Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Curr Microbiol ; 81(9): 295, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096343

RESUMO

Staphylococcus aureus (S. aureus) is considered as one of the challenging ulcer infections in diabetic patients especially those who have acquired antibiotic-resistant infections. Nanotechnology products have enormous potential to treat diseases including infectious diseases. As chitosan and zinc oxide (ZnO) nanoparticles (NPs) have harbored a high antimicrobial effect, this survey was aimed to synthesize chitosan, ZnO, and ZnO-Urtica. diocia (ZnO-U. diocia) NPs, and to assess their antimicrobial effects and their influence on virulence genes expression in S. aureus isolates from diabetic ulcers. The antibacterial effect of NPs was detected by microdilution method. The most frequently components in U. diocia aqueous extract were linalool,4-thujanol, camphor, carvacrol, propanedioic acid, and di(butyl) phthalate. More than 95% of clinical S. aureus isolates were resistant to several antibiotics including erythromycin, cefoxitin, clindamycin, and ciprofloxacin. The most resistant isolates were S. aureus ATDS 52, ATDS 53, F5232, and F91. The lowest MIC and MBC by the NPs on the isolates was detected as 0.128 g/mL and 0.178 g/mL, respectively. A significant decrease of 90% in the expression rates of lukED and RNAIII genes was reported for S. aureus isolates treated with the NPs. The synthetized ZnO-U. diocia and chitosan NPs can be proposed as a reliable and effective antimicrobial agent targeting diabetic ulcers infections caused by S. aureus because of its high effects on the bacterial growth and virulence genes expression.


Assuntos
Antibacterianos , Quitosana , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Urtica dioica , Óxido de Zinco , Quitosana/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Antibacterianos/farmacologia , Humanos , Urtica dioica/química , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Nanopartículas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Pé Diabético/microbiologia , Complicações do Diabetes/microbiologia
2.
Environ Sci Pollut Res Int ; 31(42): 54589-54602, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39207615

RESUMO

In this study, the protective role of Urtica dioica extract (Udex) against Li2CO3 toxicity in Allium cepa L. was investigated using various parameters such as germination rates, root growth, weight gain, mitotic index (MI), malondialdehyde (MDA), micronucleus (MN), antioxidant enzyme activity, chromosomal abnormalities (CAs) and anatomical changes. As the biological activity of Udex is related to its active content, the profile of phenolic compounds was determined by LC-MS/MS analysis. Li2CO3 caused abnormalities in the tested parameters and serious regressions in germination parameters. Application of 100 mg/L Li2CO3 reduced the chlorophyll a and b contents by 73.04% and 65.7%, respectively. Li2CO3 application exhibited a cytotoxic effect by inducing significant decreases in MI and increases in the frequency of MN, and also showed a genotoxic effect by causing CAs. After 100 mg/L Li2CO3 treatment, MDA, proline, superoxide dismutase, and catalase levels increased by 54.9%, 58.5%, 47.8%, and 52.3%, respectively. Li2CO3 and Udex co-administration resulted in a regression in increased biochemical parameters and genotoxicity parameters, and an improvement in germination parameters. Furthermore, Udex demonstrated efficacy in mitigating the detrimental effects of Li2CO3 on the root tip, particularly in the 200 µg/mL Udex-treated group. The thickening of the cortex cell wall and conduction tissue, which is commonly induced by Li2CO3, was not observed in the Udex-treated group. The protective effect of Udex can be explained by the phenolic compounds it contains. Rutin was detected as the major component in Udex and other phenolics were listed according to their presence rate as protecatechuic acid > caffeic acid > p-coumaric acid > syringic acid > rosemarinic acid > epicatechin. Li ions, which increase in the environment after industrialization, are an important environmental pollutant and exhibit toxicity that affects many pathways in organisms. Scientific research should not only detect these toxic effects but also develop solutions to such problems. In this study, it was determined that the Udex application had a toxicity-reducing role against Li2CO3 toxicity. Also, it has been demonstrated that A. cepa is an important indicator in determining this toxicity and toxicity-reducing applications.


Assuntos
Fenóis , Extratos Vegetais , Urtica dioica , Urtica dioica/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Fenóis/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cebolas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Espectrometria de Massa com Cromatografia Líquida
3.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000608

RESUMO

While conventional medicine has advanced in recent years, there are still concerns about its potential adverse reactions. The ethnopharmacological knowledge established over many centuries and the existence of a variety of metabolites have made medicinal plants, such as the stinging nettle plant, an invaluable resource for treating a wide range of health conditions, considering its minimal adverse effects on human health. The aim of this review is to highlight the therapeutic benefits and biological activities of the edible Urtica dioica (UD) plant with an emphasis on its selective chemo-preventive properties against various types of cancer, whereby we decipher the mechanism of action of UD on various cancers including prostate, breast, leukemia, and colon in addition to evaluating its antidiabetic, microbial, and inflammatory properties. We further highlight the systemic protective effects of UD on the liver, reproductive, excretory, cardiovascular, nervous, and digestive systems. We present a critical assessment of the results obtained from in vitro and in vivo studies as well as clinical trials to highlight the gaps that require further exploration for future prospective studies.


Assuntos
Neoplasias , Extratos Vegetais , Urtica dioica , Urtica dioica/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Animais , Ensaios Clínicos como Assunto , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico
4.
Planta Med ; 90(10): 774-784, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942031

RESUMO

Hyaluronic acid is composed of repeating sugar units, glucuronic acid and N-acetylglucosamine, which are often associated with increased tumor progression. Urtica dioica agglutinin is a potential component that exhibits a high affinity for binding to N-acetylglucosamine. This study aimed to investigate U. dioica Agglutinin's potential to inhibit the proliferation and migration of prostate cancer cells with high expression of hyaluronic acid through molecular docking and in vitro studies. The expression of hyaluronan synthase genes in prostate tissue and cell lines was checked by an in silico study, and the interaction between hyaluronic acid with both CD44 transmembrane glycoprotein and U. dioica agglutinin was analyzed through molecular docking. U. dioica Agglutinin's effect on cell viability (neutral red uptake assay), migration (scratch wound healing assays), and both CD44 and Nanog expression (quantitative real-time polymerase chain reaction) were assessed in vitro. The results showed that in prostate cancer cell lines, the PC3 cell line has the highest expression of hyaluronan synthase genes. U. dioica agglutinin exhibits an interaction of six specific residues on CD44 compared to hyaluronic acid's singular residue. While U. dioica agglutinin alone effectively reduced cell viability and wound closer (≥ 150 µg/mL), combining it with hyaluronic acid significantly shifted the effective concentration to a higher dose (≥ 350 µg/mL). These results, together with low Nanog and high CD44 gene expression, suggest that U. dioica agglutinin may impair the CD44-HA pathway in PC3 cells. This possibility is supported by U. dioica Agglutinin's ability to compete with hyaluronic acid for binding to CD44. Based on this, U. dioica agglutinin as a plant lectin shows promise in inhibiting cancer proliferation and migration by targeting its dependence on hyaluronic acid.


Assuntos
Movimento Celular , Proliferação de Células , Receptores de Hialuronatos , Ácido Hialurônico , Neoplasias da Próstata , Urtica dioica , Humanos , Ácido Hialurônico/farmacologia , Masculino , Neoplasias da Próstata/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Urtica dioica/química , Linhagem Celular Tumoral , Receptores de Hialuronatos/metabolismo , Simulação de Acoplamento Molecular , Sobrevivência Celular/efeitos dos fármacos , Aglutininas/farmacologia , Hialuronan Sintases/metabolismo , Células PC-3
5.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928336

RESUMO

Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use causes environmental contamination, raising concerns about its adverse effects on human health. In this regard, Urtica dioica stands out as a promising candidate for counteracting chemical 'contaminant' toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in the Urtica dioica ethanolic extract have been identified, most of which present significant potential as antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was characterized by irregular swimming and increased activity. This defective behavioral pattern was slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and implicated pathways on UDE's protective effects.


Assuntos
Clorpirifos , Larva , Extratos Vegetais , Urtica dioica , Peixe-Zebra , Animais , Clorpirifos/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Urtica dioica/química , Antioxidantes/farmacologia , Inseticidas/toxicidade , Telencéfalo/efeitos dos fármacos , Telencéfalo/metabolismo
6.
Fitoterapia ; 176: 106024, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763410

RESUMO

The uncontrolled hyperglycemia that characterizes diabetes mellitus (DM) causes several complications in the organism. DM is among the major causes of deaths, and the limited efficacy of current treatments push the search for novel drug candidates, also among natural compounds. We focused our attention on caffeoylmalic acid, a phenolic derivative extracted from Urtica dioica, a plant investigated for its potential against type 2 DM. This compound was tested for its antidiabetic activity in vitro through a glucose uptake assay, in vivo in a mouse DM model and through molecular docking towards α-amylase and α-glucosidase. The effects on glucose blood level, liver enzymes, insulin and creatinine levels as well as on lipid and blood parameters, considered biochemical markers of diabetes, were also evaluated. The results showed an antidiabetic activity in vitro and in vivo, as the compound stimulates glucose absorbtion and reduces blood glucose levels. Moreover, it ameliorates lipid profile, liver and blood parameters, with moderate effect on insulin secretion. Taken together, these findings pave the way for the compounds from this class of caffeoylmalic acid as potential antidiabetic compounds.


Assuntos
Glicemia , Hipoglicemiantes , Simulação de Acoplamento Molecular , Urtica dioica , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação , Camundongos , Urtica dioica/química , Masculino , Glicemia/efeitos dos fármacos , Estrutura Molecular , Diabetes Mellitus Experimental/tratamento farmacológico , Malatos/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Insulina/sangue , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/isolamento & purificação
7.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675586

RESUMO

Allergic rhinitis (AR) is a prevalent inflammatory condition affecting millions globally, with current treatments often associated with significant side effects. To seek safer and more effective alternatives, natural sources like Urtica dioica (UD) are being explored. However, UD's mechanism of action remains unknown. Therefore, to elucidate it, we conducted an in silico evaluation of UD phytochemicals' effects on known therapeutic targets of allergic rhinitis: histamine receptor 1 (HR1), neurokinin 1 receptor (NK1R), cysteinyl leukotriene receptor 1 (CLR1), chemoattractant receptor-homologous molecule expressed on type 2 helper T cells (CRTH2), and bradykinin receptor type 2 (BK2R). The docking analysis identified amentoflavone, alpha-tocotrienol, neoxanthin, and isorhamnetin 3-O-rutinoside as possessing a high affinity for all the receptors. Subsequently, molecular dynamics (MD) simulations were used to analyze the key interactions; the free energy of binding was calculated through Generalized Born and Surface Area Solvation (MMGBSA), and the conformational changes were evaluated. Alpha-tocotrienol exhibited a high affinity while also inducing positive conformational changes across all targets. Amentoflavone primarily affected CRTH2, neoxanthin targeted NK1R, CRTH2, and BK2R, and isorhamnetin-3-O-rutinoside acted on NK1R. These findings suggest UD's potential to treat AR symptoms by inhibiting these targets. Notably, alpha-tocotrienol emerges as a promising multi-target inhibitor. Further in vivo and in vitro studies are needed for validation.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos , Rinite Alérgica , Urtica dioica , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Rinite Alérgica/tratamento farmacológico , Humanos , Urtica dioica/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
8.
J Nutr Biochem ; 129: 109634, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38561081

RESUMO

In two previous studies, we showed that supplementing a high-fat (HF) diet with 9% w/w U. dioica protects against fat accumulation, insulin resistance, and dysbiosis. This follow-up study in C57BL6/J mice aimed at testing: (i) the efficacy of the vegetable at lower doses: 9%, 4%, and 2%, (ii) the impact on intestinal T and B cell phenotype and secretions, (iii) impact on fat and glucose absorption during excess nutrient provision. At all doses, the vegetable attenuated HF diet induced fat accumulation in the mesenteric, perirenal, retroperitoneal fat pads, and liver but not the epididymal fat pad. The 2% dose protected against insulin resistance, prevented HF diet-induced decreases in intestinal T cells, and IgA+ B cells and activated T regulatory cells (Tregs) when included both in the LF and HF diets. Increased Tregs correlated with reduced inflammation; prevented increases in IL6, IFNγ, and TNFα in intestine but not expression of TNFα in epididymal fat pad. Testing of nutrient absorption was performed in enteroids. Enteroids derived from mice fed the HF diet supplemented with U. dioica had reduced absorption of free fatty acids and glucose compared to enteroids from mice fed the HF diet only. In enteroids, the ethanolic extract of U. dioica attenuated fat absorption and downregulated the expression of the receptor CD36 which facilitates uptake of fatty acids. In conclusion, including U. dioica in a HF diet, attenuates fat accumulation, insulin resistance, and inflammation. This is achieved by preventing dysregulation of immune homeostasis and in the presence of excess fat, reducing fat and glucose absorption.


Assuntos
Linfócitos B , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Urtica dioica , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Obesidade/metabolismo , Urtica dioica/química , Linfócitos B/metabolismo , Linfócitos B/imunologia , Resistência à Insulina , Absorção Intestinal/efeitos dos fármacos , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Nutrientes , Fenótipo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Verduras/química , Intestinos/efeitos dos fármacos , Intestinos/imunologia
9.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542403

RESUMO

Polyphenolic compounds are of great interest in today's science. Naturally, they occur in plants and other sources in many different forms. Their wide range of biological activity has attracted the attention of the scientific community. One of the sources of phenolic compounds is stinging nettle (Urtica dioica L.), a common plant in almost all parts of the world. A long tradition of utilization and an interesting chemical profile make this plant a fascinating and extensive object of study. The chemical profile also allows this plant to be used as a food and a pigment source in the food, pharmaceutical, and cosmetic industries. Previously conducted studies found phenolic acids and polyphenolic compounds in root, stalk, and stinging nettle leaves. Different extraction techniques were usually used to isolate them from the leaves. Obtained extracts were used to investigate biological activity further or formulate different functional food products. This study aimed to collect all available knowledge about this plant, its chemical composition, and biological activity and to summarize this knowledge with particular attention to polyphenolic compounds and the activity and mechanisms of their actions.


Assuntos
Urtica dioica , Urtica dioica/química , Extratos Vegetais/química , Fenóis/farmacologia , Fenóis/análise , Folhas de Planta/química , Alimento Funcional
10.
Tissue Cell ; 87: 102328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387425

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative conditions. Alpha-synuclein deposition, Lewy bodies (LBs) formation, disruption of the autophagic machinery, apoptosis of substantia nigra dopaminergic neurons, oxidative stress, and neuroinflammation are all pathologic hallmarks of PD. The leaves of the stinging Nettle (Urtica dioica L.) have a long history as an herbal cure with antioxidant, anti-inflammatory, anti-cancer, immunomodulatory, and neuroprotective properties. The current study aims for the first time to investigate the role of Nettle supplementation on Rotenone-induced PD. Rats were divided into five groups; a Saline control, Nettle control (100 mg/kg/day), Rotenone control (2 mg/kg/day), Rotenone + Nettle (50 mg /kg/day), and Rotenone + Nettle (100 mg/kg). After four weeks, the rats were examined for behavioral tests. The midbrains were investigated for histopathological alteration and immunohistochemical reaction for Tyrosine hydroxylase in the dopaminergic neurons, α-synuclein for Lewy bodies, caspase 3 for apoptotic neurons, LC3 and P62 for autophagic activity. Midbrain homogenates were examined for oxidative stress markers. mRNA expression of TNFα and Il6; inflammatory markers, Bcl-2, BAX and Caspase 3; apoptosis markers, were detected in midbrains. The results showed that Nettle caused recovery of midbrain dopaminergic neurons, by inhibiting apoptosis, inflammation, and oxidative stress and by restoring the autophagic machinery with clearance of α-synuclein deposits. We can conclude that Nettle is a potentially effective adjuvant in the treatment of Parkinson's disease.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Urtica dioica , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Urtica dioica/química , Urtica dioica/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Rotenona/toxicidade , Caspase 3/metabolismo , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia
11.
Int J Biol Macromol ; 259(Pt 1): 129059, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181922

RESUMO

The extraction of cellulose using eco-friendly solvents has been gaining significant attention for a couple of decades. This study investigated the impact of benign and green solvents on the extraction, thermal stability, mechanical properties, and crystallinity of cellulose extracted from Urtica dioica (Stinging nettle) using a Sono-Microwave Assisted Chlorine free and Ionic Liquid (SMACIL) extraction technique. In this regard, the stalks were undergone through pre chemical treatment before starting bleaching them with hydrogen peroxide (HPO) and 1-butyl-3-methylimidazolium acetate (BMIM-Ac) having different mole ratios (5, 7.5, and 10) to expose cellulose. The Urtica dioica cellulose (UDC) was characterized using FTIR, tensile testing, FESEM, XRD, and TGA. The fibrillation and lumen can be seen in SEM images that confirm the extraction of cellulose. The results showed that the BMIM-Ac-10 gives the maximum cellulose yield (88 %) than other compositions. Moreover, the cellulose extracted using BMIM-Ac-10 has high mechanical strength which makes it a potential constituent for various applications in the field of materials science. These results have significant implications for the development of sustainable and efficient processes for the extraction of cellulose.


Assuntos
Líquidos Iônicos , Urtica dioica , Celulose/química , Urtica dioica/química , Líquidos Iônicos/química , Micro-Ondas
12.
Ultrastruct Pathol ; 48(2): 81-93, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38017656

RESUMO

Potassium bromate is used in cheese production, beer making and is also used in pharmaceutical and cosmetic. It is a proven carcinogen as it is a strong oxidizing agent that generates free radicals during xenobiotic metabolism. Urtica dioica (Ud) (from the plants' family of Urticaceae) is a plant that has long been used as a medicinal plant in many parts of the world. It has been shown to have anti-inflammatory, antioxidant and immunosuppressive properties. So, this study aimed to clarify the effect of Potassium bromate on the histological structure of cerebral cortex of adult male albino rats, evaluate the possible protective role of Urtica dioica. Thirty adult healthy male albino rats were divided into three groups; group I (Control group), group II (KBrO3 treated group). Group III (KBrO3 and Urtica dioica treated group).At the end of the experiment, rats in all groups were anesthetized and specimens were processed for light and electron microscope. Morphometric and statistical analyses were also performed. Nerve cells of the treated group showed irregular contours, dark nuclei, irregular nuclear envelopes, dilated RER cisternae, and mitochondria with ruptured cristae. Vacuolated neuropil was also observed. Immunohistochemically, stained sections for GFAP showed strong positive reaction in the processes of astrocytes. Recovery group showed revealed nearly the same as the histological picture as the control group. In conclusion, potassium bromate induces degenerative effects on neurons of cerebral cortex and urtica dioica provide an important neuroprotective effects against these damaging impacts through their antioxidant properties.


Assuntos
Antioxidantes , Bromatos , Urtica dioica , Ratos , Animais , Antioxidantes/farmacologia , Urtica dioica/química , Extratos Vegetais/farmacologia , Córtex Cerebral
13.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903524

RESUMO

Stinging nettle (SN) is an extraordinary plant from the Urticaceae botanical family. It is well-known and widely used in food and folk medicine to treat different disorders and diseases. This article aimed to study the chemical composition of SN leaves extracts, i.e., polyphenolic compounds and vitamins B and C, because many studies ascribed high biological potency to these compounds and their significance in the human diet. Besides the chemical profile, the thermal properties of the extracts were studied. The results confirmed presence of many polyphenolic compounds and vitamins B and C. It also showed that the chemical profile closely correlated with the applied extraction technique. The thermal analysis showed that analyzed samples were thermally stable up to about 160 °C. Thermal degradation of samples UAE, MAE, and MAC took place in four steps, and sample SE in three steps. Altogether, results confirmed the presence of health-beneficial compounds in stinging nettle leaves and indicated the possible application of its extract in pharmaceutical and food industries as both a medicinal and food additive.


Assuntos
Urtica dioica , Urticaceae , Humanos , Vitaminas/análise , Urtica dioica/química , Extratos Vegetais/química , Urticaceae/química , Vitamina A/análise , Vitamina K/análise , Folhas de Planta/química
14.
Eur Rev Med Pharmacol Sci ; 27(5): 1793-1800, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930493

RESUMO

OBJECTIVE: Urtica dioica L. Subsp. dioica is an annual or perennial herbaceous plant belonging to the Urticaceae family that has an important place in ethnobotany. This study aimed to investigate the phytochemical content and the inhibition effect on acetylcholinesterase (AChE), which interact with beta-amyloid to promote the deposition of amyloid plaques and paraoxonase (PON1). This plays a role in the regulation of HDL and LDL and an antiatherogenic, and antioxidant capacity of Urtica dioica. MATERIALS AND METHODS: Phytochemical content was determined by the liquid chromatography/mass spectrometry (LC-MS/MS), and to assess the enzyme inhibition and antioxidant capacity the spectrophotometer technique was used. The antioxidant capacity of U. dioica extracts (methanol, hexane, and water) was determined by applying 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), 2,2-diphenyl-1-picrylhydrazyl (DPPH•+), ferric reducing antioxidant power (FRAP), and cupric ion reducing antioxidant capacity (CUPRAC) methods. RESULTS: The methanol extract of the U. dioica exhibited significant inhibition on the AChE (IC50= 0.098 ± 0.011 mg/mL). However, methanol and water extracts of the U. dioica did not exhibit the inhibition effect on PON1. The highest activity for ABTS•+ was in the hexane extract (55.97%), and for DPPH•+ was in the methanol extract (62.42%). Compared to other solvents (hexane and water), the methanol extract of the U. dioica showed the highest activity for FRAP and CUPRAC methods. Results (as absorbance) were 0.302 for CUPRAC and 0.147 for FRAP in the methanol extract of the U. dioica. The acetohydroxamic acid, gallic acid, caffeic acid, ellagic acid, p-hydroxybenzoic acid, and quercetin were qualified and quantified in LC-MS/MS analyses of Urtica dioica extract. CONCLUSIONS: U. dioica, which has antioxidant, anti-atherosclerotic and neuroprotective effects, has a natural medicine potential if compared to synthetic drugs used in Alzheimer's patients.


Assuntos
Antioxidantes , Urtica dioica , Humanos , Antioxidantes/química , Urtica dioica/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hexanos , Metanol/química , Cromatografia Líquida , Acetilcolinesterase , Espectrometria de Massas em Tandem , Compostos Fitoquímicos/farmacologia , Água/química , Arildialquilfosfatase
15.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771171

RESUMO

The purpose of the work was to determine the intraspecific variability of the stinging nettle, in respect of the mass of leaves and their chemical composition, including the content of phenolic compounds and assimilative pigments. The objects of the study were 10 populations of nettle, originating from the eastern and southern part of Poland. The results obtained indicate a high level of variability between and within the populations investigated but not strictly related to their geographical locations. The mass of the leaves ranged from 0.19 to 0.28 kg dry weight (DW)/plant (Coefficient of variation (CV) = 16.33%). Using HPLC-DAD, four phenolic acids were detected, i.e., caffeoylmalic (570.97-1367.40 mg/100 g DW), chlorogenic (352.79-1070.83 mg/100 g DW), neochlorogenic (114.56-284.77 mg/100 g DW) and cichoric (58.31-189.52 mg/100 g DW) acids, with the last one differentiating populations to the highest degree (CV = 48.83%). All of the analyzed populations met the requirements of the European Pharmacopoeia (Ph Eur 10th) concerning the minimum content of caffeoylmalic and chlorogenic acids in nettle leaves (not less than 0.3%). Within the flavonoid fraction, two compounds were identified, namely rutoside (917.05-1937.43 mg/100 g DW, CV = 21.32%) and hyperoside (42.01-289.45 mg/100 g DW; CV = 55.26%). The level of chlorophyll a ranged from 3.82 to 4.49 mg/g DW, chlorophyll b from 1.59 to 2.19 mg/g DW, while the content of carotenoids varied from 2.34 to 2.60 mg/100 g DW. Given all the traits investigated, the level of a population's polymorphism (CV) was visibly higher within a population than between populations. Population no. 4 was distinguished by the highest mass of leaves, and the highest content of rutoside, while population no. 2 was distinguished by the highest content of hyperoside, caffeoylmalic and chlorogenic acid.


Assuntos
Urtica dioica , Urtica dioica/química , Clorofila A , Flavonoides/química , Fenóis , Ácido Clorogênico , Rutina
16.
J Sci Food Agric ; 103(8): 4058-4067, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36478201

RESUMO

BACKGROUND: Nettle is a medicinal plant rich in bioactive molecules. The composition of nettle leaves and stems has been extensively studied, whereas the root has been insufficiently investigated. Therefore, the present study aimed to optimize the parameters of advanced extraction technique, pressurized liquid extraction (PLE), for the lipid fraction of nettle root rich in triterpenoid derivatives and to compare the efficiency of isolation under optimal conditions with conventional Soxhlet extraction (SE). RESULTS: The PLE yields ranged from 0.39-1.63%, whereas the total content of triterpenoid derivatives ranged from 43.50-78.26 mg 100 g-1 , with nine sterols and three pentacyclic triterpenoids identified and quantified within a total range of 42.81-76.57 mg 100 g-1 and 0.69-1.68 mg 100 g-1 dried root, respectively. The most abundant sterol and pentacyclic triterpenoid were ß-sitosterol and ß-amyrin acetate, with mean values of 50.21 mg 100 g-1 and 0.56 mg 100 g-1 dried root. CONCLUSION: The optimal PLE conditions were 150 °C/5 min/four cycles and showed significantly better performance compared to SE (68 °C, 8 h), establishing an excellent technique for the isolation of the nettle root lipid fraction. Also, triterpenoid derivatives from nettle could be used as functional ingredients for the development of new foods and dietary supplements. © 2022 Society of Chemical Industry.


Assuntos
Fitosteróis , Triterpenos , Urtica dioica , Esteróis , Triterpenos Pentacíclicos , Extratos Vegetais/química , Urtica dioica/química
17.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558005

RESUMO

Herbal treatment for diabetes mellitus is widely used. The pharmacological activity is thought to be due to the phenolic compounds found in the plant leaves. The present study aims to investigate the phytochemical composition of Urtica dioica (UD) hydroethanolic extract and to screen its antidiabetic activity by disaccharidase hindering and glucose transport in Caco-2 cells. The results have shown that a total of 13 phenolic compounds in this work, viz. caffeic and coumaric acid esters (1, 2, 4-7, 10), ferulic derivative (3), and flavonoid glycosides (8, 9, 11-13), were identified using HPLC-DAD-ESI/MS2. The most abundant phenolic compounds were 8 (rutin) followed by 6 (caffeoylquinic acid III). Less predominant compounds were 4 (caffeoylquinic acid II) and 11 (kaempferol-O-rutinoside). The UD hydroethanolic extract showed 56%, 45%, and 28% (1.0 mg/mL) inhibition level for maltase, sucrase, and lactase, respectively. On the other hand, glucose transport was 1.48 times less at 1.0 mg/mL UD extract compared with the control containing no UD extract. The results confirmed that U. dioica is a potential antidiabetic herb having both anti-disaccharidase and glucose transport inhibitory properties, which explained the use of UD in traditional medicine.


Assuntos
Urtica dioica , Urticaceae , Humanos , Urtica dioica/química , Extratos Vegetais/química , Células CACO-2 , Dissacaridases/análise , Folhas de Planta/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/análise , Fenóis/análise , Glucose/análise
18.
Sci Rep ; 12(1): 16468, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183011

RESUMO

One of the tomato's acutely devastating diseases is Alternaria leaf spot, lowering worldwide tomato production. In this study, one fungal isolate was isolated from tomatoes and was assigned to Alternaria alternata TAA-05 upon morphological and molecular analysis of the ITS region and 18SrRNA, endoPG, Alt a1, and gapdh genes. Also, Urtica dioica and Dodonaea viscosa methanol leaf extracts (MLEs) were utilized as antifungal agents in vitro and compared to Ridomil, a reference chemical fungicide. The in vitro antifungal activity results revealed that Ridomil (2000 µg/mL) showed the highest fungal growth inhibition (FGI) against A. alternata (96.29%). Moderate activity was found against A. alternata by D. viscosa and U. dioica MLEs (2000 µg/mL), with an FGI value of 56.67 and 54.81%, respectively. The abundance of flavonoid and phenolic components were identified by HPLC analysis in the two plant extracts. The flavonoid compounds, including hesperidin, quercetin, and rutin were identified using HPLC in D. viscosa MLE with concentrations of 11.56, 10.04, and 5.14 µg/mL of extract and in U. dioica MLE with concentrations of 12.45, 9.21, and 5.23 µg/mL, respectively. α-Tocopherol and syringic acid, were also identified in D. viscosa MLE with concentrations of 26.13 and 13.69 µg/mL, and in U. dioica MLE, with values of 21.12 and 18.33 µg/mL, respectively. Finally, the bioactivity of plant extracts suggests that they play a crucial role as antifungal agents against A. alternata. Some phenolic chemicals, including coumaric acid, caffeic acid, ferulic acid, and α-tocopherol, have shown that they may be utilized as environmentally friendly fungicidal compounds.


Assuntos
Fungicidas Industriais , Hesperidina , Sapindaceae , Solanum lycopersicum , Urtica dioica , Alternaria , Antifúngicos/farmacologia , Ácidos Cumáricos , Metanol , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Quercetina , Rutina , Urtica dioica/química , alfa-Tocoferol
19.
Front Biosci (Elite Ed) ; 14(3): 20, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36137993

RESUMO

BACKGROUND: The main aim of the research was to study short-term changes in the concentrations of elements in two widely distributed plant species, couch grass and nettle and in the rhizosphere soil of the plants. METHODS: The sampling of plants and soil was carried out on three dates: 3, 10, and 25 May 2021. On each day of sampling, the plants and soil were collected three times: at 9:00, 14:00, and 19:00. The ICP-OES and ICP-MS analytical techniques were used for determination of elements in the plant and soil samples. The Raman spectroscopy was applied to study variations in the organic compounds. RESULTS: The concentrations of both macro-nutrients and trace elements in plants varied greatly over daytime on all dates of sampling. The differences between concentrations of many elements in the plants collected at different times during a day were statistically significant. There were also statistically significant differences between concentrations of some elements (Na, Mg, P, K, Fe, Ba) in the plants collected on different dates. The relative intensity of diffuse luminescence of the rhizosphere soil of couch grass and nettle was different during daytime and also differed between the soils taken from roots of the two plant species, especially in the beginning of May. CONCLUSIONS: The experimental data indicates that the daily variations of the element concentrations in plants might be a result of multiple effects of various factors. The differences in the daily element variations in the couch grass and nettle growing in the same site and collected simultaneously might be due to the fact that these plants belong to different clades. The diurnal fluctuations (that also include regular changes in the element concentrations in plants) can be different for monocotyledons (couch grass) and dicotyledons (nettle). New experimental findings on short-term variations in the concentrations of macro-nutrients and trace elements can help to gain a new insight into accumulation of the elements in different plant species and also be useful in agricultural practice.


Assuntos
Elymus , Oligoelementos , Urtica dioica , Feminino , Humanos , Plantas , Gravidez , Solo/química , Oligoelementos/análise , Urtica dioica/química
20.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4972-4977, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36164907

RESUMO

The chemical constituents in Urtica dioica fruits were investigated by silica gel chromatography, preparative HPLC, NMR, and HR-MS for the first time. As a result, 21 compounds were isolated from the fruits of U. dioica and identified 7R,8S,8'R-olivil(1), oleic acid(2), α-linoleic acid(3), palmic acid(4), methyl palmitate(5), α-linolenic acid(6), α-linolenic acid methyl ester(7), 5-O-caffeoyl-shikimic acid(8), vanillic acid(9), p-coumaric acid(10), 5-O-p-coumaroylshikimic acid(11), cinnamic acid(12), quinic acid(13), shikimic acid(14), ethyl caffeate(15), coniferyl ferulate(16), ferulic acid(17), caffeic acid(18), chlorogenic acid(19), pinoresinol(20), and quercetin(21). Compound 1 was a new compound and compounds 2-16 were isolated from U. dioica for the first time.


Assuntos
Urtica dioica , Ácido Clorogênico , Frutas , Ácido Linoleico , Ácido Oleico , Quercetina/química , Ácido Quínico , Ácido Chiquímico , Dióxido de Silício , Urtica dioica/química , Ácido Vanílico , Ácido alfa-Linolênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA