RESUMO
Many diseases of unknown etiology with symptoms like those caused by plant viruses but for which no virions could be found were described during the early and mid-20th century [...].
Assuntos
Doenças das Plantas , Viroides , Doenças das Plantas/virologia , Viroides/genética , Viroides/fisiologia , Animais , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Vírus Satélites/genética , Vírus Satélites/fisiologia , Plantas/virologiaRESUMO
Begomoviruses, transmitted by the whitefly Bemisia tabaci, pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread and association of these molecules with helper viruses in host plants are thus matters of concern. Here, we focus on the propagation of betasatellites and, more specifically, on their transfer between different helper viruses and hosts through vector transmission. Our results show that the cotton leaf curl Gezira betasatellite (CLCuGeB), initially acquired with its helper virus cotton leaf curl Gezira virus (CLCuGeV) from an okra plant, can be transmitted and assisted by a different helper virus, tomato yellow leaf curl virus (TYLCV), in a different host plant (tomato plant). The new association can be formed whether TYLCV and CLCuGeB encounter each other in a host plant previously infected with TYLCV or in whiteflies having acquired the different components separately. Our findings reveal two pathways by which betasatellites can be transferred between helper viruses and host plants and highlight the ability of betasatellites to spread in begomovirus-infected environments.
Assuntos
Begomovirus , DNA Satélite , Vírus Auxiliares , Hemípteros , Insetos Vetores , Doenças das Plantas , Animais , Begomovirus/genética , Hemípteros/virologia , Insetos Vetores/virologia , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , Doenças das Plantas/virologia , DNA Satélite/genética , Solanum lycopersicum/virologia , Abelmoschus/virologia , Vírus Satélites/genéticaRESUMO
Using a high-throughput sequencing (HTS) approach, we report the discovery of a new alphasatellite identified in a winter barley plant collected in France in 2022 that was also infected by wheat dwarf virus (WDV). The presence of the satellite and of WDV was confirmed by several independent PCR assays, and the complete genome sequence was determined. The circular satellite genome is 1424 nt long and shows typical hallmarks of members of the subfamily Geminialphasatellitinae, including a replication-associated hairpin with a CAGTATTAC sequence and a Rep-encoding open reading frame (ORF). It also possesses a second ORF, embedded in a different frame within the Rep ORF, which is also observed in clecrusatellites and a few other members of the family Alphasatellitidae. Pairwise sequence comparisons and phylogenetic analysis showed that this satellite represents a novel species. Its closest relatives are in the genus Colecusatellite, but it likely represents a new genus given its divergence from other genera of the subfamily Geminialphasatellitinae. Given that WDV was the only virus observed in coinfection with the satellite, the name "wheat dwarf virus-associated alphasatellite" is proposed for this novel agent.
Assuntos
Genoma Viral , Hordeum , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , França , Hordeum/virologia , Doenças das Plantas/virologia , Genoma Viral/genética , Geminiviridae/genética , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Vírus Satélites/genética , Vírus Satélites/classificação , Vírus Satélites/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
In this paper, the characteristics of 40 so far described virophages-parasites of giant viruses-are given, and the similarities and differences between virophages and satellite viruses, which also, like virophages, require helper viruses for replication, are described. The replication of virophages taking place at a specific site-the viral particle factory of giant viruses-and its consequences are presented, and the defence mechanisms of virophages for giant virus hosts, as a protective action for giant virus hosts-protozoa and algae-are approximated. The defence systems of giant viruses against virophages were also presented, which are similar to the CRISPR/Cas defence system found in bacteria and in Archea. These facts, and related to the very specific biological features of virophages (specific site of replication, specific mechanisms of their defensive effects for giant virus hosts, defence systems in giant viruses against virophages), indicate that virophages, and their host giant viruses, are biological objects, forming a 'novelty' in biology.
Assuntos
Vírus Gigantes , Vírus Satélites , Virófagos , Replicação Viral , Vírus Gigantes/genética , Vírus Gigantes/fisiologia , Vírus Satélites/genética , Virófagos/genética , Inativação GênicaRESUMO
Begomoviruses have emerged as destructive pathogens of crops, particularly in the tropics and subtropics, causing enormous economic losses and threatening food security. Epidemics caused by begomoviruses have even spread in regions and crops that were previously free from these viruses. The most seriously affected crops include cassava; cotton; grain legumes; and cucurbitaceous, malvaceous, and solanaceous vegetables. Alphasatellites, betasatellites, and deltasatellites are associated with the diseases caused by begomoviruses, but begomovirus-betasatellite complexes have played significant roles in the evolution of begomoviruses, causing widespread epidemics in many economically important crops throughout the world. This article provides an overview of the evolution, distribution, and approaches used by betasatellites in the suppression of host plant defense responses and increasing disease severity.
Assuntos
Begomovirus , Produtos Agrícolas , Doenças das Plantas , Begomovirus/genética , Begomovirus/fisiologia , Doenças das Plantas/virologia , Produtos Agrícolas/virologia , Vírus Satélites/genética , Vírus Satélites/fisiologia , Vírus Satélites/classificação , Evolução Molecular , DNA Satélite/genética , FilogeniaRESUMO
Bacterial viruses (phages) are potent agents of lateral gene transfer and thus are important drivers of evolution. A group of mobile genetic elements, referred to as phage satellites, exploits phages to disseminate their own genetic material. Here, we isolated a novel member of the family Inoviridae, Shewanella phage Dolos, along with an autonomously replicating plasmid, pDolos. Dolos causes a chronic infection in its host Shewanella oneidensis by phage production with only minor effects on the host cell proliferation. When present, plasmid pDolos hijacks Dolos functions to be predominantly packaged into phage virions and released into the environment and, thus, acts as a phage satellite. pDolos can disseminate further genetic material encoding, e.g., resistances or fluorophores to host cells sensitive to Dolos infection. Given the rather simple requirements of a plasmid for takeover of an inovirus and the wide distribution of phages of this group, we speculate that similar phage-satellite systems are common among bacteria.IMPORTANCEPhage satellites are mobile genetic elements, which hijack phages to be transferred to other host cells. The vast majority of these phage satellites integrate within the host's chromosome, and they all carry remaining phage genes. Here, we identified a novel phage satellite, pDolos, which uses an inovirus for dissemination. pDolos (i) remains as an autonomously replicating plasmid within its host, (ii) does not carry recognizable phage genes, and (iii) is smaller than any other phage satellites identified so far. Thus, pDolos is the first member of a new class of phage satellites, which resemble natural versions of phagemids.
Assuntos
Plasmídeos , Shewanella , Plasmídeos/genética , Shewanella/virologia , Shewanella/genética , Inovirus/genética , Vírus Satélites/genética , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificaçãoRESUMO
Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.
Assuntos
Beta vulgaris , Doenças das Plantas , Vírus de Plantas , Vírus Satélites , Beta vulgaris/virologia , Doenças das Plantas/virologia , Vírus Satélites/genética , Vírus Satélites/fisiologia , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Vírus Auxiliares/genética , Vírus Auxiliares/fisiologia , RNA Viral/genética , Raízes de Plantas/virologia , Genoma Viral/genética , Microbiologia do SoloRESUMO
BACKGROUND: Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise. HYPOTHESIS: Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo. STUDY DESIGN: Controlled laboratory study. METHODS: Osteochondral defects were created in the femoral trochlea of adult sheep and treated with rAAV-IGF-1 or rAAV-lacZ (control) (24 defects in 6 knees per group). After 6 months in vivo, osteochondral repair and perifocal OA were assessed by well-established macroscopic, histological, and immunohistochemical scoring systems as well as biochemical and micro-computed tomography evaluations. RESULTS: Application of rAAV-IGF-1 led to prolonged (6 months) IGF-1 overexpression without adverse effects, maintaining a significantly superior overall cartilage repair, together with significantly improved defect filling, extracellular matrix staining, cellular morphology, and surface architecture compared with rAAV-lacZ. Expression of type II collagen significantly increased and that of type I collagen significantly decreased. Subchondral bone repair and tidemark formation were significantly improved, and subchondral bone plate thickness and subarticular spongiosa mineral density returned to normal. The OA parameters of perifocal structure, cell cloning, and matrix staining were significantly better preserved upon rAAV-IGF-1 compared with rAAV-lacZ. Novel mechanistic associations between parameters of osteochondral repair and OA were identified. CONCLUSION: Local rAAV-mediated IGF-1 overexpression enhanced osteochondral repair and ameliorated parameters of perifocal early OA. CLINICAL RELEVANCE: IGF-1 gene therapy may be beneficial in repair of focal osteochondral defects and prevention of perifocal OA.
Assuntos
Cartilagem Articular , Fator de Crescimento Insulin-Like I , Osteoartrite , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Dependovirus/genética , Terapia Genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/uso terapêutico , Osteoartrite/genética , Osteoartrite/terapia , Osteoartrite/metabolismo , Vírus Satélites/genética , Vírus Satélites/metabolismo , Ovinos/genética , Microtomografia por Raio-XRESUMO
Sclerotinia sclerotiorum is a necrotrophic fungal pathogen causing white mold on many important economic crops. Recently, some mycoviruses such as S. sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) converted S. sclerotiorum into a beneficial symbiont that helps plants manage pathogens and other stresses. To explore the potential use of SsHADV-1 as a biocontrol agent in the United States and to test the efficacy of SsHADV-1-infected United States isolates in managing white mold and other crop diseases, SsHADV-1 was transferred from the Chinese strain DT-8 to United States isolates of S. sclerotiorum. SsHADV-1 is readily transmitted horizontally among United States isolates of S. sclerotiorum and consistently conferred hypovirulence to its host strains. Biopriming of dry bean seeds with hypovirulent S. sclerotiorum strains enhanced resistance to white mold, gray mold, and Rhizoctonia root rot. To investigate the underlying mechanisms, endophytic growth of hypovirulent S. sclerotiorum in dry beans was confirmed using PCR, and the expression of 12 plant defense-related genes were monitored before and after infection. The results indicated that the endophytic growth of SsHADV-1-infected strains in plants stimulated the expression of plant immunity pathway genes that assisted a rapid response from the plant to fungal infection. Finally, application of the seed biopriming technology with SsHADV-1-infected hypervirulent strain has promise for the biological control of several diseases of wheat, pea, and sunflower.
Assuntos
Ascomicetos , Micovírus , Vírus Satélites , Ascomicetos/genética , Vírus de DNA/genéticaRESUMO
Several viruses are transmitted by eriophyid mites (Acariformes: Eriophyoidea) including blackberry leaf mottle-associated emaravirus (BLMaV) (Emaravirus rubi). BLMaV is transmitted by an unidentified eriophyid species and is involved in blackberry yellow vein, a devastating disease in the southeastern United States. In this study, we assessed the eriophyid mite Phylocoptes parviflori as a vector of BLMaV and clarified its taxonomic status as it was previously synonymized with Phyllocoptes gracilis. P. parviflori can efficiently transmit BLMaV. The virus was found to cause yellow vein disease symptoms on 'Ouachita' blackberry marking a paradigm shift as disease symptoms have always been associated with multiple virus infections. Therefore, we propose renaming the virus to blackberry leaf mottle virus. The occurrence of P. parviflori on wild and cultivated blackberries, as well as its ability to colonize other Rubus species, enhances its importance as a major contributor to the spread of yellow vein disease.
Assuntos
Ácaros , Vírus de RNA , Rubus , Animais , Vírus Satélites , Folhas de PlantaRESUMO
A novel emaravirus, tentatively named "clematis yellow mottle associated virus" (CYMaV), was identified through transcriptome sequencing and RT-PCR analysis of yellow-mottled leaf samples from Clematis brevicaudata DC. The genome of CYMaV consists of five viral RNAs: RNA1 (6591 nucleotides, nt), RNA2 (1982 nt), RNA3a (1301 nt), RNA3b (1397 nt), and RNA4 (1192 nt). The 13-nt sequences at the 5'- and 3'-termini of the CYMaV RNAs are conserved and have reverse complementary, as typically seen in emaraviruses. The proteins encoded by CYMaV shared the highest amino acid sequence similarity with those of the unclassified Karaka Okahu purepure emaravirus (KOPV), with 60.2% identity in the RNA-dependent RNA polymerase (RdRp), 44.4% in the glycoprotein precursor, and 46.9% in the nucleocapsid protein. A phylogenetic tree based on amino acid sequences of the RdRp revealed that CYMaV is most closely related to KOPV and clusters with ChMaV (chrysanthemum mosaic-associated virus, LC576445) and PCLSaV (pear chlorotic leaf spot-associated virus, MK602177) in one distinct clade. Transmission electron microscopy observation of negatively stained samples from C. brevicaudata revealed spherical virus-like particles (VLPs) approximately 100 nm in diameter. Five primers, specific for each viral RNA, were used to detect CYMaV in 11 symptomatic and two asymptomatic C. brevicaudata samples, but the results failed to show a consistent association of viral infection with symptoms. CYMaV can be considered a putative new member in the genus Emaravirus, and this marks the first report of an emaravirus found infecting C. brevicaudata plants.
Assuntos
Clematis , Vírus do Mosaico , Vírus de Plantas , Vírus de RNA , Clematis/genética , Filogenia , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Viral/genética , Vírus Satélites/genética , Vírus do Mosaico/genética , RNA Polimerase Dependente de RNA/genéticaRESUMO
Introduction: Trichomonas vaginalis genome is among the largest genome size and coding capacities. Combinations of gene duplications, transposon, repeated sequences, and lateral gene transfers (LGTs) have contributed to the unexpected large genomic size and diversity. This study is aimed at investigating genomic exchange and seeking for presence of the CRISPR CAS system as one of the possible mechanisms for some level of genetic exchange. Material and Methods. In this comparative analysis, 398 publicly available Trichomonas vaginalis complete genomes were investigated for the presence of CRISPR CAS. Spacer sequences were also analyzed for their origin using BLAST. Results: We identified a CRISPR CAS (Cas3). CRISPR spacers are highly similar to transposable genetic elements such as viruses of protozoan parasites, especially megavirals, some transposons, and, interestingly, papillomavirus and HIV-1 in a few cases. Discussion. There is a striking similarity between the prokaryotes/Archaean CRISPR and what we find as eukaryotic CRISPR. About 5-10% of the 398 T. vaginalis possess a CRISPR structure. Conclusion: According to sequences and their organization, we assume that these repeated sequences and spacer, along with their mentioned features, could be the eukaryotic homolog of prokaryotes and Archaean CRISPR systems and may involve in a process similar to the CRISPR function.
Assuntos
Trichomonas vaginalis , Trichomonas vaginalis/genética , Vírus Satélites/genética , Sistemas CRISPR-Cas/genética , Células Eucarióticas , Genômica , Archaea/genética , Elementos de DNA TransponíveisRESUMO
Satellites are mobile genetic elements that are dependent upon the replication machinery of their helper viruses. Bacteriophages have provided many examples of satellite nucleic acids that utilize their helper morphogenic genes for propagation. Here we describe two novel satellite-helper phage systems, Mulch and Flayer, that infect Streptomyces species. The satellites in these systems encode for encapsidation machinery but have an absence of key replication genes, thus providing the first example of bacteriophage satellite viruses. We also show that codon usage of the satellites matches the tRNA gene content of the helpers. The satellite in one of these systems, Flayer, does not appear to integrate into the host genome, which represents the first example of a virulent satellite phage. The Flayer satellite has a unique tail adaptation that allows it to attach to its helper for simultaneous co-infection. These findings demonstrate an ever-increasing array of satellite strategies for genetic dependence on their helpers in the evolutionary arms race between satellite and helper phages.
Assuntos
Bacteriófagos , Streptomyces , Vírus Satélites/genética , Streptomyces/genética , Virulência , Vírus Auxiliares/genética , Bacteriófagos/genéticaRESUMO
Bladder cancer (BC) is a complex disease affecting the urinary system and is regulated by several carcinogenic factors. Viral infection is one such factor that has attracted extensive attention in BC. Human papillomavirus (HPV) is the most common sexually transmitted infection, and although multiple researchers have explored the role of HPV in BC, a consensus has not yet been reached. In addition, HPV-associated viruses (e.g., human immunodeficiency virus, herpes simplex virus, BK virus, and JC virus) appear to be responsible for the occurrence and progression of BC. This study systematically reviews the relationship between HPV-associated viruses and BC to elucidate the role of these viruses in the onset and progression of BC. In addition, the study aims to provide a greater insight into the biology of HPV-associated viruses, and assess potential strategies for treating virus-induced BC. The study additionally focuses on the rapid development of oncolytic viruses that provide a potentially novel option for the treatment of BC.
Assuntos
Vírus BK , Infecções por Papillomavirus , Neoplasias da Bexiga Urinária , Humanos , Papillomavirus Humano , Vírus Satélites , Infecções por Papillomavirus/complicaçõesRESUMO
Aspen mosaic-associated virus (AsMaV) is a newly identified Emaravirus, in the family Fimoviridae, Bunyavirales, associated with mosaic symptoms in aspen trees (Populus tremula). Aspen trees are widely distributed in Europe and understanding the population structure of AsMaV may aid in the development of better management strategies. The virus genome consists of five negative-sense single-stranded RNA (-ssRNA) molecules. To investigate the genetic diversity and population parameters of AsMaV, different regions of the genome were amplified and analyzed and full-length sequence of the divergent isolates were cloned and sequenced. The results show that RNA3 or nucleoprotein is a good representative for studying genetic diversity in AsMaV. Developed RT-PCR-RFLP was able to identify areas with a higher number of haplotypes and could be applied for screening the large number of samples. In general, AsMaV has a conserved genome and based on the phylogenetic studies, geographical structuring was observed in AsMaV isolates from Sweden and Finland, which could be attributed to founder effects. The genome of AsMaV is under purifying selection but not distributed uniformly on genomic RNAs. Distant AsMaV isolates displayed amino acid sequence variations compared to other isolates, and bioinformatic analysis predicted potential post-translational modification sites in some viral proteins.
Assuntos
Vírus do Mosaico , Vírus Satélites , Finlândia , Suécia , Filogenia , Genética PopulacionalRESUMO
Adeno-associated virus (AAV) vector has shown multiple clinical breakthroughs, but its clinical implementation in inhaled gene therapy remains elusive due to difficulty in transducing lung airway cells. We demonstrate here AAV serotype 6 (AAV6) associated with extracellular vesicles (EVs) and secreted from vector-producing HEK-293 cells during vector preparation (EVAAV6) as a safe and highly efficacious gene delivery platform for inhaled gene therapy applications. Specifically, we discovered that EVAAV6 provided markedly enhanced reporter transgene expression in mucus-covered air-liquid interface (ALI) cultures of primary human bronchial and nasal epithelial cells as well as in mouse lung airways compared to standard preparations of AAV6 alone. Of note, AAV6 has been previously shown to outperform other clinically tested AAV serotypes, including those approved by the FDA for treating non-lung diseases, in transducing ALI cultures of primary human airway cells. We provide compelling experimental evidence that the superior performance of EVAAV6 is attributed to the ability of EV to facilitate mucus penetration and cellular entry/transduction of AAV6. The tight and stable linkage between AAV6 and EVs appears essential to exploit the benefits of EVs given that a physical mixture of individually prepared EVs and AAV6 failed to mediate EV-AAV6 interactions or to enhance gene transfer efficacy.
Assuntos
Vesículas Extracelulares , Vírus Satélites , Camundongos , Animais , Humanos , Vírus Satélites/genética , Transdução Genética , Dependovirus/genética , Células HEK293RESUMO
Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species.
Assuntos
Quirópteros , Coinfecção , Viroses , Vírus , Animais , Vírus Satélites/genética , Metagenômica , Filogenia , Vírus/genética , Retroviridae/genética , Vírus de Hepatite/genética , Insetos/genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
The movement of pollen grains from anthers to stigmas, often by insect pollinator vectors, is essential for plant reproduction. However, pollen is also a unique vehicle for viral spread. Pollen-associated plant viruses reside on the outside or inside of pollen grains, infect susceptible individuals through vertical or horizontal infection pathways, and can decrease plant fitness. These viruses are transferred with pollen between plants by pollinator vectors as they forage for floral resources; thus, pollen-associated viral spread is mediated by floral and pollen grain phenotypes and pollinator traits, much like pollination. Most of what is currently known about pollen-associated viruses was discovered through infection and transmission experiments in controlled settings, usually involving one virus and one plant species of agricultural or horticultural interest. In this review, we first provide an updated, comprehensive list of the recognized pollen-associated viruses. Then, we summarize virus, plant, pollinator vector, and landscape traits that can affect pollen-associated virus transmission, infection, and distribution. Next, we highlight the consequences of plant-pollinator-virus interactions that emerge in complex communities of co-flowering plants and pollinator vectors, such as pollen-associated virus spread between plant species and viral jumps from plant to pollinator hosts. We conclude by emphasizing the need for collaborative research that bridges pollen biology, virology, and pollination biology.
Assuntos
Vírus Satélites , Viroma , Plantas , Pólen , Polinização , FloresRESUMO
Satellite viruses are present across all domains of life, defined as subviral parasites that require infection by another virus for satellite progeny production. Phage satellites exhibit various regulatory mechanisms to manipulate phage gene expression to the benefit of the satellite, redirecting resources from the phage to the satellite, and often inhibiting phage progeny production. While small RNAs (sRNAs) are well documented as regulators of prokaryotic gene expression, they have not been shown to play a regulatory role in satellite-phage conflicts. Vibrio cholerae encodes the phage inducible chromosomal island-like element (PLE), a phage satellite, to defend itself against the lytic phage ICP1. Here, we use Hi-GRIL-seq to identify a complex RNA-RNA interactome between PLE and ICP1. Both inter- and intragenome RNA interactions were detected, headlined by the PLE sRNA, SviR. SviR is involved in regulating both PLE and ICP1 gene expression uniquely, decreasing ICP1 target translation and affecting PLE transcripts. The striking conservation of SviR across all known PLEs suggests the sRNA is deeply rooted in the PLE-ICP1 conflict and implicates sRNAs as unidentified regulators of gene expression in phage-satellite interactions.
Assuntos
Bacteriófagos , Pequeno RNA não Traduzido , Vibrio cholerae , Bacteriófagos/metabolismo , Vibrio cholerae/genética , Vírus Satélites/genética , Expressão Gênica , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismoRESUMO
We determined the complete genome sequence of a new virus infecting Ecballium elaterium ('cohombrillo amargo') plants, a weed species common on the borders of cultivated fields in the Mediterranean region. The genome of this virus is composed of two molecules of monocistronic positive-sense RNA, 6,934 and 3,501 nucleotides in length, excluding their poly(A) tails. The highest amino acid sequence similarity (50 % identity) in the Pro-Pol core region encoded by RNA 1 was observed in the corresponding protein of strawberry latent ringspot virus. Based on pairwise comparisons and phylogenetic analysis, this virus, tentatively named "cohombrillo-associated virus" (CoAV), appears to be a member of a new species in the genus Stralarivirus (family Secoviridae), for which the name "Stralarivirus elaterii" is proposed. This new virus has different putative cleavage patterns from members of other species belonging to this genus.