulation following the evolution of an aquatic life history in this clade. Our results show how variation in a key life-history trait can constrain or promote divergence of the climatic niche, leading to variation in rates of climatic niche evolution among species.


Assuntos
Adaptação Biológica , Características de História de Vida , Filogenia , Urodelos/genética , Animais , Clima , Especiação Genética , Larva/crescimento & desenvolvimento , Urodelos/crescimento & desenvolvimento
10.
BMC Dev Biol ; 19(1): 21, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718554

RESUMO

BACKGROUND: Animals with polyploid, hybrid nuclei offer a challenge for models of gene expression and regulation during embryogenesis. To understand how such organisms proceed through development, we examined the timing and prevalence of mortality among embryos of unisexual salamanders in the genus Ambystoma. RESULTS: Our regional field surveys suggested that heightened rates of embryo mortality among unisexual salamanders begin in the earliest stages of embryogenesis. Although we expected elevated mortality after zygotic genome activation in the blastula stage, this is not what we found among embryos which we reared in the laboratory. Once embryos entered the first cleavage stage, we found no difference in mortality rates between unisexual salamanders and their bisexual hosts. Our results are consistent with previous studies showing high rates of unisexual mortality, but counter to reports that heightened embryo mortality continues throughout embryo development. CONCLUSIONS: Possible causes of embryonic mortality in early embryogenesis suggested by our results include abnormal maternal loading of RNA during meiosis and barriers to insemination. The surprising survival rates of embryos post-cleavage invites further study of how genes are regulated during development in such polyploid hybrid organisms.


Assuntos
Urodelos/embriologia , Urodelos/genética , Animais , Desenvolvimento Embrionário , Poliploidia , Análise de Sobrevida , Urodelos/crescimento & desenvolvimento
11.
Curr Opin Genet Dev ; 57: 98-105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31550665

RESUMO

The discovery that the nervous system plays a critical role in salamander limb regeneration, in 1823, provided the first mechanistic insights into regenerative phenomena and stimulated a long quest for molecular regulators. A role for nerves in the context of regeneration has been suggested for most vertebrate and invertebrate groups, thus offering a possible shared mechanism for the regulation of regenerative processes among animals. Methodological differences and technical limitations, especially in invertebrate groups, have so far hampered broad comparisons and the search for common principles on the role of nerves. This review considers both old and recent work in this topic and provides a broad perspective on the roles of nerves during regeneration. Nerves are found consistently to have important roles in regeneration, but their mode of action varies across species. The ongoing technological developments in a broad range of invertebrate models are now paving the way for the discovery of the shared and unique roles of nerves in animal regeneration.


Assuntos
Extremidades/crescimento & desenvolvimento , Regeneração Nervosa/genética , Sistema Nervoso/crescimento & desenvolvimento , Vertebrados/crescimento & desenvolvimento , Animais , Extremidades/inervação , Regeneração Nervosa/fisiologia , Sistema Nervoso/metabolismo , Urodelos/crescimento & desenvolvimento
12.
Proc Natl Acad Sci U S A ; 116(39): 19563-19570, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31488710

RESUMO

Changes in the amount, intensity, and timing of precipitation are increasing hydrologic variability in many regions, but we have little understanding of how these changes are affecting freshwater species. Stream-breeding amphibians-a diverse group in North America-may be particularly sensitive to hydrologic variability during aquatic larval and metamorphic stages. Here, we tested the prediction that hydrologic variability in streams decreases survival through metamorphosis in the salamander Gyrinophilus porphyriticus, reducing recruitment to the adult stage. Using a 20-y dataset from Merrill Brook, a stream in northern New Hampshire, we show that abundance of G. porphyriticus adults has declined by ∼50% since 1999, but there has been no trend in larval abundance. We then tested whether hydrologic variability during summers influences survival through metamorphosis, using capture-mark-recapture data from Merrill Brook (1999 to 2004) and from 4 streams in the Hubbard Brook Experimental Forest (2012 to 2014), also in New Hampshire. At both sites, survival through metamorphosis declined with increasing variability of stream discharge. These results suggest that hydrologic variability reduces the demographic resilience and adaptive capacity of G. porphyriticus populations by decreasing recruitment of breeding adults. They also provide insight on how increasing hydrologic variability is affecting freshwater species, and on the broader effects of environmental variability on species with vulnerable metamorphic stages.


Assuntos
Metamorfose Biológica/fisiologia , Urodelos/crescimento & desenvolvimento , Animais , Demografia , Ecossistema , Água Doce , Hidrodinâmica , Hidrologia/métodos , Larva , América do Norte , Dinâmica Populacional , Rios , Estações do Ano
13.
Environ Monit Assess ; 191(9): 597, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31463617

RESUMO

Long-term monitoring programs can identify environmental trends or reveal limitations to protocols, as long as their results are analysed appropriately. While monitoring programs are not necessarily hypothesis-driven, their data are important for conservation and can guide improvements to monitoring programs. Here, we present a case study using dynamic occupancy models to guide the optimization of time and effort in a long-term terrestrial salamander monitoring program. To ensure a detailed analysis, we analysed the available long-term data to first identify estimates of occupancy and detection parameters for the salamanders. Using these estimates, we created simulations to identify the optimal number of years for monitoring and the optimal allocation of spatial and temporal survey replicates. Our data support previous claims that monitoring programs should be allowed to run for at least a decade. We also found that in order to obtain accurate estimates of species occupancy, programs should consider appropriate partitioning of monitoring effort across spatial and temporal scales. We show how analyses of long-term monitoring datasets are valuable not only for trend detection but also for the development of templates to guide the design and optimization of similar programs.


Assuntos
Monitoramento Ambiental/métodos , Urodelos/crescimento & desenvolvimento , Animais , Densidade Demográfica , Vigilância da População
14.
BMC Genomics ; 20(1): 482, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31185901

RESUMO

BACKGROUND: Global biodiversity is decreasing at an alarming rate and amphibians are at the forefront of this crisis. Understanding the factors that negatively impact amphibian populations and effectively monitoring their health are fundamental to addressing this epidemic. Plasma glucocorticoids are often used to assess stress in amphibians and other vertebrates, but these hormones can be extremely dynamic and impractical to quantify in small organisms. Transcriptomic responses to stress hormones in amphibians have been largely limited to laboratory models, and there have been few studies on vertebrates that have evaluated the impact of multiple stressors on patterns of gene expression. Here we examined the gene expression patterns in tail tissues of stream-dwelling salamanders (Eurycea tynerensis) chronically exposed to the stress hormone corticosterone under different temperature regimes. RESULTS: We found unique transcriptional signatures for chronic corticosterone exposure that were independent of temperature variation. Several of the corticosterone responsive genes are known to be involved in immune system response (LY-6E), oxidative stress (GSTM2 and TRX), and tissue repair (A2M and FX). We also found many genes to be influenced by temperature (CIRBP, HSC71, HSP40, HSP90, HSP70, ZNF593). Furthermore, the expression patterns of some genes (GSTM2, LY-6E, UMOD, ZNF593, CIRBP, HSP90) show interactive effects of temperature and corticosterone exposure, compared to each treatment alone. Through a series of experiments we also showed that stressor induced patterns of expression were largely consistent across ages, life cycle modes, and tissue regeneration. CONCLUSIONS: Outside of thermal stressors, the application of transcriptomes to monitor the health of non-human vertebrate systems has been vastly underinvestigated. Our study suggests that transcriptomic patterns harbor stressor specific signatures that can be highly informative for monitoring the diverse stressors of amphibian populations.


Assuntos
Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Urodelos/genética , Urodelos/fisiologia , Animais , Corticosterona/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/genética , Temperatura , Transcrição Gênica/efeitos dos fármacos , Urodelos/crescimento & desenvolvimento
15.
Genes (Basel) ; 10(4)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003559

RESUMO

The Hyrcanian Forests present a unique Tertiary relict ecosystem, covering the northern Elburz and Talysh Ranges (Iran, Azerbaijan), a poorly investigated, unique biodiversity hotspot with many cryptic species. Since the 1970s, two nominal species of Urodela, Hynobiidae, Batrachuperus (later: Paradactylodon) have been described: Paradactylodon persicus from northwestern and P. gorganensis from northeastern Iran. Although P. gorganensis has been involved in studies on phylogeny and development, there is little data on the phylogeography, systematics, and development of the genus throughout the Hyrcanian Forests; genome-wide resources have been entirely missing. Given the huge genome size of hynobiids, making whole genome sequencing hardly affordable, we aimed to publish the first transcriptomic resources for Paradactylodon from an embryo and a larva (9.17 Gb RNA sequences; assembled to 78,918 unigenes). We also listed 32 genes involved in vertebrate sexual development and sex determination. Photographic documentation of the development from egg sacs across several embryonal and larval stages until metamorphosis enabled, for the first time, comparison of the ontogeny with that of other hynobiids and new histological and transcriptomic insights into early gonads and timing of their differentiation. Transcriptomes from central Elburz, next-generation sequencing (NGS) libraries of archival DNA of topotypic P. persicus, and GenBank-sequences of eastern P. gorganensis allowed phylogenetic analysis with three mitochondrial genomes, supplemented by PCR-amplified mtDNA-fragments from 17 museum specimens, documenting <2% uncorrected intraspecific genetic distance. Our data suggest that these rare salamanders belong to a single species P. persicus s.l. Humankind has a great responsibility to protect this species and the unique biodiversity of the Hyrcanian Forest ecosystems.


Assuntos
Sequenciamento do Exoma/veterinária , Perfilação da Expressão Gênica/veterinária , Redes Reguladoras de Genes , Urodelos/crescimento & desenvolvimento , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Irã (Geográfico) , Masculino , Filogenia , Filogeografia , Processos de Determinação Sexual , Urodelos/classificação , Urodelos/genética
16.
PLoS One ; 14(2): e0211960, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30753218

RESUMO

The recent decline in populations of European salamanders caused by the chytrid fungus Batrachochytrium salamandrivorans (Bsal) has generated worldwide concern, as it is a major threat to amphibians. Evaluation of the areas most suitable for the establishment of Bsal combined with analysis of the distribution of salamander species could be used to generate and implement biosecurity measures and protect biodiversity at sites with high salamander diversity. In this study, we identified the areas most suitable for the establishment of Bsal in Mexico. Mexico has the second-highest salamander species diversity in the world; thus, we identified areas moderately to highly suitable for the establishment of Bsal with high salamander diversity as potential hotspots for surveillance. Central and Southern Mexico were identified as high-risk zones, with 13 hotspots where 30% of Mexican salamander species occur, including range-restricted species and endangered species. We propose that these hotspots should be thoroughly monitored for the presence of Bsal to prevent the spread of the pathogen if it is introduced to the country.


Assuntos
Quitridiomicetos/patogenicidade , Urodelos/crescimento & desenvolvimento , Distribuição Animal , Animais , Biodiversidade , Demografia , Espécies em Perigo de Extinção/estatística & dados numéricos , México , Vigilância da População , Urodelos/microbiologia
17.
Arch Environ Contam Toxicol ; 76(3): 435-441, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30778626

RESUMO

The purpose of this study was to improve our understanding of the relationship between mercury in three species of adult salamanders and relatively pristine first-order streams in western Maryland. We measured the tissue mercury content of 106 northern two-lined salamanders (Eurycea bislineata bislineata), 111 northern dusky (Desmognathus fuscus), and 107 Allegheny mountain dusky (Desmognathus ocrophaeus) salamanders collected during three sampling periods. Averaged over our entire data set, northern two-lined salamanders had significantly greater tissue mercury contents (29.57 ± 1.32 ng g-1) than northern dusky (20.95 ± 0.78 ng g-1) and Allegheny mountain dusky salamanders (22.84 ± 1.23 ng g-1). This may be due in part to the longer larval period of the northern two-lined salamanders (24-36 vs. 0-10 months). A longer larval period suggests that the northern two-lined larvae were consuming a fully aquatic diet for a longer time period, which is likely to be higher in mercury compared with a more terrestrial diet. The tissue mercury content in northern two-lined and northern dusky salamanders were strongly correlated with the average total mercury, methyl mercury, and dissolved organic carbon concentrations in stream water. In contrast, the tissue mercury content of the more terrestrial salamander, the Allegheny mountain dusky, was not correlated with stream water chemistry. This suggest that the mercury in the terrestrial prey consumed by the Allegheny mountain dusky salamanders is not directly linked to the mercury in stream water. Our results also suggest that the aquatic salamanders could be important bioindicators of mercury contamination of small streams.


Assuntos
Monitoramento Ambiental/métodos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Rios/química , Urodelos/crescimento & desenvolvimento , Animais , Larva/química , Maryland
18.
J Proteome Res ; 18(3): 1088-1098, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608709

RESUMO

Salamanders completely regenerate their limbs after amputation. Thus, these animals are unique models to investigate the mechanisms modulating regeneration in vertebrates. To investigate the influence of microRNAs (miRNAs) on newt limb regeneration, the miRNAs and mRNAs were simultaneously profiled using Illumina HiSeq 2500 System during limb regeneration of Cynops orientalis at 3, 7, 14, 30 and 42 days postamputation. A total of 203 miRNAs and 4230 mRNAs were identified to be differentially expressed. Together with the proteomic data obtained from our previous study, integrative analysis of multiple profiling data sets was performed to construct an interaction network of differentially expressed miRNAs, mRNAs and proteins. Results of GO and KEGG analyses showed that the differentially expressed miRNA targets were mainly directed to cytoskeletal remodeling and carbohydrate metabolism. The stage-specific regulation of miRNAs on their targets was analyzed by hierarchical clustering analysis and validated by qRT-PCR. The negative regulation of miR-223 and miR-133a on their targets was tested by performing dual luciferase reporter assay. The integration analysis will provide a powerful tool to identify the regulatory mechanisms of miRNAs and their targets. The results may have implications in understanding the complex mechanisms underlying newt limb regeneration.


Assuntos
MicroRNAs/genética , Proteoma/genética , Transcriptoma/genética , Urodelos/crescimento & desenvolvimento , Animais , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Regeneração/genética , Urodelos/genética
19.
Microb Ecol ; 77(3): 782-793, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30209587

RESUMO

Variation in environmental conditions can result in disparate associations between hosts and microbial symbionts. As such, it is imperative to evaluate how environmental variables (e.g., habitat quality) can influence host-associated microbiome composition. Within wildlife conservation programs, captive conditions can negatively influence the establishment and maintenance of "wild-type" microbiotas within a host. Alternative microbial communities can result in the proliferation of disease among captive stock or upon reintroduction. Hellbenders (Cryptobranchus alleganiensis) are a threatened salamander for which extensive captive management is currently employed. Using metabarcoding, we characterized the skin microbiota of wild and captive hellbenders from two subspecies in the state of Missouri, the eastern (C. a. alleganiensis) and the Ozark hellbender (C. a. bishopi). Both subspecies in our study included wild adults and captive juveniles that were collected from the wild as eggs. Our objectives were to investigate differences in the skin microbial communities' richness/diversity, composition, and functional profiles of microbes between wild and captive individuals. Captive eastern hellbenders possessed richer communities than wild cohorts, whereas the opposite pattern was observed within the Ozark subspecies. We found significant microbial community structure between wild and captive populations of both subspecies. Microbiota structure translated into differences in the predicted metagenome of wild and captive individuals as well. As such, we can expect captive hellbenders to experience alternative microbial structure and function upon reintroduction into the wild. Our study provides a baseline for the effect of captivity on the skin microbial communities of hellbenders, and highlights the need to incorporate microbiota management in current captive-rearing programs.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Pele/microbiologia , Urodelos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Feminino , Masculino , Missouri , Filogenia , Urodelos/crescimento & desenvolvimento
20.
Mol Genet Genomics ; 294(2): 287-299, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30377773

RESUMO

The Chinese giant salamander Andrias davidianus is a protected amphibian with high nutritional and economic value. Understanding its sex determination mechanism is important for improving culture techniques and sex control in breeding. However, little information on the characterization of critical genes involved in sex is available. Herein, sequencing of ovary and test produced 40,783,222 and 46,128,902 raw reads, respectively, which were jointly assembled into 80,497 unigenes. Of these, 36,609 unigenes were annotated, of which 8907 were female-biased and 10,385 were male-biased. Several sex-related pathways were observed, including the Wnt signaling pathway. After elevated temperature and estrogen exposure, neomale and neofemale specimens were identified by a female-specific marker for the first time. RT-qPCR analysis showed the expression profile of ten selected sex-biased genes to be exhibited consistently in male and neomale and in female and neofemale, with the exception of the Amh and TfIIIa genes. Results suggested that these genes may play important roles in A. davidianus sex determination and gonad development. This provides a basis for further investigation of the molecular mechanisms of sex determination in amphibians.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Processos de Determinação Sexual , Transcriptoma/genética , Urodelos/genética , Animais , Feminino , Gônadas/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Anotação de Sequência Molecular , Ovário/crescimento & desenvolvimento , Urodelos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA