Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Front Immunol ; 11: 1926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983119

RESUMO

Innate immunity is the first-line defense against antiviral or antimicrobial infection. RIG-I and MDA5, which mediate the recognition of pathogen-derived nucleic acids, are essential for production of type I interferons (IFN). Here, we identified mitochondrion depolarization inducer carbonyl cyanide 3-chlorophenylhydrazone (CCCP) inhibited the response and antiviral activity of type I IFN during viral infection. Furthermore, we found that the PTEN-induced putative kinase 1 (PINK1) and the E3 ubiquitin-protein ligase Parkin mediated mitophagy, thus negatively regulating the activation of RIG-I and MDA5. Parkin directly interacted with and catalyzed the K48-linked polyubiquitination and subsequent degradation of RIG-I and MDA5. Thus, we demonstrate that Parkin limits RLR-triggered innate immunity activation, suggesting Parkin as a potential therapeutic target for the control of viral infection.


Assuntos
Proteína DEAD-box 58/metabolismo , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/metabolismo , Mitocôndrias/imunologia , Receptores Imunológicos/metabolismo , Vírus Sendai/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Vesiculovirus/imunologia , Células A549 , Animais , Chlorocebus aethiops , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Hidrazonas/farmacologia , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/virologia , Mitofagia , Proteínas Quinases/metabolismo , Células RAW 264.7 , Vírus Sendai/genética , Vírus Sendai/patogenicidade , Células THP-1 , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Desacopladores/farmacologia , Células Vero , Vesiculovirus/genética , Vesiculovirus/patogenicidade
2.
FEBS J ; 287(17): 3672-3676, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32692465

RESUMO

The novel coronavirus SARS-CoV-2 is the causative agent of the global coronavirus disease 2019 (COVID-19) outbreak. In addition to pneumonia, other COVID-19-associated symptoms have been reported, including loss of smell (anosmia). However, the connection between infection with coronavirus and anosmia remains enigmatic. It has been reported that defects in olfactory cilia lead to anosmia. In this Viewpoint, we summarize transmission electron microscopic studies of cilia in virus-infected cells. In the human nasal epithelium, coronavirus infects the ciliated cells and causes deciliation. Research has shown that viruses such as influenza and Sendai attach to the ciliary membrane. The Sendai virus enters cilia by fusing its viral membrane with the ciliary membrane. A recent study on SARS-CoV-2-human protein-protein interactions revealed that the viral nonstructural protein Nsp13 interacts with the centrosome components, providing a potential molecular link. The mucociliary escalator removes inhaled pathogenic particles and functions as the first line of protection mechanism against viral infection in the human airway. Thus, future investigation into the virus-cilium interface will help further the battle against COVID-19.


Assuntos
Anosmia/metabolismo , COVID-19/metabolismo , Centrossomo/virologia , Cílios/virologia , Mucosa Nasal/virologia , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Anosmia/complicações , Anosmia/fisiopatologia , Anosmia/virologia , COVID-19/complicações , COVID-19/fisiopatologia , COVID-19/virologia , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Cílios/metabolismo , Cílios/ultraestrutura , Interações Hospedeiro-Patógeno/genética , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mucosa Nasal/metabolismo , Mucosa Nasal/ultraestrutura , Orthomyxoviridae/metabolismo , Orthomyxoviridae/patogenicidade , Ligação Proteica , RNA Helicases/genética , RNA Helicases/metabolismo , SARS-CoV-2/metabolismo , Vírus Sendai/metabolismo , Vírus Sendai/patogenicidade , Índice de Gravidade de Doença , Olfato/fisiologia , Proteínas não Estruturais Virais/genética
3.
Dis Model Mech ; 13(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32461220

RESUMO

Mammalian organs consist of diverse, intermixed cell types that signal to each other via ligand-receptor interactions - an interactome - to ensure development, homeostasis and injury-repair. Dissecting such intercellular interactions is facilitated by rapidly growing single-cell RNA sequencing (scRNA-seq) data; however, existing computational methods are often not readily adaptable by bench scientists without advanced programming skills. Here, we describe a quantitative intuitive algorithm, coupled with an optimized experimental protocol, to construct and compare interactomes in control and Sendai virus-infected mouse lungs. A minimum of 90 cells per cell type compensates for the known gene dropout issue in scRNA-seq and achieves comparable sensitivity to bulk RNA sequencing. Cell lineage normalization after cell sorting allows cost-efficient representation of cell types of interest. A numeric representation of ligand-receptor interactions identifies, as outliers, known and potentially new interactions as well as changes upon viral infection. Our experimental and computational approaches can be generalized to other organs and human samples.


Assuntos
Perfilação da Expressão Gênica , Pulmão/virologia , RNA-Seq , Infecções por Respirovirus/virologia , Vírus Sendai/patogenicidade , Análise de Célula Única , Transcriptoma , Animais , Comunicação Celular , Linhagem da Célula , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Infecções por Respirovirus/genética , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/patologia , Transdução de Sinais
4.
RNA Biol ; 17(3): 366-380, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829086

RESUMO

Quaking (QKI) is an RNA-binding protein (RBP) involved in multiple aspects of RNA metabolism and many biological processes. Despite a known immune function in regulating monocyte differentiation and inflammatory responses, the degree to which QKI regulates the host interferon (IFN) response remains poorly characterized. Here we show that QKI ablation enhances poly(I:C) and viral infection-induced IFNß transcription. Characterization of IFN-related signalling cascades reveals that QKI knockout results in higher levels of IRF3 phosphorylation. Interestingly, complementation with QKI-5 isoform alone is sufficient to rescue this phenotype and reduce IRF3 phosphorylation. Further analysis shows that MAVS, but not RIG-I or MDA5, is robustly upregulated in the absence of QKI, suggesting that QKI downregulates MAVS and thus represses the host IFN response. As expected, MAVS depletion reduces IFNß activation and knockout of MAVS in the QKI knockout cells completely abolishes IFNß induction. Consistently, ectopic expression of RIG-I activates stronger IFNß induction via MAVS-IRF3 pathway in the absence of QKI. Collectively, these findings demonstrate a novel role for QKI in negatively regulating host IFN response by reducing MAVS levels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Interferon Tipo I/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Fosforilação , Poli I-C/genética , Poli I-C/metabolismo , Proteínas de Ligação a RNA/genética , Infecções por Respirovirus/metabolismo , Vírus Sendai/patogenicidade
5.
Mol Cell ; 74(1): 19-31.e7, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30878284

RESUMO

Viral infection triggers host defenses through pattern-recognition receptor-mediated cytokine production, inflammasome activation, and apoptosis of the infected cells. Inflammasome-activated caspases are known to cleave cyclic GMP-AMP synthase (cGAS). Here, we found that apoptotic caspases are critically involved in regulating both DNA and RNA virus-triggered host defenses, in which activated caspase-3 cleaved cGAS, MAVS, and IRF3 to prevent cytokine overproduction. Caspase-3 was exclusively required in human cells, whereas caspase-7 was involved only in murine cells to inactivate cGAS, reflecting distinct regulatory mechanisms in different species. Caspase-mediated cGAS cleavage was enhanced in the presence of dsDNA. Alternative MAVS cleavage sites were used to ensure the inactivation of this critical protein. Elevated type I IFNs were detected in caspase-3-deficient cells without any infection. Casp3-/- mice consistently showed increased resistance to viral infection and experimental autoimmune encephalomyelitis. Our results demonstrate that apoptotic caspases control innate immunity and maintain immune homeostasis against viral infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Caspases/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Nucleotidiltransferases/metabolismo , Viroses/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caspase 2/genética , Caspase 2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Caspases/genética , Feminino , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Masculino , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Vírus Sendai/imunologia , Vírus Sendai/patogenicidade , Transdução de Sinais , Células THP-1 , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Viroses/genética , Viroses/imunologia , Viroses/virologia
6.
FEBS Lett ; 592(14): 2444-2457, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29931672

RESUMO

Parainfluenza virus infection is a common respiratory illness in children. Although lncRNAs are novel regulators of virus-induced innate immunity, a systemic attempt to characterize the differential expression of lncRNAs upon parainfluenza virus infection is lacking. In this report, we identify 207 lncRNAs and 166 mRNAs differentially expressed in SeV-infected HEK293T cells by microarray. The functional annotation analysis reveals that differentially regulated transcripts are predominantly involved in the host antiviral response pathway. The lncRNAs with the potential to regulate SeV-induced antiviral response are identified by building the lncRNA-mRNA coexpression network. Furthermore, silencing lncRNA ENST00000565297 results in reduced type I IFN signaling upon SeV infection. These catalogs may facilitate future analysis of the functions of lncRNAs in innate immunity and related diseases.


Assuntos
Imunidade Inata/genética , Infecções por Paramyxoviridae/genética , RNA Longo não Codificante/fisiologia , Criança , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Paramyxoviridae/imunologia , RNA Longo não Codificante/genética , Infecções por Respirovirus/genética , Infecções por Respirovirus/imunologia , Vírus Sendai/imunologia , Vírus Sendai/patogenicidade , Transcriptoma
7.
Mol Med Rep ; 18(2): 2458-2466, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29916539

RESUMO

Mitochondrial anti­viral signaling protein (VISA), additionally termed MAVS, IPS­1 and Cardif, is located at the outer membrane of mitochondria and is an essential adaptor in the Rig­like receptor (RLRs) signaling pathway. Upon viral infection, activated RLRs interact with VISA on mitochondria, forming a RLR­VISA platform, leading to the recruitment of different TRAF family members, including TRAF3, TRAF2 and TRAF6. This results in the phosphorylation and nuclear translocation of interferon regulatory factors 3 and 7 (IRF3/IRF7) by TANK binding kinase 1 (TBK1) and/or IKKε, as well as activation of NF­κB, to induce type I interferons (IFNs) and pro­inflammatory cytokines. It remains to be elucidated how VISA functions as a scaffold for protein complex assembly in mitochondria to regulate RLR­VISA antiviral signaling. In the present study, it was demonstrated that HAUS augmin like complex subunit 8 (HAUS8) augments the RLR­VISA­dependent antiviral signaling pathway by targeting the VISA complex. Co­immunoprecipitation verified that HAUS8 was associated with VISA and the VISA signaling complex components retinoic acid­inducible gene I (RIG­I) and TBK1 when the RLR­VISA signaling pathway was activated. The data demonstrated that overexpression of HAUS8 significantly promoted the activity of the transcription factors NF­κB, IRF3 and the IFN­ß promoter induced by Sendai virus­mediated RLR­VISA signaling. HAUS8 increased the polyubiquitination of VISA, RIG­I and TBK1. Knockdown of HAUS8 inhibited the activation of the transcription factors IRF­3, NF­κB and the IFN­ß promoter triggered by Sendai virus. Collectively, these results demonstrated that HAUS8 may function as a positive regulator of RLR­VISA dependent antiviral signaling by targeting the VISA complex, providing a novel regulatory mechanism of antiviral responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Associadas aos Microtúbulos/genética , Vírus Sendai/genética , Viroses/genética , Antivirais/química , Antivirais/uso terapêutico , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interferon Tipo I/genética , Interferon beta/genética , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias , NF-kappa B/genética , Vírus Sendai/patogenicidade , Transdução de Sinais/genética , Fator 2 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação , Viroses/prevenção & controle , Viroses/virologia
8.
PLoS One ; 13(1): e0190597, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293661

RESUMO

The cellular localisation of many innate signalling events following viral infection has yet to be elucidated, however there has been a few cases in which membranes of certain cellular organelles have acted as platforms to these events. Of these, lipid droplets (LDs) have recently been identified as signalling platforms for innate TLR7 and 9 signalling. Despite their wide range of similar roles in various metabolic pathways, LDs have been overlooked as potential platforms for antiviral innate signalling events. This study established an in vitro model to evaluate the efficiency of the early innate immune response in cells with reduced LD content to the viral mimics, dsDNA and dsRNA, and Sendai viral infection. Using RT-qPCR, the expression of IFN-ß and IFN-λ was quantified following stimulation along with the expression of specific ISGs. Luciferase based assays evaluated the combined expression of ISRE-promoter driven ISGs under IFN-ß stimulation. Cellular LD content did not alter the entry of fluorescently labelled viral mimics into cells, but significantly decreased the ability of both Huh-7 and HeLa cells to produce type I and III IFN, as well as downstream ISG expression, indicative of an impeded innate immune response. This observation was also seen during Sendai virus infection of HeLa cells, where both control and LD reduced cells replicated the virus to the same level, but a significantly impaired type I and III IFN response was observed in the LD reduced cells. In addition to altered IFN production, cells with reduced LD content exhibited decreased expression of specific antiviral ISGs: Viperin, IFIT-1 and OAS-1 under IFN-ß stimulation; However the overall induction of the ISRE-promoter was not effected. This study implicates a role for LDs in an efficient early innate host response to viral infection and future work will endeavour to determine the precise role these important organelles play in induction of an antiviral response.


Assuntos
Imunidade Inata , Gotículas Lipídicas/metabolismo , Viroses/imunologia , Western Blotting , Linhagem Celular , Meios de Cultura , Humanos , Interferon Tipo I/imunologia , Ácidos Nucleicos/metabolismo , RNA de Cadeia Dupla/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Vírus Sendai/patogenicidade
9.
Infect Genet Evol ; 57: 75-81, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128518

RESUMO

Sendai virus (SeV) is one of the most important pathogens in the specific-pathogen free rodents. It is known that there are some inbred mouse strains susceptible or resistant to SeV infection. The C57BL/6 (B6) and DBA/2 (D2) mice are representative of the resistant and susceptible strains, respectively. Previous study with the quantitative trait locus (QTL) analysis identified three QTLs responsible for resistance or susceptibility to SeV infection on different chromosomes and indicated that resistance or susceptibility to SeV infection was almost predicted by genotypes of these three QTLs. In this paper, to verify the above hypothesis, congenic lines were generated as follows; B6-congenic lines carrying one of the D2 alleles of three QTLs and combination of these three QTLs, and D2-congenic lines carrying single or combination of B6 alleles of three QTLs. All these congenic lines were then challenged with SeV infection. D2 congenic lines introgressed single or combination of B6 alleles of QTLs changed to resistance to SeV infection. Especially, a D2 triple-congenic line became resistant as similar level to B6-parental strain. However, B6-congenic lines introgressed single or combination of D2 alleles of QTLs all remained to be resistant to SeV infection. Both IL-6 and TNF-α in broncho-alveolar lavage fluid of D2 triple-congenic line were decreased to the similar level of B6 mice, suggesting that this is a part of factors that D2 triple-congenic line became resistant to the similar level of B6 mice. Data obtained from these congenic mice verified that three QTLs identified previously were indeed responsible for the resistance/susceptibility to SeV infection in B6 and D2 mice.


Assuntos
Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Locos de Características Quantitativas , Infecções por Respirovirus/genética , Infecções por Respirovirus/virologia , Vírus Sendai/fisiologia , Animais , Citocinas/genética , Citocinas/metabolismo , Genótipo , Camundongos , Camundongos Congênicos , Repetições de Microssatélites , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/mortalidade , Vírus Sendai/patogenicidade , Taxa de Sobrevida
10.
Cell Host Microbe ; 22(1): 86-98.e4, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704656

RESUMO

The transcription factors p65 and IRF3 play key roles in the induction of cellular antiviral responses. Phosphorylation of p65 and IRF3 is required for their activity and constitutes a key checkpoint. Here we report that viral infection induced upregulation of INKIT, an inhibitor for NF-κB and IRF3 that restricted innate antiviral responses by blocking phosphorylation of p65 and IRF3. INKIT overexpression inhibited virus-induced phosphorylation of p65 and IRF3 and expression of downstream genes. In contrast, knockdown or knockout of INKIT had the opposite effect: Inkit-/- mice produced elevated levels of type I interferons and proinflammatory cytokines and were more resistant to lethal viral infection compared to wild-type. INKIT interacted with IKKα/ß and TBK1/IKKɛ, impairing the recruitment and phosphorylation of p65 and IRF3. Viral infection induced IKK-mediated phosphorylation of INKIT at Ser58, resulting in its dissociation from the IKKs. Our findings thus uncover INKIT as a regulator of innate antiviral responses.


Assuntos
Antivirais/farmacologia , Fator Regulador 3 de Interferon/metabolismo , NF-kappa B/metabolismo , Viroses/imunologia , Animais , Citocinas/metabolismo , Células HEK293 , Células HeLa , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Quinase I-kappa B/metabolismo , Imunidade Inata/fisiologia , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/metabolismo , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Vírus Sendai/imunologia , Vírus Sendai/patogenicidade , Transdução de Sinais , Análise de Sobrevida , Células THP-1 , Vesiculovirus/imunologia , Vesiculovirus/patogenicidade , Replicação Viral/efeitos dos fármacos
11.
Cell Host Microbe ; 21(6): 754-768.e5, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28618271

RESUMO

Cytosolic nucleic acid sensing elicits interferon production for primary antiviral defense through cascades controlled by protein ubiquitination and Ser/Thr phosphorylation. Here we show that TBK1, a core kinase of antiviral pathways, is inhibited by tyrosine phosphorylation. The Src family kinases (SFKs) Lck, Hck, and Fgr directly phosphorylate TBK1 at Tyr354/394, to prevent TBK1 dimerization and activation. Accordingly, antiviral sensing and resistance were substantially enhanced in Lck/Hck/Fgr triple knockout cells and ectopic expression of Lck/Hck/Fgr dampened the antiviral defense in cells and zebrafish. Small-molecule inhibitors of SFKs, which are conventional anti-tumor therapeutics, enhanced antiviral responses and protected zebrafish and mice from viral attack. Viral infection induced the expression of Lck/Hck/Fgr through TBK1-mediated mobilization of IRF3, thus constituting a negative feedback loop. These findings unveil the negative regulation of TBK1 via tyrosine phosphorylation and the functional integration of SFKs into innate antiviral immunity.


Assuntos
Antivirais/imunologia , Imunidade Inata , Proteínas Serina-Treonina Quinases/metabolismo , Tirosina/metabolismo , Viroses/imunologia , Quinases da Família src/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antivirais/metabolismo , Linhagem Celular , Chlorocebus aethiops , Citosol/imunologia , Citosol/metabolismo , Células HEK293 , Células Hep G2 , Herpesvirus Humano 1 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Infecções por Respirovirus/imunologia , Infecções por Rhabdoviridae/imunologia , Vírus Sendai/patogenicidade , Ubiquitinação , Células Vero , Vesiculovirus , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/metabolismo , Quinases da Família src/metabolismo
12.
Sci Rep ; 7(1): 107, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273895

RESUMO

Activation of the innate immune response triggered by dsRNA viruses occurs through the assembly of the Mitochondrial Anti-Viral Signaling (MAVS) complex. Upon recognition of viral dsRNA, the cytosolic receptor RIG-I is activated and recruited to MAVS to activate the immune signaling response. We here demonstrate a strict requirement for a mitochondrial anchored protein ligase, MAPL (also called MUL1) in the signaling events that drive the transcriptional activation of antiviral genes downstream of Sendai virus infection, both in vivo and in vitro. A biotin environment scan of MAPL interacting polypeptides identified a series of proteins specific to Sendai virus infection; including RIG-I, IFIT1, IFIT2, HERC5 and others. Upon infection, RIG-I is SUMOylated in a MAPL-dependent manner, a conjugation step that is required for its activation. Consistent with this, MAPL was not required for signaling downstream of a constitutively activated form of RIG-I. These data highlight a critical role for MAPL and mitochondrial SUMOylation in the early steps of antiviral signaling.


Assuntos
Imunidade Inata , Receptores do Ácido Retinoico/metabolismo , Infecções por Respirovirus/genética , Vírus Sendai/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mapeamento de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a RNA , Receptores do Ácido Retinoico/genética , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Transdução de Sinais , Sumoilação , Ativação Transcricional
13.
Proteomics ; 17(5)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28067018

RESUMO

Sendai virus (SeV) is an enveloped nonsegmented negative-strand RNA virus that belongs to the genus Respirovirus of the Paramyxoviridae family. As a model pathogen, SeV has been extensively studied to define the basic biochemical and molecular biologic properties of the paramyxoviruses. In addition, SeV-infected host cells were widely employed to uncover the mechanism of innate immune response. To identify proteins involved in the SeV infection process or the SeV-induced innate immune response process, system-wide evaluations of SeV-host interactions have been performed. cDNA microarray, siRNA screening and phosphoproteomic analysis suggested that multiple signaling pathways are involved in SeV infection process. Here, to study SeV-host interaction, a global quantitative proteomic analysis was performed on SeV-infected HEK 293T cells. A total of 4699 host proteins were quantified, with 742 proteins being differentially regulated. Bioinformatics analysis indicated that regulated proteins were mainly involved in "interferon type I (IFN-I) signaling pathway" and "defense response to virus," suggesting that these processes play roles in SeV infection. Further RNAi-based functional studies indicated that the regulated proteins, tripartite motif (TRIM24) and TRIM27, affect SeV-induced IFN-I production. Our data provided a comprehensive view of host cell response to SeV and identified host proteins involved in the SeV infection process or the SeV-induced innate immune response process.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Proteoma/análise , Infecções por Respirovirus/metabolismo , Vírus Sendai/patogenicidade , Citoplasma/química , Citoplasma/metabolismo , Citoplasma/virologia , Células HEK293/virologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase/métodos , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Reprodutibilidade dos Testes , Infecções por Respirovirus/virologia , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral
14.
Mol Cell Biol ; 37(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27736772

RESUMO

The host response to RNA virus infection consists of an intrinsic innate immune response and the induction of apoptosis as mechanisms to restrict viral replication. The mitochondrial adaptor molecule MAVS plays critical roles in coordinating both virus-induced type I interferon production and apoptosis; however, the regulation of MAVS-mediated apoptosis is poorly understood. Here, we show that the adaptor protein TAX1BP1 functions as a negative regulator of virus-induced apoptosis. TAX1BP1-deficient cells are highly sensitive to apoptosis in response to infection with the RNA viruses vesicular stomatitis virus and Sendai virus and to transfection with poly(I·C). TAX1BP1 undergoes degradation during RNA virus infection, and loss of TAX1BP1 is associated with apoptotic cell death. TAX1BP1 deficiency augments virus-induced activation of proapoptotic c-Jun N-terminal kinase (JNK) signaling. Virus infection promotes the mitochondrial localization of TAX1BP1 and concomitant interaction with the mitochondrial adaptor MAVS. TAX1BP1 recruits the E3 ligase Itch to MAVS to trigger its ubiquitination and degradation, and loss of TAX1BP1 or Itch results in increased MAVS protein expression. Together, these results indicate that TAX1BP1 functions as an adaptor molecule for Itch to target MAVS during RNA virus infection and thus restrict virus-induced apoptosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Vírus de RNA/patogenicidade , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Células HEK293 , Células HeLa , Humanos , Camundongos , Vírus Sendai/patogenicidade , Ubiquitinação , Vesiculovirus/patogenicidade
15.
Biochem Biophys Res Commun ; 480(2): 187-193, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27743889

RESUMO

LGP2 and MDA5 cooperate to detect viral RNA in the cytoplasm of Picornavirus-infected cells and activate innate immune responses. To further define regulatory components of RNA recognition by LGP2/MDA5, a yeast two-hybrid screen was used to identify LGP2-interacting proteins. The screening has identified the TAR-RNA binding protein (TRBP), which is known to be an essential factor for RNA interference (RNAi). Immuno-precipitation experiments demonstrated that TRBP interacted specifically with LGP2 but not with related RIG-I-like receptors, RIG-I or MDA5. siRNA knockdown experiments indicate that TRBP is important for Cardiovirus-triggered interferon responses, but TRBP is not involved in Sendai virus-triggered interferon response that is mediated mainly by RIG-I. To support functional interaction with LGP2, overexpressed TRBP increased Cardiovirus-triggered interferon promoter activity only when LGP2 and MDA5 are co-expressed but not MDA5 alone. Together, our findings illustrate a possible connection between an RNAi-regulatory factor and antiviral RNA recognition that is specifically required for a branch of the virus induced innate immune response.


Assuntos
Infecções por Cardiovirus/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Ligação a RNA/metabolismo , Animais , Cardiovirus/patogenicidade , Infecções por Cardiovirus/imunologia , Chlorocebus aethiops , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Interferon beta/genética , Camundongos , Regiões Promotoras Genéticas , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Receptores Imunológicos , Vírus Sendai/patogenicidade , Células Vero
16.
J Interferon Cytokine Res ; 36(11): 652-665, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27508859

RESUMO

Sendai virus (SeV), a murine paramyxovirus, has been used to study the induction of type I interferon (IFN) subtypes in robust quantities. Few studies have measured whether the IFN that SeV induces actually fulfills its intended purpose of interfering with virus-mediated effects in the cells in which it is produced. We determined the effects of IFN on SeV-mediated cytopathic effects (CPE) and the ability of IFN to protect against virus infection. SeV-induced biologically active IFN resulted in Jak/STAT activation and the production of a number of interferon-stimulated genes (ISGs). However, these responses did not inhibit SeV replication or CPE. This observation was not due to SeV effects on canonical IFN signaling. Furthermore, pretreating cells with type I IFN and establishing an antiviral state before infection did not mediate SeV effects. Therefore, the induction of canonical IFN signaling pathways and ISGs does not always confer protection against the IFN-inducing virus. Because type I IFNs are approved to treat various infections, our findings suggest that typical markers of IFN activity may not be indicative of a protective antiviral response and should not be used alone to determine whether an antiviral state against a particular virus is achieved.


Assuntos
Interferon Tipo I/imunologia , Janus Quinases/genética , Infecções por Respirovirus/genética , Infecções por Respirovirus/virologia , Fatores de Transcrição STAT/genética , Vírus Sendai/patogenicidade , Humanos , Janus Quinases/metabolismo , Infecções por Respirovirus/imunologia , Fatores de Transcrição STAT/metabolismo , Vírus Sendai/imunologia , Células Tumorais Cultivadas , Replicação Viral
17.
Sci Adv ; 2(7): e1501889, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27419230

RESUMO

Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citosol/metabolismo , Proteína Fosfatase 2C/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Embrião não Mamífero/metabolismo , Embrião não Mamífero/virologia , Células HEK293 , Humanos , Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Proteína Fosfatase 2C/antagonistas & inibidores , Proteína Fosfatase 2C/metabolismo , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Vírus Sendai/efeitos dos fármacos , Vírus Sendai/patogenicidade , Vírus Sendai/fisiologia , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/patogenicidade , Vesiculovirus/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
18.
J Biol Chem ; 290(7): 4528-36, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25556652

RESUMO

CCL28 is a human chemokine constitutively expressed by epithelial cells in diverse mucosal tissues and is known to attract a variety of immune cell types including T-cell subsets and eosinophils. Elevated levels of CCL28 have been found in the airways of individuals with asthma, and previous studies have indicated that CCL28 plays a vital role in the acute development of post-viral asthma. Our study builds on this, demonstrating that CCL28 is also important in the chronic post-viral asthma phenotype. In the absence of a viral infection, we also demonstrate that CCL28 is both necessary and sufficient for induction of asthma pathology. Additionally, we present the first effort aimed at elucidating the structural features of CCL28. Chemokines are defined by a conserved tertiary structure composed of a three-stranded ß-sheet and a C-terminal α-helix constrained by two disulfide bonds. In addition to the four disulfide bond-forming cysteine residues that define the traditional chemokine fold, CCL28 possesses two additional cysteine residues that form a third disulfide bond. If all disulfide bonds are disrupted, recombinant human CCL28 is no longer able to drive mouse CD4+ T-cell chemotaxis or in vivo airway hyper-reactivity, indicating that the conserved chemokine fold is necessary for its biologic activity. Due to the intimate relationship between CCL28 and asthma pathology, it is clear that CCL28 presents a novel target for the development of alternative asthma therapeutics.


Assuntos
Asma/patologia , Linfócitos T CD4-Positivos/patologia , Quimiocinas CC/química , Quimiocinas CC/metabolismo , Células Epiteliais/patologia , Infecções por Respirovirus/patologia , Sequência de Aminoácidos , Animais , Asma/imunologia , Asma/metabolismo , Asma/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Quimiocinas CC/administração & dosagem , Quimiotaxia , Doença Crônica , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Conformação Proteica , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Vírus Sendai/patogenicidade , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Subpopulações de Linfócitos T
19.
PLoS Pathog ; 9(11): e1003786, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278024

RESUMO

Little is known about how the mode of respiratory virus transmission determines the dynamics of primary infection and protection from reinfection. Using non-invasive imaging of murine parainfluenza virus 1 (Sendai virus) in living mice, we determined the frequency, timing, dynamics, and virulence of primary infection after contact and airborne transmission, as well as the tropism and magnitude of reinfection after subsequent challenge. Contact transmission of Sendai virus was 100% efficient, phenotypically uniform, initiated and grew to robust levels in the upper respiratory tract (URT), later spread to the lungs, grew to a lower level in the lungs than the URT, and protected from reinfection completely in the URT yet only partially in the lungs. Airborne transmission through 7.6-cm and 15.2-cm separations between donor and recipient mice was 86%-100% efficient. The dynamics of primary infection after airborne transmission varied between individual mice and included the following categories: (a) non-productive transmission, (b) tracheal dominant, (c) tracheal initiated yet respiratory disseminated, and (d) nasopharyngeal initiated yet respiratory disseminated. Any previous exposure to Sendai virus infection protected from mortality and severe morbidity after lethal challenge. Furthermore, a higher level of primary infection in a given respiratory tissue (nasopharynx, trachea, or lungs) was inversely correlated with the level of reinfection in that same tissue. Overall, the mode of transmission determined the dynamics and tropism of primary infection, which in turn governed the level of seroconversion and protection from reinfection. These data are the first description of the dynamics of respiratory virus infection and protection from reinfection throughout the respiratory tracts of living animals after airborne transmission. This work provides a basis for understanding parainfluenza virus transmission and protective immunity and for developing novel vaccines and non-pharmaceutical interventions.


Assuntos
Sistema Respiratório , Infecções por Respirovirus , Vírus Sendai , Tropismo Viral/imunologia , Animais , Masculino , Camundongos , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/patologia , Infecções por Respirovirus/prevenção & controle , Infecções por Respirovirus/transmissão , Vírus Sendai/imunologia , Vírus Sendai/metabolismo , Vírus Sendai/patogenicidade
20.
J Virol ; 87(17): 9788-801, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824799

RESUMO

Host cells activate innate immune signaling pathways to defend against invading pathogens. To survive within an infected host, viruses have evolved intricate strategies to counteract host immune responses. Herpesviruses, including herpes simplex virus type 1 (HSV-1), have large genomes and therefore have the capacity to encode numerous proteins that modulate host innate immune responses. Here we define the contribution of HSV-1 tegument protein VP16 in the inhibition of beta interferon (IFN-ß) production. VP16 was demonstrated to significantly inhibit Sendai virus (SeV)-induced IFN-ß production, and its transcriptional activation domain was not responsible for this inhibition activity. Additionally, VP16 blocked the activation of the NF-κB promoter induced by SeV or tumor necrosis factor alpha treatment and expression of NF-κB-dependent genes through interaction with p65. Coexpression analysis revealed that VP16 selectively blocked IFN regulatory factor 3 (IRF-3)-mediated but not IRF-7-mediated transactivation. VP16 was able to bind to IRF-3 but not IRF-7 in vivo, based on coimmunoprecipitation analysis, but it did not affect IRF-3 dimerization, nuclear translocation, or DNA binding activity. Rather, VP16 interacted with the CREB binding protein (CBP) coactivator and efficiently inhibited the formation of the transcriptional complexes IRF-3-CBP in the context of HSV-1 infection. These results illustrate that VP16 is able to block the production of IFN-ß by inhibiting NF-κB activation and interfering with IRF-3 to recruit its coactivator CBP, which may be important to the early events leading to HSV-1 infection.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/biossíntese , Fator de Transcrição RelA/metabolismo , Animais , Chlorocebus aethiops , Células HEK293 , Células HeLa , Proteína Vmw65 do Vírus do Herpes Simples/química , Proteína Vmw65 do Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/antagonistas & inibidores , Fator Regulador 7 de Interferon/metabolismo , Interferon beta/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Vírus Sendai/imunologia , Vírus Sendai/patogenicidade , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Ativação Transcricional , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA