Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39312489

RESUMO

Giant viruses (GVs) significantly regulate the ecological dynamics of diverse ecosystems. Although metagenomics has expanded our understanding of their diversity and ecological roles played in marine environments, little is known about GVs of freshwater ecosystems. Most previous studies have employed short-read sequencing and therefore resulted in fragmented genomes, hampering accurate assessment of genetic diversity. We sought to bridge this knowledge gap and overcome previous technical limitations. We subjected spatiotemporal (2 depths × 12 months) samples from Lake Biwa to metagenome-assembled genome reconstruction enhanced by long-read metagenomics. This yielded 293 GV metagenome-assembled genomes. Of these, 285 included previously unknown species in five orders of nucleocytoviruses and the first representatives of freshwater mirusviruses, which exhibited marked divergence from marine-derived lineages. The good performance of our long-read metagenomic assembly was demonstrated by the detection of 42 (14.3%) genomes composed of single contigs with completeness values >90%. GVs were partitioned across water depths, with most species specific to either the sunlit epilimnion or the dark hypolimnion. Epilimnion-specific members tended to be transient and exhibit short and intense abundance peaks, in line with the fact that they regulate the surface algal blooms. During the spring bloom, mirusviruses and members of three nucleocytovirus families were among the most abundant viruses. In contrast, hypolimnion-specific ones, including a mirusvirus genome, were typically more persistent in the hypolimnion throughout the water-stratified period, suggesting that they infect hosts specific to the hypolimnion and play previously unexplored ecological roles in dark water microbial ecosystems.


Assuntos
Genoma Viral , Vírus Gigantes , Lagos , Metagenoma , Metagenômica , Filogenia , Lagos/virologia , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Ecossistema , Análise Espaço-Temporal , Água Doce/virologia , Variação Genética
2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39178288

RESUMO

Microbes in marine ecosystems have evolved their gene content to thrive successfully in the cold. Although this process has been reasonably well studied in bacteria and selected eukaryotes, less is known about the impact of cold environments on the genomes of viruses that infect eukaryotes. Here, we analyzed cold adaptations in giant viruses (Nucleocytoviricota and Mirusviricota) from austral marine environments and compared them with their Arctic and temperate counterparts. We recovered giant virus metagenome-assembled genomes (98 Nucleocytoviricota and 12 Mirusviricota MAGs) from 61 newly sequenced metagenomes and metaviromes from sub-Antarctic Patagonian fjords and Antarctic seawater samples. When analyzing our data set alongside Antarctic and Arctic giant viruses MAGs already deposited in the Global Ocean Eukaryotic Viral database, we found that Antarctic and Arctic giant viruses predominantly inhabit sub-10°C environments, featuring a high proportion of unique phylotypes in each ecosystem. In contrast, giant viruses in Patagonian fjords were subject to broader temperature ranges and showed a lower degree of endemicity. However, despite differences in their distribution, giant viruses inhabiting low-temperature marine ecosystems evolved genomic cold-adaptation strategies that led to changes in genetic functions and amino acid frequencies that ultimately affect both gene content and protein structure. Such changes seem to be absent in their mesophilic counterparts. The uniqueness of these cold-adapted marine giant viruses may now be threatened by climate change, leading to a potential reduction in their biodiversity.


Assuntos
Temperatura Baixa , Ecossistema , Genoma Viral , Metagenoma , Água do Mar , Água do Mar/virologia , Regiões Antárticas , Regiões Árticas , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Filogenia , Adaptação Fisiológica
3.
Virol J ; 21(1): 135, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858684

RESUMO

The discovery of mimivirus in 2003 prompted the search for novel giant viruses worldwide. Despite increasing interest, the diversity and distribution of giant viruses is barely known. Here, we present data from a 2012-2022 study aimed at prospecting for amoebal viruses in water, soil, mud, and sewage samples across Brazilian biomes, using Acanthamoeba castellanii for isolation. A total of 881 aliquots from 187 samples covering terrestrial and marine Brazilian biomes were processed. Electron microscopy and PCR were used to identify the obtained isolates. Sixty-seven amoebal viruses were isolated, including mimiviruses, marseilleviruses, pandoraviruses, cedratviruses, and yaraviruses. Viruses were isolated from all tested sample types and almost all biomes. In comparison to other similar studies, our work isolated a substantial number of Marseillevirus and cedratvirus representatives. Taken together, our results used a combination of isolation techniques with microscopy, PCR, and sequencing and put highlight on richness of giant virus present in different terrestrial and marine Brazilian biomes.


Assuntos
Vírus Gigantes , Brasil , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/ultraestrutura , Filogenia , Reação em Cadeia da Polimerase , Acanthamoeba castellanii/virologia , Acanthamoeba castellanii/isolamento & purificação , Microbiologia do Solo , Esgotos/virologia , Análise de Sequência de DNA , Água do Mar/virologia , Microbiologia da Água
4.
Microbiome ; 12(1): 91, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760842

RESUMO

BACKGROUND: Dark pigmented snow and glacier ice algae on glaciers and ice sheets contribute to accelerating melt. The biological controls on these algae, particularly the role of viruses, remain poorly understood. Giant viruses, classified under the nucleocytoplasmic large DNA viruses (NCLDV) supergroup (phylum Nucleocytoviricota), are diverse and globally distributed. NCLDVs are known to infect eukaryotic cells in marine and freshwater environments, providing a biological control on the algal population in these ecosystems. However, there is very limited information on the diversity and ecosystem function of NCLDVs in terrestrial icy habitats. RESULTS: In this study, we investigate for the first time giant viruses and their host connections on ice and snow habitats, such as cryoconite, dark ice, ice core, red and green snow, and genomic assemblies of five cultivated Chlorophyta snow algae. Giant virus marker genes were present in almost all samples; the highest abundances were recovered from red snow and the snow algae genomic assemblies, followed by green snow and dark ice. The variety of active algae and protists in these GrIS habitats containing NCLDV marker genes suggests that infection can occur on a range of eukaryotic hosts. Metagenomic data from red and green snow contained evidence of giant virus metagenome-assembled genomes from the orders Imitervirales, Asfuvirales, and Algavirales. CONCLUSION: Our study highlights NCLDV family signatures in snow and ice samples from the Greenland ice sheet. Giant virus metagenome-assembled genomes (GVMAGs) were found in red snow samples, and related NCLDV marker genes were identified for the first time in snow algal culture genomic assemblies; implying a relationship between the NCLDVs and snow algae. Metatranscriptomic viral genes also aligned with metagenomic sequences, suggesting that NCLDVs are an active component of the microbial community and are potential "top-down" controls of the eukaryotic algal and protistan members. This study reveals the unprecedented presence of a diverse community of NCLDVs in a variety of glacial habitats dominated by algae.


Assuntos
Vírus Gigantes , Camada de Gelo , Camada de Gelo/virologia , Groenlândia , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Filogenia , Ecossistema , Genoma Viral , Metagenômica , Clorófitas/virologia , Clorófitas/genética , Metagenoma , Neve
5.
Nat Microbiol ; 9(6): 1619-1629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38605173

RESUMO

Giant viruses (phylum Nucleocytoviricota) are globally distributed in aquatic ecosystems. They play fundamental roles as evolutionary drivers of eukaryotic plankton and regulators of global biogeochemical cycles. However, we lack knowledge about their native hosts, hindering our understanding of their life cycle and ecological importance. In the present study, we applied a single-cell RNA sequencing (scRNA-seq) approach to samples collected during an induced algal bloom, which enabled pairing active giant viruses with their native protist hosts. We detected hundreds of single cells from multiple host lineages infected by diverse giant viruses. These host cells included members of the algal groups Chrysophycae and Prymnesiophycae, as well as heterotrophic flagellates in the class Katablepharidaceae. Katablepharids were infected with a rare Imitervirales-07 giant virus lineage expressing a large repertoire of cell-fate regulation genes. Analysis of the temporal dynamics of these host-virus interactions revealed an important role for the Imitervirales-07 in controlling the population size of the host Katablepharid population. Our results demonstrate that scRNA-seq can be used to identify previously undescribed host-virus interactions and study their ecological importance and impact.


Assuntos
Vírus Gigantes , RNA-Seq , Análise de Célula Única , Análise de Célula Única/métodos , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Água do Mar/virologia , Interações entre Hospedeiro e Microrganismos/genética , Filogenia , Organismos Aquáticos/virologia , Organismos Aquáticos/genética , Ecossistema , Eutrofização , Análise da Expressão Gênica de Célula Única
6.
Nat Commun ; 15(1): 3307, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658525

RESUMO

Giant viruses (Nucleocytoviricota) are significant lethality agents of various eukaryotic hosts. Although metagenomics indicates their ubiquitous distribution, available giant virus isolates are restricted to a very small number of protist and algal hosts. Here we report on the first viral isolate that replicates in the amoeboflagellate Naegleria. This genus comprises the notorious human pathogen Naegleria fowleri, the causative agent of the rare but fatal primary amoebic meningoencephalitis. We have elucidated the structure and infection cycle of this giant virus, Catovirus naegleriensis (a.k.a. Naegleriavirus, NiV), and show its unique adaptations to its Naegleria host using fluorescence in situ hybridization, electron microscopy, genomics, and proteomics. Naegleriavirus is only the fourth isolate of the highly diverse subfamily Klosneuvirinae, and like its relatives the NiV genome contains a large number of translation genes, but lacks transfer RNAs (tRNAs). NiV has acquired genes from its Naegleria host, which code for heat shock proteins and apoptosis inhibiting factors, presumably for host interactions. Notably, NiV infection was lethal to all Naegleria species tested, including the human pathogen N. fowleri. This study expands our experimental framework for investigating giant viruses and may help to better understand the basic biology of the human pathogen N. fowleri.


Assuntos
Genoma Viral , Vírus Gigantes , Naegleria , Genoma Viral/genética , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/ultraestrutura , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/fisiologia , Naegleria/genética , Naegleria/virologia , Naegleria fowleri/genética , Naegleria fowleri/isolamento & purificação , Filogenia , Humanos
7.
Viruses ; 14(2)2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215784

RESUMO

Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle sizes, integrating remarkable evolutionary relationships that date as early as the emergence of life on the planet. This year, a decade has passed since the first studies on giant viruses in the Brazilian territory, and since then biomes of rare beauty and biodiversity (Amazon, Atlantic forest, Pantanal wetlands, Cerrado savannas) have been explored in the search for giant viruses. From those unique biomes, novel viral entities were found, revealing never before seen genomes and virion structures. To celebrate this, here we bring together the context, inspirations, and the major contributions of independent Brazilian research groups to summarize the accumulated knowledge about the diversity and the exceptionality of some of the giant viruses found in Brazil.


Assuntos
Amoeba/virologia , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação , Virologia/história , Biodiversidade , Brasil , Ecossistema , Genoma Viral , Vírus Gigantes/classificação , Vírus Gigantes/ultraestrutura , História do Século XXI , Filogenia
8.
Microscopy (Oxf) ; 70(6): 477-486, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34490462

RESUMO

High-resolution study of the giant viruses presents one of the latest challenges in cryo-electron microscopy (EM) of viruses. Too small for light microscopy but too large for easy study at high resolution by EM, they range in size from ∼0.2 to 2 µm from high-symmetry icosahedral viruses, such as Paramecium burseria Chlorella virus 1, to asymmetric forms like Tupanvirus or Pithovirus. To attain high resolution, two strategies exist to study these large viruses by cryo-EM: first, increasing the acceleration voltage of the electron microscope to improve sample penetration and overcome the limitations imposed by electro-optical physics at lower voltages, and, second, the method of 'block-based reconstruction' pioneered by Michael G. Rossmann and his collaborators, which resolves the latter limitation through an elegant leveraging of high symmetry but cannot overcome sample penetration limitations. In addition, more recent advances in both computational capacity and image processing also yield assistance in studying the giant viruses. Especially, the inclusion of Ewald sphere correction can provide large improvements in attainable resolutions for 300 kV electron microscopes. Despite this, the study of giant viruses remains a significant challenge.


Assuntos
Chlorella , Microscopia Crioeletrônica , Vírus Gigantes , Chlorella/virologia , Vírus Gigantes/isolamento & purificação
10.
Sci Rep ; 11(1): 5025, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658544

RESUMO

Bioconversion of organic materials is the foundation of many applications in chemical engineering, microbiology and biochemistry. Herein, we introduce a new methodology to quantitatively determine conversion of biomass in viral infections while simultaneously imaging morphological changes of the host cell. As proof of concept, the viral replication of an unidentified giant DNA virus and the cellular response of an amoebal host are studied using soft X-ray microscopy, titration dilution measurements and thermal gravimetric analysis. We find that virions produced inside the cell are visible from 18 h post infection and their numbers increase gradually to a burst size of 280-660 virions. Due to the large size of the virion and its strong X-ray absorption contrast, we estimate that the burst size corresponds to a conversion of 6-12% of carbonaceous biomass from amoebal host to virus. The occurrence of virion production correlates with the appearance of a possible viral factory and morphological changes in the phagosomes and contractile vacuole complex of the amoeba, whereas the nucleus and nucleolus appear unaffected throughout most of the replication cycle.


Assuntos
Acanthamoeba/virologia , Vírus de DNA/ultraestrutura , DNA Viral/genética , Genoma Viral , Vírus Gigantes/ultraestrutura , Vírion/ultraestrutura , Acanthamoeba/ultraestrutura , Biomassa , Vírus de DNA/genética , Vírus de DNA/crescimento & desenvolvimento , Vírus de DNA/isolamento & purificação , DNA Viral/biossíntese , Vírus Gigantes/genética , Vírus Gigantes/crescimento & desenvolvimento , Vírus Gigantes/isolamento & purificação , Interações Hospedeiro-Patógeno/genética , Fagossomos/ultraestrutura , Fagossomos/virologia , Microbiologia do Solo , Termogravimetria , Vacúolos/ultraestrutura , Vacúolos/virologia , Vírion/genética , Vírion/crescimento & desenvolvimento , Replicação Viral , Microtomografia por Raio-X
11.
Viruses ; 13(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498382

RESUMO

Kaumoebavirus infects the amoeba Vermamoeba vermiformis and has recently been described as a distant relative of the African swine fever virus. To characterize the diversity and evolution of this novel viral genus, we report here on the isolation and genome sequencing of a second strain of Kaumoebavirus, namely LCC10. Detailed analysis of the sequencing data suggested that its 362-Kb genome is linear with covalently closed hairpin termini, so that DNA forms a single continuous polynucleotide chain. Comparative genomic analysis indicated that although the two sequenced Kaumoebavirus strains share extensive gene collinearity, 180 predicted genes were either gained or lost in only one genome. As already observed in another distant relative, i.e., Faustovirus, which infects the same host, the center and extremities of the Kaumoebavirus genome exhibited a higher rate of sequence divergence and the major capsid protein gene was colonized by type-I introns. A possible role of the Vermamoeba host in the genesis of these evolutionary traits is hypothesized. The Kaumoebavirus genome exhibited a significant gene strand bias over the two-third of genome length, a feature not seen in the other members of the "extended Asfarviridae" clade. We suggest that this gene strand bias was induced by a putative single origin of DNA replication located near the genome extremity that imparted a selective force favoring the genes positioned on the leading strand.


Assuntos
Asfarviridae/genética , Genoma Viral , Vírus Gigantes/genética , Vírus não Classificados/genética , Asfarviridae/classificação , Proteínas do Capsídeo/genética , Replicação do DNA , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Evolução Molecular , Genes Virais , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/ultraestrutura , Lobosea/virologia , Filogenia , Esgotos/virologia , Proteínas Virais/genética , Vírus não Classificados/isolamento & purificação , Vírus não Classificados/ultraestrutura
12.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996429

RESUMO

Microbes trapped in permanently frozen paleosoils (permafrost) are the focus of increasing research in the context of global warming. Our previous investigations led to the discovery and reactivation of two Acanthamoeba-infecting giant viruses, Mollivirus sibericum and Pithovirus sibericum, from a 30,000-year old permafrost layer. While several modern pithovirus strains have since been isolated, no contemporary mollivirus relative was found. We now describe Mollivirus kamchatka, a close relative to M. sibericum, isolated from surface soil sampled on the bank of the Kronotsky River in Kamchatka, Russian Federation. This discovery confirms that molliviruses have not gone extinct and are at least present in a distant subarctic continental location. This modern isolate exhibits a nucleocytoplasmic replication cycle identical to that of M. sibericum Its spherical particle (0.6 µm in diameter) encloses a 648-kb GC-rich double-stranded DNA genome coding for 480 proteins, of which 61% are unique to these two molliviruses. The 461 homologous proteins are highly conserved (92% identical residues, on average), despite the presumed stasis of M. sibericum for the last 30,000 years. Selection pressure analyses show that most of these proteins contribute to virus fitness. The comparison of these first two molliviruses clarify their evolutionary relationship with the pandoraviruses, supporting their provisional classification in a distinct family, the Molliviridae, pending the eventual discovery of intermediary missing links better demonstrating their common ancestry.IMPORTANCE Virology has long been viewed through the prism of human, cattle, or plant diseases, leading to a largely incomplete picture of the viral world. The serendipitous discovery of the first giant virus visible under a light microscope (i.e., >0.3 µm in diameter), mimivirus, opened a new era of environmental virology, now incorporating protozoan-infecting viruses. Planet-wide isolation studies and metagenome analyses have shown the presence of giant viruses in most terrestrial and aquatic environments, including upper Pleistocene frozen soils. Those systematic surveys have led authors to propose several new distinct families, including the Mimiviridae, Marseilleviridae, Faustoviridae, Pandoraviridae, and Pithoviridae We now propose to introduce one additional family, the Molliviridae, following the description of M. kamchatka, the first modern relative of M. sibericum, previously isolated from 30,000-year-old arctic permafrost.


Assuntos
Vírus Gigantes/classificação , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação , Filogenia , Acanthamoeba/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral , Genômica , Vírus Gigantes/ultraestrutura , Mimiviridae/classificação , Mimiviridae/genética , Federação Russa , Microbiologia do Solo , Vírion/genética , Vírion/ultraestrutura , Vírus não Classificados/classificação , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificação
13.
J Vis Exp ; (152)2019 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-31710032

RESUMO

During the amoeba co-culture process, more than one virus may be isolated in a single well. We previously solved this issue by end point dilution and/or fluorescence activated cell sorting (FACS) applied to the viral population. However, when the viruses in the mixture have similar morphologic properties and one of the viruses multiplies slowly, the presence of two viruses is discovered at the stage of genome assembly and the viruses cannot be separated for further characterization. To solve this problem, we developed a single cell micro-aspiration procedure that allows for separation and cloning of highly similar viruses. In the present work, we present how this alternative strategy allowed us to separate the small viral subpopulations of Clandestinovirus ST1 and Usurpativirus LCD7, giant viruses that grow slowly and do not lead to amoebal lysis compared to the lytic and fast-growing Faustovirus. Purity control was assessed by specific gene amplification and viruses were produced for further characterization.


Assuntos
Amoeba/virologia , Citometria de Fluxo/métodos , Vírus Gigantes/isolamento & purificação , Análise de Célula Única/métodos , Sucção
14.
Arch Virol ; 164(11): 2819-2822, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31482204

RESUMO

A recent study by Ghosh et al. compared the gut microbiomes of 20 preschool children from India and found an association between the gut microbiome and the nutritional status of the child. Here, we explored these metagenomes for the presence of genomic signatures of prokaryotic and eukaryotic viruses. Several of the viral signatures found in all 20 metagenomes belonged to giant viruses (GVs). In addition, we found hits for bacteriophages to several major human pathogens, including Shigella, Salmonella, Escherichia, and Enterobacter. Concurrently, we also detected several antibiotic resistance genes (ARGs) in the metagenomes. All of the ARGs detected in this study (beta-lactam, macrolide, metronidazole, and tetracycline) are associated with mobile genetic elements (MGEs) and have been reported to cause high levels of resistance to their respective antibiotics. Despite recent reports of giant viruses and their genomic signatures in gut microbiota, their role in human physiology remains poorly understood. The effect of cooccurrence of ARGs and GVs in the gut needs further investigation.


Assuntos
Bacteriófagos/genética , Microbioma Gastrointestinal/genética , Genoma Viral/genética , Vírus Gigantes/genética , Metagenoma/genética , Pré-Escolar , Resistência Microbiana a Medicamentos/genética , Enterobacter/genética , Escherichia/virologia , Vírus Gigantes/isolamento & purificação , Humanos , Índia , Sequências Repetitivas Dispersas/genética , Salmonella/virologia , Shigella/virologia
15.
Microbes Environ ; 34(3): 334-339, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31378760

RESUMO

Giant viruses of 'Megaviridae' have the ability to widely disperse around the globe. We herein examined 'Megaviridae' communities in four distinct aquatic environments (coastal and offshore seawater, brackish water, and hot spring freshwater), which are distantly located from each other (between 74 and 1,765 km), using a meta-barcoding method. We identified between 593 and 3,627 OTUs in each sample. Some OTUs were detected in all five samples tested as well as in many of the Tara Oceans metagenomes, suggesting the existence of viruses of this family in a wide range of habitats and the ability to circulate on the planet.


Assuntos
Ecossistema , Vírus Gigantes/fisiologia , Microbiologia da Água , DNA Polimerase Dirigida por DNA/genética , Água Doce/virologia , Geografia , Vírus Gigantes/classificação , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação , Metagenoma , Filogenia , Água do Mar/virologia , Proteínas Virais/genética
16.
Viruses ; 11(8)2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398856

RESUMO

The last decade has been marked by two eminent discoveries that have changed our perception of the virology field: The discovery of giant viruses and a distinct new class of viral agents that parasitize their viral factories, the virophages. Coculture and metagenomics have actively contributed to the expansion of the virophage family by isolating dozens of new members. This increase in the body of data on virophage not only revealed the diversity of the virophage group, but also the relevant ecological impact of these small viruses and their potential role in the dynamics of the microbial network. In addition, the isolation of virophages has led us to discover previously unknown features displayed by their host viruses and cells. In this review, we present an update of all the knowledge on the isolation, biology, genomics, and morphological features of the virophages, a decade after the discovery of their first member, the Sputnik virophage. We discuss their parasitic lifestyle as bona fide viruses of the giant virus factories, genetic parasites of their genomes, and then their role as a key component or target for some host defense mechanisms during the tripartite virophage-giant virus-host cell interaction. We also present the latest advances regarding their origin, classification, and definition that have been widely discussed.


Assuntos
Vírus Gigantes/fisiologia , Virófagos/fisiologia , Animais , Evolução Biológica , Genoma Viral , Genômica/métodos , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/ultraestrutura , História do Século XXI , Interações Hospedeiro-Patógeno , Humanos , Sequências Repetitivas Dispersas , Estágios do Ciclo de Vida , Metagenômica/métodos , Pesquisa/história , Virologia/história , Virófagos/classificação , Virófagos/isolamento & purificação , Virófagos/ultraestrutura
17.
Commun Biol ; 2: 216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240254

RESUMO

The race to discover and isolate giant viruses began 15 years ago. Metagenomics is counterbalancing coculture, with the detection of giant virus genomes becoming faster as sequencing technologies develop. Since the discovery of giant viruses, many efforts have been made to improve methods for coculturing amebas and giant viruses, which remains the key engine of isolation of these microorganisms. However, these techniques still lack the proper tools for high-speed detection. In this paper, we present advances in the isolation of giant viruses. A new strategy was developed using a high-throughput microscope for real-time monitoring of cocultures using optimized algorithms targeting infected amebas. After validating the strategy, we adapted a new tabletop scanning electron microscope for high-speed identification of giant viruses directly from culture. The speed and isolation rate of this strategy has raised the coculture to almost the same level as sequencing techniques in terms of detection speed and sensitivity.


Assuntos
Vírus Gigantes/isolamento & purificação , Acanthamoeba/virologia , Fluorescência , Vírus Gigantes/genética , Vírus Gigantes/patogenicidade , Microscopia Eletrônica de Varredura , Replicação Viral
18.
Viruses ; 11(4)2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935049

RESUMO

The history of giant viruses began in 2003 with the identification of Acanthamoeba polyphaga mimivirus. Since then, giant viruses of amoeba enlightened an unknown part of the viral world, and every discovery and characterization of a new giant virus modifies our perception of the virosphere. This notably includes their exceptional virion sizes from 200 nm to 2 µm and their genomic complexity with length, number of genes, and functions such as translational components never seen before. Even more surprising, Mimivirus possesses a unique mobilome composed of virophages, transpovirons, and a defense system against virophages named Mimivirus virophage resistance element (MIMIVIRE). From the discovery and isolation of new giant viruses to their possible roles in humans, this review shows the active contribution of the University Hospital Institute (IHU) Mediterranee Infection to the growing knowledge of the giant viruses' field.


Assuntos
Amoeba/virologia , Pesquisa Biomédica/tendências , Vírus Gigantes/isolamento & purificação , Virologia/tendências , Vírus Gigantes/classificação , Vírus Gigantes/genética , Vírus Gigantes/ultraestrutura , Interações entre Hospedeiro e Microrganismos
19.
mBio ; 10(2)2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837339

RESUMO

The nucleocytoplasmic large DNA viruses (NCLDV) of eukaryotes (proposed order, "Megavirales") include the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Marseilleviridae, and Mimiviridae, as well as still unclassified pithoviruses, pandoraviruses, molliviruses, and faustoviruses. Several of these virus groups include giant viruses, with genome and particle sizes exceeding those of many bacterial and archaeal cells. We explored the diversity of the NCLDV in deep sea sediments from the Loki's Castle hydrothermal vent area. Using metagenomics, we reconstructed 23 high-quality genomic bins of novel NCLDV, 15 of which are related to pithoviruses, 5 to marseilleviruses, 1 to iridoviruses, and 2 to klosneuviruses. Some of the identified pithovirus-like and marseillevirus-like genomes belong to deep branches in the phylogenetic tree of core NCLDV genes, substantially expanding the diversity and phylogenetic depth of the respective groups. The discovered viruses, including putative giant members of the family Marseilleviridae, have a broad range of apparent genome sizes, in agreement with the multiple, independent origins of gigantism in different branches of the NCLDV. Phylogenomic analysis reaffirms the monophyly of the pithovirus-iridovirus-marseillevirus branch of the NCLDV. Similarly to other giant viruses, the pithovirus-like viruses from Loki's Castle encode translation systems components. Phylogenetic analysis of these genes indicates a greater bacterial contribution than had been detected previously. Genome comparison suggests extensive gene exchange between members of the pithovirus-like viruses and Mimiviridae Further exploration of the genomic diversity of Megavirales in additional sediment samples is expected to yield new insights into the evolution of giant viruses and the composition of the ocean megavirome.IMPORTANCE Genomics and evolution of giant viruses are two of the most vigorously developing areas of virus research. Lately, metagenomics has become the main source of new virus genomes. Here we describe a metagenomic analysis of the genomes of large and giant viruses from deep sea sediments. The assembled new virus genomes substantially expand the known diversity of the nucleocytoplasmic large DNA viruses of eukaryotes. The results support the concept of independent evolution of giant viruses from smaller ancestors in different virus branches.


Assuntos
DNA Viral/genética , Variação Genética , Genoma Viral , Sedimentos Geológicos/virologia , Vírus Gigantes/classificação , Vírus Gigantes/isolamento & purificação , Oceano Atlântico , DNA Viral/química , Vírus Gigantes/genética , Fontes Hidrotermais , Metagenômica , Filogenia , Análise de Sequência de DNA
20.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541841

RESUMO

Giant viruses are complex members of the virosphere, exhibiting outstanding structural and genomic features. Among these viruses, the pandoraviruses are some of the most intriguing members, exhibiting giant particles and genomes presenting at up to 2.5 Mb, with many genes having no known function. In this work, we analyzed, by virological and microscopic methods, the replication cycle steps of three new pandoravirus isolates from samples collected in different regions of Brazil. Our data indicate that all analyzed pandoravirus isolates can deeply modify the Acanthamoeba cytoplasmic environment, recruiting mitochondria and membranes into and around the electron-lucent viral factories. We also observed that the viral factories start forming before the complete degradation of the cellular nucleus. Various patterns of pandoravirus particle morphogenesis were observed, and the assembly of the particles seemed to be started either by the apex or by the opposite side. On the basis of the counting of viral particles during the infection time course, we observed that pandoravirus particles could undergo exocytosis after their morphogenesis in a process that involved intense recruitment of membranes that wrapped the just-formed particles. The treatment of infected cells with brefeldin affected particle exocytosis in two of the three analyzed strains, indicating biological variability among isolates. Despite such particle exocytosis, the lysis of host cells also contributed to viral release. This work reinforces knowledge of and reveals important steps in the replication cycle of pandoraviruses.IMPORTANCE The emerging Pandoraviridae family is composed of some of the most complex viruses known to date. Only a few pandoravirus isolates have been described until now, and many aspects of their life cycle remain to be elucidated. A comprehensive description of the replication cycle is pivotal to a better understanding of the biology of the virus. For this report, we describe new pandoraviruses and used different methods to better characterize the steps of the replication cycle of this new group of viruses. Our results provide new information about the diversity and biology of these giant viruses.


Assuntos
Acanthamoeba castellanii/virologia , Vírus de DNA/genética , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia , Brasil , Vírus de DNA/isolamento & purificação , Genoma Viral/genética , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA