Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Microbiol ; 8(7): 1293-1303, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37322112

RESUMO

Rodent-borne hantaviruses are prevalent worldwide and upon spillover to human populations, cause severe disease for which no specific treatment is available. A potent antibody response is key for recovery from hantavirus infection. Here we study a highly neutralizing human monoclonal antibody, termed SNV-42, which was derived from a memory B cell isolated from an individual with previous Sin Nombre virus (SNV) infection. Crystallographic analysis demonstrates that SNV-42 targets the Gn subcomponent of the tetrameric (Gn-Gc)4 glycoprotein assembly that is relevant for viral entry. Integration of our 1.8 Å structure with the (Gn-Gc)4 ultrastructure arrangement indicates that SNV-42 targets the membrane-distal region of the virus envelope. Comparison of the SNV-42 paratope encoding variable genes with inferred germline gene segments reveals high sequence conservation, suggesting that germline-encoded antibodies inhibit SNV. Furthermore, mechanistic assays reveal that SNV-42 interferes with both receptor recognition and fusion during host-cell entry. This work provides a molecular-level blueprint for understanding the human neutralizing antibody response to hantavirus infection.


Assuntos
Infecções por Hantavirus , Vírus Sin Nombre , Humanos , Vírus Sin Nombre/fisiologia , Anticorpos Monoclonais , Anticorpos Neutralizantes , Glicoproteínas
2.
Yale J Biol Med ; 94(2): 375-378, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34211356

RESUMO

The naming of pathogens and their associated syndromes is a thorny process which unfolds in a complex geopolitical environment. This brief piece offers perspective on the multitude of forces that shape the name of a pathogen and summarizes the story of Sin Nombre Virus, with some reference to the ongoing saga of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A monopoly on names and circulating monikers rarely exists, and certain communities become disproportionately impacted by misunderstandings or stigmatization. By acknowledging these processes, we can better serve as allies to affected communities dealing with both pandemic and prejudice.


Assuntos
Terminologia como Assunto , COVID-19/virologia , Humanos , SARS-CoV-2/fisiologia , Vírus Sin Nombre/fisiologia , Organização Mundial da Saúde
3.
Front Cell Infect Microbiol ; 10: 561502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251157

RESUMO

Andes virus (ANDV) and Sin Nombre virus (SNV), highly pathogenic hantaviruses, cause hantavirus pulmonary syndrome in the Americas. Currently no therapeutics are approved for use against these infections. Griffithsin (GRFT) is a high-mannose oligosaccharide-binding lectin currently being evaluated in phase I clinical trials as a topical microbicide for the prevention of human immunodeficiency virus (HIV-1) infection (ClinicalTrials.gov Identifiers: NCT04032717, NCT02875119) and has shown broad-spectrum in vivo activity against other viruses, including severe acute respiratory syndrome coronavirus, hepatitis C virus, Japanese encephalitis virus, and Nipah virus. In this study, we evaluated the in vitro antiviral activity of GRFT and its synthetic trimeric tandemer 3mGRFT against ANDV and SNV. Our results demonstrate that GRFT is a potent inhibitor of ANDV infection. GRFT inhibited entry of pseudo-particles typed with ANDV envelope glycoprotein into host cells, suggesting that it inhibits viral envelope protein function during entry. 3mGRFT is more potent than GRFT against ANDV and SNV infection. Our results warrant the testing of GRFT and 3mGRFT against ANDV infection in animal models.


Assuntos
Antivirais/farmacologia , Síndrome Pulmonar por Hantavirus/virologia , Lectinas/farmacologia , Orthohantavírus/efeitos dos fármacos , Vírus Sin Nombre/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular , Orthohantavírus/fisiologia , Síndrome Pulmonar por Hantavirus/tratamento farmacológico , Humanos , Vírus Sin Nombre/fisiologia
4.
Viruses ; 11(2)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795592

RESUMO

In North America, Sin Nombre virus (SNV) is the main cause of hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease with a fatality rate of 35⁻40%. SNV is a zoonotic pathogen carried by deer mice (Peromyscus maniculatus), and few studies have been performed examining its transmission in deer mouse populations. Studying SNV and other hantaviruses can be difficult due to the need to propagate the virus in vivo for subsequent experiments. We show that when compared with standard intramuscular infection, the intraperitoneal infection of deer mice can be as effective in producing SNV stocks with a high viral RNA copy number, and this method of infection provides a more reproducible infection model. Furthermore, the age and sex of the infected deer mice have little effect on viral replication and shedding. We also describe a reliable model of direct experimental SNV transmission. We examined the transmission of SNV between deer mice and found that direct contact between deer mice is the main driver of SNV transmission rather than exposure to contaminated excreta/secreta, which is thought to be the main driver of transmission of the virus to humans. Furthermore, increases in heat shock responses or testosterone levels in SNV-infected deer mice do not increase the replication, shedding, or rate of transmission. Here, we have demonstrated a model for the transmission of SNV between deer mice, the natural rodent reservoir for the virus. The use of this model will have important implications for further examining SNV transmission and in developing strategies for the prevention of SNV infection in deer mouse populations.


Assuntos
Modelos Animais de Doenças , Infecções por Hantavirus/transmissão , Síndrome Pulmonar por Hantavirus/transmissão , Peromyscus/virologia , Vírus Sin Nombre/fisiologia , Animais , Reservatórios de Doenças/virologia , Feminino , Masculino , Peromyscus/fisiologia , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia , Eliminação de Partículas Virais , Zoonoses/transmissão , Zoonoses/virologia
5.
Nature ; 563(7732): 559-563, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464266

RESUMO

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.


Assuntos
Caderinas/metabolismo , Orthohantavírus/fisiologia , Internalização do Vírus , Animais , Caderinas/química , Caderinas/deficiência , Caderinas/genética , Células Endoteliais/virologia , Feminino , Orthohantavírus/patogenicidade , Síndrome Pulmonar por Hantavirus/virologia , Haploidia , Interações Hospedeiro-Patógeno/genética , Humanos , Pulmão/citologia , Masculino , Mesocricetus/virologia , Domínios Proteicos , Protocaderinas , Vírus Sin Nombre/patogenicidade , Vírus Sin Nombre/fisiologia
6.
Proc Natl Acad Sci U S A ; 115(31): 7979-7984, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012590

RESUMO

In this era of unprecedented biodiversity loss and increased zoonotic disease emergence, it is imperative to understand the effects of biodiversity on zoonotic pathogen dynamics in wildlife. Whether increasing biodiversity should lead to a decrease or increase in infection prevalence, termed the dilution and amplification effects, respectively, has been hotly debated in disease ecology. Sin Nombre hantavirus, which has an ∼35% mortality rate when it spills over into humans, occurs at a lower prevalence in the reservoir host, the North American deermouse, in areas with higher small mammal diversity-a dilution effect. However, the mechanism driving this relationship is not understood. Using a mechanistic mathematical model of infection dynamics and a unique long-term, high-resolution, multisite dataset, it appears that the observed dilution effect is a result of increasing small-mammal diversity leading to decreased deermouse population density and, subsequently, prevalence (a result of density-dependent transmission). However, once density is taken into account, there is an increase in the transmission rate at sites with higher diversity-a component amplification effect. Therefore, dilution and amplification are occurring at the same time in the same host-pathogen system; there is a component amplification effect (increase in transmission rate), but overall a net dilution because the effect of diversity on reservoir host population density is stronger. These results suggest we should focus on how biodiversity affects individual mechanisms that drive prevalence and their relative strengths if we want to make generalizable predictions across host-pathogen systems.


Assuntos
Biodiversidade , Síndrome Pulmonar por Hantavirus , Interações Hospedeiro-Parasita , Modelos Biológicos , Vírus Sin Nombre/fisiologia , Zoonoses , Animais , Síndrome Pulmonar por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/transmissão , Humanos , Prevalência , Estados Unidos/epidemiologia , Zoonoses/epidemiologia , Zoonoses/transmissão
7.
Virology ; 496: 67-76, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27261891

RESUMO

We demonstrate that the nucleocapsid protein of Sin Nombre hantavirus (SNV-N) has a DNA-specific endonuclease activity. Upon incubation of SNV-N with DNA in the presence of magnesium or manganese, we observed DNA digestion in sequence-unspecific manner. In contrast, RNA was not affected under the same conditions. Moreover, pre-treatment of SNV-N with RNase before DNA cleavage increased the endonucleolytic activity. Structure-based protein fold prediction using known structures from the PDB database revealed that Asp residues in positions 88 and 103 of SNV-N show sequence similarity with the active site of the restriction endonuclease HindIII. Crystal structure of HindIII predicts that residues Asp93 and Asp108 are essential for coordination of the metal ions required for HindIII DNA cleavage. Therefore, we hypothesized that homologous residues in SNV-N, Asp88 and Asp103, may have a similar function. Replacing Asp88 and Asp103 by alanine led to an SNV-N protein almost completely abrogated for endonuclease activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Metais/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus Sin Nombre/fisiologia , Sequência de Aminoácidos , Cátions/metabolismo , Clonagem Molecular , Sequência Consenso , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/isolamento & purificação , Ativação Enzimática , Expressão Gênica , Modelos Moleculares , Conformação Molecular , Mutação , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/isolamento & purificação , Ligação Proteica , Proteínas Recombinantes de Fusão , Ribonucleases/metabolismo , Especificidade por Substrato
8.
Adv Virus Res ; 95: 197-220, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27112283

RESUMO

A historic review of the discovery of new viruses leads to reminders of traditions that have evolved over 118 years. One such tradition gives credit for the discovery of a virus to the investigator(s) who not only carried out the seminal experiments but also correctly interpreted the findings (within the technological context of the day). Early on, ultrafiltration played a unique role in "proving" that an infectious agent was a virus, as did a failure to find any microscopically visible agent, failure to show replication of the agent in the absence of viable cells, thermolability of the agent, and demonstration of a specific immune response to the agent so as to rule out duplicates and close variants. More difficult was "proving" that the new virus was the etiologic agent of the disease ("proof of causation")-for good reasons this matter has been revisited several times over the years as technologies and perspectives have changed. One tradition is that the discoverers get to name their discovery, their new virus (unless some grievous convention has been broken)-the stability of these virus names has been a way to honor the discoverer(s) over the long term. Several vignettes have been chosen to illustrate several difficulties in holding to the traditions (vignettes chosen include vaccinia and variola viruses, yellow fever virus, and influenza viruses. Crimean-Congo hemorrhagic fever virus, Murray Valley encephalitis virus, human immunodeficiency virus 1, Sin Nombre virus, and Ebola virus). Each suggests lessons for the future. One way to assure that discoveries are forever linked with discoverers would be a permanent archive in one of the universal virus databases that have been constructed for other purposes. However, no current database seems ideal-perhaps members of the global community of virologists will have an ideal solution.


Assuntos
Invenções/história , Ultrafiltração/história , Virologia/história , Animais , Bases de Dados como Assunto , Ebolavirus/isolamento & purificação , Ebolavirus/patogenicidade , Ebolavirus/fisiologia , Vírus da Encefalite do Vale de Murray/isolamento & purificação , Vírus da Encefalite do Vale de Murray/patogenicidade , Vírus da Encefalite do Vale de Murray/fisiologia , HIV-1/isolamento & purificação , HIV-1/patogenicidade , HIV-1/fisiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , História do Século XIX , História do Século XX , Humanos , Orthomyxoviridae/isolamento & purificação , Orthomyxoviridae/patogenicidade , Orthomyxoviridae/fisiologia , Vírus Sin Nombre/isolamento & purificação , Vírus Sin Nombre/patogenicidade , Vírus Sin Nombre/fisiologia , Ultrafiltração/estatística & dados numéricos , Vaccinia virus/isolamento & purificação , Vaccinia virus/patogenicidade , Vaccinia virus/fisiologia , Vírus da Varíola/isolamento & purificação , Vírus da Varíola/patogenicidade , Vírus da Varíola/fisiologia , Recursos Humanos , Vírus da Febre Amarela/isolamento & purificação , Vírus da Febre Amarela/patogenicidade , Vírus da Febre Amarela/fisiologia
9.
Viruses ; 7(2): 559-89, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25674766

RESUMO

Sin Nombre Hantavirus (SNV, Bunyaviridae Hantavirus) is a Category A pathogen that causes Hantavirus Cardiopulmonary Syndrome (HCPS) with case fatality ratios generally ranging from 30% to 50%. HCPS is characterized by vascular leakage due to dysregulation of the endothelial barrier function. The loss of vascular integrity results in non-cardiogenic pulmonary edema, shock, multi-organ failure and death. Using Electric Cell-substrate Impedance Sensing (ECIS) measurements, we found that plasma samples drawn from University of New Mexico Hospital patients with serologically-confirmed HCPS, induce loss of cell-cell adhesion in confluent epithelial and endothelial cell monolayers grown in ECIS cultureware. We show that the loss of cell-cell adhesion is sensitive to both thrombin and plasmin inhibitors in mild cases, and to thrombin only inhibition in severe cases, suggesting an increasing prothrombotic state with disease severity. A proteomic profile (2D gel electrophoresis and mass spectrometry) of HCPS plasma samples in our cohort revealed robust antifibrinolytic activity among terminal case patients. The prothrombotic activity is highlighted by acute ≥30 to >100 fold increases in active plasminogen activator inhibitor (PAI-1) which, preceded death of the subjects within 48 h. Taken together, this suggests that PAI-1 might be a response to the severe pathology as it is expected to reduce plasmin activity and possibly thrombin activity in the terminal patients.


Assuntos
Citocinas/sangue , Síndrome Pulmonar por Hantavirus/sangue , Síndrome Pulmonar por Hantavirus/virologia , Inibidor 1 de Ativador de Plasminogênio/sangue , Vírus Sin Nombre/fisiologia , Trombina/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Chlorocebus aethiops , Efeito Citopatogênico Viral , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Síndrome Pulmonar por Hantavirus/diagnóstico , Síndrome Pulmonar por Hantavirus/imunologia , Humanos , Modelos Biológicos , Proteoma , Proteômica/métodos , Estudos Retrospectivos , Índice de Gravidade de Doença , Células Vero
10.
J Virol ; 88(15): 8706-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850733

RESUMO

Viral ribonucleocapsids harboring the viral genomic RNA are used as the template for viral mRNA synthesis and replication of the viral genome by viral RNA-dependent RNA polymerase (RdRp). Here we show that hantavirus nucleocapsid protein (N protein) interacts with RdRp in virus-infected cells. We mapped the RdRp binding domain at the N terminus of N protein. Similarly, the N protein binding pocket is located at the C terminus of RdRp. We demonstrate that an N protein-RdRp interaction is required for RdRp function during the course of virus infection in the host cell.


Assuntos
Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Vírus Sin Nombre/fisiologia , Replicação Viral , Linhagem Celular , Análise Mutacional de DNA , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Polimerase Dependente de RNA/genética
11.
Viruses ; 6(3): 1091-111, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24618810

RESUMO

Decay accelerating factor (DAF/CD55) is targeted by many pathogens for cell entry. It has been implicated as a co-receptor for hantaviruses. To examine the binding of hantaviruses to DAF, we describe the use of Protein G beads for binding human IgG Fc domain-functionalized DAF ((DAF)2-Fc). When mixed with Protein G beads the resulting DAF beads can be used as a generalizable platform for measuring kinetic and equilibrium binding constants of DAF binding targets. The hantavirus interaction has high affinity (24-30 nM; k(on) ~ 105 M⁻¹ s⁻¹, k(off) ~ 0.0045 s⁻¹). The bivalent (DAF)2-Fc/SNV data agree with hantavirus binding to DAF expressed on Tanoue B cells (K(d) = 14.0 nM). Monovalent affinity interaction between SNV and recombinant DAF of 58.0 nM is determined from competition binding. This study serves a dual purpose of presenting a convenient and quantitative approach of measuring binding affinities between DAF and the many cognate viral and bacterial ligands and providing new data on the binding constant of DAF and Sin Nombre hantavirus. Knowledge of the equilibrium binding constant allows for the determination of the relative fractions of bound and free virus particles in cell entry assays. This is important for drug discovery assays for cell entry inhibitors.


Assuntos
Antígenos CD55/metabolismo , Receptores Virais/metabolismo , Vírus Sin Nombre/fisiologia , Ligação Viral , Humanos , Microesferas
12.
J Virol ; 88(2): 811-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198421

RESUMO

Sin Nombre virus (SNV) is a rodent-borne hantavirus that causes hantavirus pulmonary syndrome (HPS) predominantly in North America. SNV infection of immunocompetent hamsters results in an asymptomatic infection; the only lethal disease model for a pathogenic hantavirus is Andes virus (ANDV) infection of Syrian hamsters. Efforts to create a lethal SNV disease model in hamsters by repeatedly passaging virus through the hamster have demonstrated increased dissemination of the virus but no signs of disease. In this study, we demonstrate that immunosuppression of hamsters through the administration of a combination of dexamethasone and cyclophosphamide, followed by infection with SNV, results in a vascular leak syndrome that accurately mimics both HPS disease in humans and ANDV infection of hamsters. Immunosuppressed hamsters infected with SNV have a mean number of days to death of 13 and display clinical signs associated with HPS, including pulmonary edema. Viral antigen was widely detectable throughout the pulmonary endothelium. Histologic analysis of lung sections showed marked inflammation and edema within the alveolar septa of SNV-infected hamsters, results which are similar to what is exhibited by hamsters infected with ANDV. Importantly, SNV-specific neutralizing polyclonal antibody administered 5 days after SNV infection conferred significant protection against disease. This experiment not only demonstrated that the disease was caused by SNV, it also demonstrated the utility of this animal model for testing candidate medical countermeasures. This is the first report of lethal disease caused by SNV in an adult small-animal model.


Assuntos
Modelos Animais de Doenças , Síndrome Pulmonar por Hantavirus/imunologia , Síndrome Pulmonar por Hantavirus/virologia , Mesocricetus , Vírus Sin Nombre/fisiologia , Animais , Anticorpos Antivirais/uso terapêutico , Cricetinae , Ciclofosfamida/administração & dosagem , Dexametasona/administração & dosagem , Feminino , Síndrome Pulmonar por Hantavirus/tratamento farmacológico , Síndrome Pulmonar por Hantavirus/mortalidade , Síndrome Pulmonar por Hantavirus/patologia , Humanos , Terapia de Imunossupressão , Imunossupressores/administração & dosagem
13.
Virulence ; 4(6): 525-36, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23841977

RESUMO

The loss of the endothelium barrier and vascular leakage play a central role in the pathogenesis of hemorrhagic fever viruses. This can be caused either directly by the viral infection and damage of the vascular endothelium, or indirectly by a dysregulated immune response resulting in an excessive activation of the endothelium. This article briefly reviews our knowledge of the importance of the disruption of the vascular endothelial barrier in two severe disease syndromes, dengue hemorrhagic fever and hantavirus pulmonary syndrome. Both viruses cause changes in vascular permeability without damaging the endothelium. Here we focus on our understanding of the virus interaction with the endothelium, the role of the endothelium in the induced pathogenesis, and the possible mechanisms by which each virus causes vascular leakage. Understanding the dynamics between viral infection and the dysregulation of the endothelial cell barrier will help us to define potential therapeutic targets for reducing disease severity.


Assuntos
Vírus da Dengue/fisiologia , Endotélio Vascular/fisiopatologia , Síndrome Pulmonar por Hantavirus/fisiopatologia , Dengue Grave/fisiopatologia , Vírus Sin Nombre/fisiologia , Animais , Permeabilidade Capilar , Síndrome Pulmonar por Hantavirus/virologia , Humanos , Dengue Grave/virologia
14.
Antimicrob Agents Chemother ; 57(10): 4673-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23856782

RESUMO

Hantavirus pulmonary syndrome (HPS) is caused by infection with several Sigmodontinae- and Neotominae-borne hantaviruses and has a case fatality rate of 30 to 50%. Humans often become infected by inhalation of materials contaminated with virus-laden rodent urine or saliva, although human-to-human transmission has also been documented for Andes virus (ANDV). The ability to transmit via aerosolization, coupled with the high mortality rates and lack of therapeutic options, makes the development of medical countermeasures against HPS imperative. In the present study, we evaluated the efficacy of the broad-spectrum antiviral agent favipiravir (T-705) against Sin Nombre virus (SNV) and ANDV, the predominant causes of HPS in North and South America, respectively. In vitro, T-705 potently inhibited SNV and ANDV, as evidenced by decreased detection of viral RNA and reduced infectious titers. For both viruses, the 90% effective concentration was estimated at ≤5 µg/ml (≤31.8 µM). In the lethal ANDV hamster model, daily administration of oral T-705 at 50 or 100 mg/kg of body weight diminished the detection of viral RNA and antigen in tissue specimens and significantly improved survival rates. Oral T-705 therapy remained protective against HPS when treatment was initiated prior to the onset of viremia. No disease model for SNV exists; however, using a hamster-adapted SNV, we found that daily administration of oral T-705 significantly reduced the detection of SNV RNA and antigen in tissue specimens, suggesting that the compound would also be effective against HPS in North America. Combined, these results suggest that T-705 treatment is beneficial for postexposure prophylaxis against HPS-causing viruses and should be considered for probable exposures.


Assuntos
Amidas/uso terapêutico , Antivirais/uso terapêutico , Síndrome Pulmonar por Hantavirus/tratamento farmacológico , Pirazinas/uso terapêutico , Animais , Cricetinae , Feminino , Orthohantavírus/efeitos dos fármacos , Orthohantavírus/fisiologia , Vírus Sin Nombre/efeitos dos fármacos , Vírus Sin Nombre/fisiologia , Replicação Viral/efeitos dos fármacos
15.
J Biol Chem ; 288(12): 8531-8543, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23382385

RESUMO

Cdc42 plays important roles in cytoskeleton organization, cell cycle progression, signal transduction, and vesicle trafficking. Overactive Cdc42 has been implicated in the pathology of cancers, immune diseases, and neuronal disorders. Therefore, Cdc42 inhibitors would be useful in probing molecular pathways and could have therapeutic potential. Previous inhibitors have lacked selectivity and trended toward toxicity. We report here the characterization of a Cdc42-selective guanine nucleotide binding lead inhibitor that was identified by high throughput screening. A second active analog was identified via structure-activity relationship studies. The compounds demonstrated excellent selectivity with no inhibition toward Rho and Rac in the same GTPase family. Biochemical characterization showed that the compounds act as noncompetitive allosteric inhibitors. When tested in cellular assays, the lead compound inhibited Cdc42-related filopodia formation and cell migration. The lead compound was also used to clarify the involvement of Cdc42 in the Sin Nombre virus internalization and the signaling pathway of integrin VLA-4. Together, these data present the characterization of a novel Cdc42-selective allosteric inhibitor and a related analog, the use of which will facilitate drug development targeting Cdc42-related diseases and molecular pathway studies that involve GTPases.


Assuntos
Inibidores Enzimáticos/farmacologia , Sondas Moleculares/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Células 3T3 , Regulação Alostérica , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Integrina alfa4beta1/antagonistas & inibidores , Integrina alfa4beta1/fisiologia , Camundongos , Oligopeptídeos/metabolismo , Compostos de Fenilureia/metabolismo , Ligação Proteica , Pseudópodes/efeitos dos fármacos , Vírus Sin Nombre/fisiologia , Relação Estrutura-Atividade , Internalização do Vírus/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
16.
PLoS One ; 7(10): e47731, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110096

RESUMO

Sin Nombre hantavirus (SNV), hosted by the North American deermouse (Peromyscus maniculatus), causes hantavirus pulmonary syndrome (HPS) in North America. Most transmission studies in the host were conducted under artificial conditions, or extrapolated information from mark-recapture data. Previous studies using experimentally infected deermice were unable to demonstrate SNV transmission. We explored SNV transmission in outdoor enclosures using naturally infected deermice. Deermice acquiring SNV in enclosures had detectable viral RNA in blood throughout the acute phase of infection and acquired significantly more new wounds (indicating aggressive encounters) than uninfected deermice. Naturally-infected wild deermice had a highly variable antibody response to infection, and levels of viral RNA sustained in blood varied as much as 100-fold, even in individuals infected with identical strains of virus. Deermice that infected other susceptible individuals tended to have a higher viral RNA load than those that did not infect other deermice. Our study is a first step in exploring the transmission ecology of SNV infection in deermice and provides new knowledge about the factors contributing to the increase of the prevalence of a zoonotic pathogen in its reservoir host and to changes in the risk of HPS to human populations. The techniques pioneered in this study have implications for a wide range of zoonotic disease studies.


Assuntos
Síndrome Pulmonar por Hantavirus/veterinária , Peromyscus , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia , Vírus Sin Nombre/fisiologia , Zoonoses/transmissão , Animais , Anticorpos Antivirais/sangue , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática/veterinária , Síndrome Pulmonar por Hantavirus/transmissão , Humanos , Montana , RNA Viral/sangue , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Carga Viral
17.
PLoS One ; 7(6): e37254, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768034

RESUMO

Surveys of wildlife host-pathogen systems often document clear seasonal variation in transmission; conclusions concerning the relationship between host population density and transmission vary. In the field, effects of seasonality and population density on natural disease cycles are challenging to measure independently, but laboratory experiments may poorly reflect what happens in nature. Outdoor manipulative experiments are an alternative that controls for some variables in a relatively natural environment. Using outdoor enclosures, we tested effects of North American deermouse (Peromyscus maniculatus) population density and season on transmission dynamics of Sin Nombre hantavirus. In early summer, mid-summer, late summer, and fall 2007-2008, predetermined numbers of infected and uninfected adult wild deermice were released into enclosures and trapped weekly or bi-weekly. We documented 18 transmission events and observed significant seasonal effects on transmission, wounding frequency, and host breeding condition. Apparent differences in transmission incidence or wounding frequency between high- and low-density treatments were not statistically significant. However, high host density was associated with a lower proportion of males with scrotal testes. Seasonality may have a stronger influence on disease transmission dynamics than host population density, and density effects cannot be considered independent of seasonality.


Assuntos
Síndrome Pulmonar por Hantavirus/veterinária , Doenças dos Roedores/transmissão , Doenças dos Roedores/virologia , Estações do Ano , Vírus Sin Nombre/fisiologia , Animais , Síndrome Pulmonar por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/transmissão , Síndrome Pulmonar por Hantavirus/virologia , Incidência , Masculino , América do Norte/epidemiologia , Peromyscus/virologia , Densidade Demográfica , Reprodução , Doenças dos Roedores/epidemiologia , Testículo/patologia , Aumento de Peso
18.
J Virol ; 86(14): 7520-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22553339

RESUMO

Hantavirus glycoprotein precursor (GPC) is posttranslationally cleaved into two glycoproteins, Gn and Gc. Cells transfected with plasmids expressing either GPC or both Gn and Gc revealed that Gn is posttranslationally degraded. Treatment of cells with the autophagy inhibitors 3-methyladenine, LY-294002, or Wortmanin rescued Gn degradation, suggesting that Gn is degraded by the host autophagy machinery. Confocal microscopic imaging showed that Gn is targeted to autophagosomes for degradation by an unknown mechanism. Examination of autophagy markers LC3-I and LC3-II demonstrated that both Gn expression and Sin Nombre hantavirus (SNV) infection induce autophagy in cells. To delineate whether induction of autophagy and clearance of Gn play a role in the virus replication cycle, we downregulated autophagy genes BCLN-1 and ATG7 using small interfering RNA (siRNA) and monitored virus replication over time. These studies revealed that inhibition of host autophagy machinery inhibits Sin Nombre virus replication in cells, suggesting that autophagic clearance of Gn is required for efficient virus replication. Our studies provide mechanistic insights into viral pathogenesis and reveal that SNV exploits the host autophagy machinery to decrease the intrinsic steady-state levels of an important viral component for efficient replication in host cells.


Assuntos
Autofagia , Glicoproteínas/metabolismo , Vírus Sin Nombre/fisiologia , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Adenina/análogos & derivados , Adenina/farmacologia , Androstadienos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Proteína 7 Relacionada à Autofagia , Linhagem Celular , Chlorocebus aethiops , Cromonas/farmacologia , Células HeLa , Humanos , Morfolinas/farmacologia , Proteólise , Interferência de RNA , RNA Interferente Pequeno , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Células Vero , Wortmanina
19.
Virus Res ; 162(1-2): 138-47, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21945215

RESUMO

Hantavirus pulmonary syndrome (HPS) is a severe disease characterized by a rapid onset of pulmonary edema followed by respiratory failure and cardiogenic shock. The HPS associated viruses are members of the genus Hantavirus, family Bunyaviridae. Hantaviruses have a worldwide distribution and are broadly split into the New World hantaviruses, which includes those causing HPS, and the Old World hantaviruses [including the prototype Hantaan virus (HTNV)], which are associated with a different disease, hemorrhagic fever with renal syndrome (HFRS). Sin Nombre virus (SNV) and Andes virus (ANDV) are the most common causes of HPS in North and South America, respectively. Case fatality of HPS is approximately 40%. Pathogenic New World hantaviruses infect the lung microvascular endothelium without causing any virus induced cytopathic effect. However, virus infection results in microvascular leakage, which is the hallmark of HPS. This article briefly reviews the knowledge on HPS-associated hantaviruses accumulated since their discovery, less than 20 years ago.


Assuntos
Genoma Viral , Vírus Hantaan/fisiologia , Síndrome Pulmonar por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/virologia , Pulmão/virologia , Orthohantavírus/fisiologia , Insuficiência Respiratória/virologia , Choque Cardiogênico/virologia , Vírus Sin Nombre/fisiologia , Animais , Antivirais/administração & dosagem , Cricetinae , Europa (Continente) , Orthohantavírus/patogenicidade , Síndrome Pulmonar por Hantavirus/complicações , Síndrome Pulmonar por Hantavirus/tratamento farmacológico , Síndrome Pulmonar por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/patologia , Febre Hemorrágica com Síndrome Renal/tratamento farmacológico , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/patologia , Humanos , Pulmão/patologia , América do Norte , Filogeografia , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/patologia , Ribavirina/administração & dosagem , Choque Cardiogênico/tratamento farmacológico , Choque Cardiogênico/epidemiologia , Choque Cardiogênico/etiologia , Choque Cardiogênico/patologia , Vírus Sin Nombre/patogenicidade , América do Sul
20.
Infect Dis Clin North Am ; 24(1): 159-73, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20171551

RESUMO

Hantavirus pulmonary syndrome, also known as hantavirus cardiopulmonary syndrome, is a recently described infectious syndrome found throughout the Americas. Although infection is sporadic and uncommon compared with other atypical pneumonia syndromes, its high mortality rate warrants the maintenance of a high index of suspicion in rural settings. Because no specific therapies are available for the disease, prevention and early recognition play an important role in reducing mortality from the disease. This article reviews the nature of the viruses that cause hantavirus pulmonary syndrome, the epidemiology and ecology of disease transmission, and disease recognition, treatment, and prevention.


Assuntos
Síndrome Pulmonar por Hantavirus/diagnóstico , Síndrome Pulmonar por Hantavirus/terapia , Vírus Sin Nombre/isolamento & purificação , Síndrome Pulmonar por Hantavirus/epidemiologia , Síndrome Pulmonar por Hantavirus/patologia , Humanos , Vírus Sin Nombre/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA