Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 798
Filtrar
1.
Acta Vet Scand ; 66(1): 28, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965632

RESUMO

BACKGROUND: Visna-maedi is a notifiable disease in Norway, and eliminating the disease is a national goal. The import of sheep into Norway is very limited, and strict regulations apply to the movement of small ruminants between flocks and within defined geographical regions. Several outbreaks have occurred in the last 50 years, and the most recent before 2019 occurred in Trøndelag county in Central Norway in 2002. A national surveillance programme for small ruminant lentivirus infection exists since 2003. RESULTS: In 2019, the national surveillance programme detected seropositive animals for small ruminant lentivirus in a sheep flock in Trøndelag. Based on the result of polymerase chain reaction analysis and histopathological findings, the Norwegian Food Safety Authority concluded the diagnosis of maedi. Further investigations detected maedi in eight additional sheep flocks in the same county. The flocks were placed under restrictions, and the authorities also imposed restrictions on 82 contact flocks. Sequencing of partial gag genes indicated that the virus in the current outbreak was related to the small ruminant lentivirus detected in the same area between 2002 and 2005. CONCLUSIONS: The outbreak investigation shows the need for sensitive and specific diagnostic methods, and an improved and more targeted surveillance strategy. It also demonstrates the risk of disease spreading between flocks through animal movements, and highlights the importance of biosecurity and structured livestock trade. In addition to allowing livestock trade only from flocks documented free from maedi, it may be necessary to monitor sheep flocks over many years, when aiming to eliminate maedi from the Norwegian sheep population.


Assuntos
Surtos de Doenças , Vírus Visna-Maedi , Animais , Noruega/epidemiologia , Ovinos , Surtos de Doenças/veterinária , Vírus Visna-Maedi/isolamento & purificação , Pneumonia Intersticial Progressiva dos Ovinos/epidemiologia , Pneumonia Intersticial Progressiva dos Ovinos/virologia , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/virologia
2.
Vet Immunol Immunopathol ; 274: 110806, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002364

RESUMO

Maedi Visna Virus (MVV) is a retrovirus that can infect sheep. There is still no effective therapy or vaccine against this virus and timely diagnosis is important to combat the complications of the disease. In this study, we aimed to develop an ELISA using peptides derived from gag protein as antigen. For this purpose, B cell epitopes of gag protein were predicted and a docking analysis with the B cell receptor was performed to select peptides to be used in ELISA. After three soluble epitopes with the highest antigenicity were produced as peptides, the immunogenicity of each peptide was determined by ELISA using sheep serum samples categorized as MVV positive (n=24) and negative (n=13). Subsequently, in house ELISA using above mentioned immunogenic peptides as antigen was used to investigate MVV seroprevalence in sheep (n=88). According to the results, among three peptides, two of them strongly reacted with MVV positive serum samples and the mean absorbance values detected among positive and negative serum samples were statistically significant, indicating that these peptides were immunogenic (P=0.016 and P=0.038). The third peptide also reacted with positive serum samples but the mean absorbance value was not statistically significant and this peptide was considered non-immunogenic (P=0.175). The immunogenic two peptides showed the same high sensitivity and specificity values of 91.60 and 92.80 according to the commercial kit. Moreover, MVV seroprevalence detected by peptide-ELISAs using CKQGSKE and CRPQGKAGHKG peptides as antigen was 3.40 % and 4.5 %, respectively. As a result, it was shown that these peptides can be successfully used for serological diagnosis of MVV.


Assuntos
Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Pneumonia Intersticial Progressiva dos Ovinos , Vírus Visna-Maedi , Animais , Ovinos/imunologia , Vírus Visna-Maedi/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Pneumonia Intersticial Progressiva dos Ovinos/imunologia , Pneumonia Intersticial Progressiva dos Ovinos/diagnóstico , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Peptídeos/imunologia , Estudos Soroepidemiológicos , Epitopos de Linfócito B/imunologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/virologia , Sensibilidade e Especificidade , Produtos do Gene gag/imunologia
3.
BMC Genomics ; 25(1): 534, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816794

RESUMO

BACKGROUND: Maedi-visna virus (MVV) is a lentivirus that infects monocyte/macrophage lineage cells in sheep, goats, and wild ruminants and causes pneumonia, mastitis, arthritis, and encephalitis. The immune response to MVV infection is complex, and a complete understanding of its infection and pathogenesis is lacking. This study investigated the in vivo transcriptomic patterns of lung tissues in sheep exposed to MVV using the RNA sequencing technology. RESULT: The results indicated that 2,739 genes were significantly differentially expressed, with 1,643 downregulated genes and 1,096 upregulated genes. Many variables that could be unique to MVV infections were discovered. Gene Ontology analysis revealed that a significant proportion of genes was enriched in terms directly related to the immune system and biological responses to viral infections. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the most enriched pathways were related to virus-host cell interactions and inflammatory responses. Numerous immune-related genes, including those encoding several cytokines and interferon regulatory factors, were identified in the protein-protein interaction network of differentially expressed genes (DEGs). The expression of DEGs was evaluated using real-time polymerase chain reaction and western blot analysis. CXCL13, CXCL6, CXCL11, CCR1, CXCL8, CXCL9, CXCL10, TNFSF8, TNFRSF8, IL7R, IFN-γ, CCL2, and MMP9 were upregulated. Immunohistochemical analysis was performed to identify the types of immune cells that infiltrated MVV-infected tissues. B cells, CD4+ and CD8+ T cells, and macrophages were the most prevalent immune cells correlated with MVV infection in the lungs. CONCLUSION: Overall, the findings of this study provide a comprehensive understanding of the in vivo host response to MVV infection and offer new perspectives on the gene regulatory networks that underlie pathogenesis in natural hosts.


Assuntos
Pulmão , Vírus Visna-Maedi , Animais , Vírus Visna-Maedi/genética , Pulmão/virologia , Pulmão/imunologia , Pulmão/patologia , Ovinos , Perfilação da Expressão Gênica , Transcriptoma , Pneumonia Intersticial Progressiva dos Ovinos/genética , Pneumonia Intersticial Progressiva dos Ovinos/virologia , Pneumonia Intersticial Progressiva dos Ovinos/imunologia , Mapas de Interação de Proteínas , Regulação da Expressão Gênica , Ontologia Genética
4.
Vet Res Commun ; 48(3): 1955-1962, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38530579

RESUMO

The ovine maedi-visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV) are small ruminant lentiviruses (SRLVs) with striking genetic and structural similarities. The presence of SRLV in Mongolian sheep and goats was serologically demonstrated more than a decade ago; however, the viral genotype remains unknown. In total, 329 blood samples were collected from two sheep breeds (i.e., Khalkha and Sumber) in Tov, Govisumber, Arkhangay, Dornogovi, Zavkhan, and Sukhbaatar provinces, Mongolia. Serological and phylogenetic analyses were performed regardless of any apparent clinical signs, although most of the animals appeared healthy. All sheep in three of the six provinces were seronegative, whereas the seroprevalence in the Tov, Govisumber, and Zavkhan provinces averaged 7.9%. Genomic DNA from seropositive animals was tested using hemi-nested polymerase chain reaction, and sub-genomic SRLV sequences were determined from nine samples. Mongolian SRLV sequences clustered within the divergent subtype A22, which was previously found only in Fertile Crescent regions, including Lebanon, Jordan, and Iran, where the first sheep-domestication (Ovis aries) occurred. According to the phylogenetic analysis, genotype A has two ancestors from the ancient Fertile Crescent: (1) Turkish strains and (2) Iranian, Jordanian, and Lebanese strains. The first ancestor spread westward, whereas the second spread eastward, ultimately reaching Mongolia.


Assuntos
Genótipo , Infecções por Lentivirus , Filogenia , Doenças dos Ovinos , Animais , Ovinos/virologia , Mongólia/epidemiologia , Infecções por Lentivirus/veterinária , Infecções por Lentivirus/virologia , Infecções por Lentivirus/epidemiologia , Doenças dos Ovinos/virologia , Doenças dos Ovinos/epidemiologia , Vírus Visna-Maedi/genética , Vírus Visna-Maedi/classificação , Vírus Visna-Maedi/isolamento & purificação , Vírus da Artrite-Encefalite Caprina/genética , Vírus da Artrite-Encefalite Caprina/classificação , Vírus da Artrite-Encefalite Caprina/isolamento & purificação , Estudos Soroepidemiológicos
5.
Biologicals ; 84: 101715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793308

RESUMO

Maedi Visna Virus (MVV) causes a chronic viral disease in sheep. Since there is no specific therapeutic drug that targets MVV, development of a vaccine against the MVV is inevitable. This study aimed to analyze the gag and env proteins as vaccine candidate proteins and to identify epitopes in these proteins. In addition, it was aimed to construct a multi-epitope vaccine candidate. According to the obtained results, the gag protein was detected to be more conserved and had a higher antigenicity value. Also, the number of alpha helix in the secondary structure was higher and transmembrane helices were not detected. Although many B cell and MHC-I/II epitopes were predicted, only 19 of them were detected to have the properties of antigenic, non-allergenic, non-toxic, soluble, and non-hemolytic. Of these epitopes, five were remarkable due to having the highest antigenicity value. However, the final multi-epitope vaccine was constructed with 19 epitopes. A strong affinity was shown between the final multi-epitope vaccine and TLR-2/4. In conclusion, the gag protein was a better antigen. However, both proteins had epitopes with high antigenicity value. Also, the final multi-epitope vaccine construct had a potential to be used as a peptide vaccine due to its immuno-informatics results.


Assuntos
Vírus Visna-Maedi , Animais , Ovinos , Epitopos , Produtos do Gene env , Vacinologia/métodos , Produtos do Gene gag/genética , Vacinas de Subunidades Antigênicas , Epitopos de Linfócito T , Epitopos de Linfócito B , Simulação de Acoplamento Molecular , Biologia Computacional/métodos
6.
Artigo em Alemão | MEDLINE | ID: mdl-37567196

RESUMO

This case report describes indurative mastitis in a herd of sheep caused by Maedi Visna virus (MVV) infection. Reduced udder formation after delivery, small, indurated udders and increased losses of lambs were observed in a herd of Dorper sheep. Examination of the mammary gland and milk did not reveal findings characteristic of chronic bacterial mastitis. The protein supply was insufficient which may have contributed to reduced milk yield, but was considered unlikely as cause for the induration of the mammary gland. Nineteen of the 21 mothers were positive for MVV by serology. Mammary gland and supramammary lymph nodes were collected in a sheep with indurated udder at the time of slaughter. Meat inspection did not reveal lesions in any other organs. One part of the mammary gland showed a mild to moderate multifocal lymphohistiocytic mastitis, the other exhibited a severe diffuse lymphohistiocytic mastitis with atrophy of the glandular acini, vasculopathy, fibrosis and calcification. MVV antigen was visualized by immunohistochemistry in macrophages, dendritic cells, epithelial cells and endothelial cells in the mammary gland, and macrophages and dendritic cells in the supramammary lymph nodes. A large amount of MVV provirus was detected in the supramammary lymph nodes and the severely indurated part of the mammary gland by PCR. In conclusion, indurative mastitis as a result of a systemic infection may occur independently of the commonly known manifestations of Maedi Visna in the lung and central nervous system. MVV should be considered as differential diagnosis in mastitis of sheep. The MVV status of the herd can be tested by serological detection of specific antibodies. Additionally, characteristic histological lesions are present in the mammary gland. MVV antigen can also be detected by immunohistochemistry and MVV provirus by PCR in the altered mammary gland and regional lymph nodes.


Assuntos
Mastite , Pneumonia Intersticial Progressiva dos Ovinos , Doenças dos Ovinos , Vírus Visna-Maedi , Feminino , Animais , Ovinos , Células Endoteliais/patologia , Pneumonia Intersticial Progressiva dos Ovinos/diagnóstico , Pneumonia Intersticial Progressiva dos Ovinos/complicações , Pneumonia Intersticial Progressiva dos Ovinos/patologia , Mastite/veterinária
7.
Vet Rec ; 192(11): e2731, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809519

RESUMO

BACKGROUND: Small ruminant lentiviruses (SRLVs) are lentiviruses of sheep and goats, formerly known as maedi-visna (MV) in sheep and caprine encephalitis and arthritis in goats. In sheep, SRLVs commonly cause progressive pneumonia, wasting and indurative mastitis. SRLVs have a long latent period, and chronic production losses are often not recognised until very late. Few studies quantifying the production losses in ewes have been published, and none have been published under UK flock husbandry conditions. METHODS: Production records of milk yield and somatic cell count (SCC) from a dairy flock of 319 milking East Friesian × Lacaune ewes identified as MV infected via routine serological screening for SRLV antibodies were used in multivariable linear regression modelling to estimate the impact of SRLV status on total milk yield and SCC. RESULTS: Milk yield was reduced in seropositive ewes by 8.1%-9.2% over an entire lactation. SCC counts were not significantly different in SRLV-infected and unifected animals. LIMITATIONS: Further parameters, such as body condition score or clinical mastitis, that were not available may have clarified the underlying cause of milk yield drop. CONCLUSIONS: The study demonstrates substantial production losses in an SRLV-affected flock and highlights the impact of the virus on a farm's economic viability.


Assuntos
Infecções por Lentivirus , Doenças dos Ovinos , Vírus Visna-Maedi , Ovinos , Animais , Feminino , Cabras , Leite , Doenças dos Ovinos/diagnóstico , Infecções por Lentivirus/epidemiologia , Infecções por Lentivirus/veterinária , Ruminantes
8.
Sci Adv ; 9(2): eadd3422, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638173

RESUMO

Lentiviral Vif molecules target the host antiviral APOBEC3 proteins for destruction in cellular ubiquitin-proteasome pathways. Different lentiviral Vifs have evolved to use the same canonical E3 ubiquitin ligase complexes, along with distinct noncanonical host cofactors for their activities. Unlike primate lentiviral Vif, which recruits CBFß as the noncanonical cofactor, nonprimate lentiviral Vif proteins have developed different cofactor recruitment mechanisms. Maedi-visna virus (MVV) sequesters CypA as the noncanonical cofactor for the Vif-mediated ubiquitination of ovine APOBEC3s. Here, we report the cryo-electron microscopy structure of MVV Vif in complex with CypA and E3 ligase components. The structure, along with our biochemical and functional analysis, reveals both conserved and unique structural elements of MVV Vif and its common and distinct interaction modes with various cognate cellular proteins, providing a further understanding of the evolutionary relationship between lentiviral Vifs and the molecular mechanisms by which they capture different host cofactors for immune evasion activities.


Assuntos
Vírus Visna-Maedi , Ovinos , Animais , Vírus Visna-Maedi/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Microscopia Crioeletrônica , Produtos do Gene vif/metabolismo , Evasão da Resposta Imune
9.
Prev Vet Med ; 208: 105765, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36181748

RESUMO

Early and accurate diagnosis is fundamental for successful surveillance and control of maedi-visna virus (MVV). MVV was detected in Norway in 2019, almost 14 years after the previous outbreak. Genetic analysis indicates persistence of the virus in the sheep population since 2005. The virus was not detected despite continuous serological surveillance. This emphasises the need for improved surveillance, which relies on an understanding of both diagnostic test performance, sampling strategy and the prevalence of the disease. This study therefore aims to evaluate three commercial ELISA tests for MVV antibodies. We conducted a retrospective study using 615 samples from six flocks diagnosed with MVV in 2019. We ran all samples with the following three tests: ID Screen® MVV/CAEV Indirect (IDvet, Grabels, France), IDEXX MVV/CAEV p28 Ab Verification Test (IDEXX Laboratories, Maine, USA) and Elitest MVV/CAEV (Hyphen Biomed, Neuville-sur-Oise, France), hereinafter referred to as ID Screen, IDEXXp28 and Elitest respectively. Without a perfect reference test, we used Bayesian latent class analysis, including conditional dependence between tests, to estimate diagnostic accuracy and true prevalence in the flocks. Using recommended cut-off values, we found that ID Screen and Elitest had significantly higher sensitivity (Se) estimates (99.3 % [97.4-100.0, 95 % Posterior Credible Interval] and 97.4 % [94.1-99.7 %], respectively) than IDEXXp28 (79.5 % [72.3-86.0 %]), while IDEXXp28 and ID Screen had significantly higher specificity (Sp) estimates than Elitest (99.7 % [99.1-100.0], 99.1 % [98.0-99.8 %] and 93.7 % [91.4-95.7 %], respectively). The estimated true prevalence in the six flocks ranged from a median of 0.8-93.5 %. Combining ID Screen and Elitest in serial interpretation showed the highest median Se and Sp (96.7 % [92.0-99.1] and 100.0 % [99.9-100.0], respectively), as well as the highest median positive predictive value (PPV) for the population with the lowest prevalence. Our study supports the use of ID Screen for screening. Further verification with Elitest in serial interpretation will enhance the PPV.


Assuntos
Pneumonia Intersticial Progressiva dos Ovinos , Doenças dos Ovinos , Vírus Visna-Maedi , Ovinos , Animais , Análise de Classes Latentes , Teorema de Bayes , Estudos Retrospectivos , Pneumonia Intersticial Progressiva dos Ovinos/diagnóstico , Pneumonia Intersticial Progressiva dos Ovinos/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/epidemiologia
10.
Viruses ; 14(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36016323

RESUMO

The canonical function of lentiviral Vif proteins is to counteract the mutagenic potential of APOBEC3 antiviral restriction factors. However, recent studies have discovered that Vif proteins from diverse HIV-1 and simian immunodeficiency virus (SIV) isolates degrade cellular B56 phosphoregulators to remodel the host phosphoproteome and induce G2/M cell cycle arrest. Here, we evaluate the conservation of this activity among non-primate lentiviral Vif proteins using fluorescence-based degradation assays and demonstrate that maedi-visna virus (MVV) Vif efficiently degrades all five B56 family members. Testing an extensive panel of single amino acid substitution mutants revealed that MVV Vif recognizes B56 proteins through a conserved network of electrostatic interactions. Furthermore, experiments using genetic and pharmacologic approaches demonstrate that degradation of B56 proteins requires the cellular cofactor cyclophilin A. Lastly, MVV Vif-mediated depletion of B56 proteins induces a potent G2/M cell cycle arrest phenotype. Therefore, remodeling of the cellular phosphoproteome and induction of G2/M cell cycle arrest are ancient and conserved functions of lentiviral Vif proteins, which suggests that they are advantageous for lentiviral pathogenesis.


Assuntos
HIV-1 , Vírus Visna-Maedi , Animais , Evolução Biológica , Pontos de Checagem do Ciclo Celular , Produtos do Gene vif/genética , Produtos do Gene vif/metabolismo , HIV-1/genética , HIV-1/metabolismo , Ovinos , Vírus Visna-Maedi/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
11.
Can Vet J ; 63(4): 391-399, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35368401

RESUMO

Digital radiography and ultrasonographic images were used in this case series to evaluate 4 ewes from a single flock for chronic weight loss and ill-thrift. On examination, all displayed tachypnea, dyspnea, coughing, and normothermia with abnormal thoracic auscultations. Three of the 4 animals were diagnosed with chronic respiratory disease associated with Maedi-visna (MV) infection confirmed via serologic testing. Diagnostic thoracic imaging identified characteristics consistent with pathological lesions associated with interstitial pneumonia in the 3 MV affected animals; these findings were absent in the animal that tested negative for MV. Key clinical message: Diagnostic imaging may be useful to clinicians looking to obtain further visualization of lung pathologies and as a reliable means of detecting thoracic lesions indicative of interstitial pneumonia on-farm. These results can be used to aid the practitioner in determining appropriate further diagnostic testing and treatment strategies while awaiting confirmatory test results for diagnosis of MV.


Résultats de l'échographie et de la radiographie numérique chez des ovins atteints d'une maladie clinique associée à une infection à lentivirus des petits ruminants. La radiographie numérique et les images échographiques ont été utilisées dans cette série de cas pour évaluer quatre brebis d'un seul troupeau présentant une perte de poids chronique et un retard de croissance. À l'examen, tous les animaux présentaient une tachypnée, une dyspnée, une toux et étaient normothermiques avec des auscultations thoraciques anormales. Trois des quatre animaux ont été diagnostiqués avec une maladie respiratoire chronique associée à une infection Maedi-visna (MV) confirmée via des tests sérologiques. L'imagerie thoracique diagnostique a identifié des caractéristiques compatibles avec des lésions pathologiques associées à une pneumonie interstitielle chez les trois animaux atteints de MV; ces résultats étaient absents chez l'animal qui a été testé négatif pour MV.Message clinique clé :L'imagerie diagnostique peut être utile aux cliniciens qui cherchent à obtenir une visualisation plus poussée des pathologies pulmonaires et comme un moyen fiable de détecter les lésions thoraciques indiquant une pneumonie interstitielle à la ferme. Ces résultats peuvent être utilisés pour aider le praticien à déterminer d'autres tests de diagnostic appropriés et des stratégies de traitement en attendant les résultats des tests de confirmation pour le diagnostic de MV.(Traduit par Dr Serge Messier).


Assuntos
Infecções por Lentivirus , Doenças dos Ovinos , Vírus Visna-Maedi , Animais , Feminino , Infecções por Lentivirus/veterinária , Intensificação de Imagem Radiográfica , Ruminantes , Ovinos , Doenças dos Ovinos/diagnóstico por imagem , Ultrassonografia/veterinária
12.
Braz J Microbiol ; 53(3): 1723-1730, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35478313

RESUMO

Visna-maedi is a multisystemic and progressive inflammatory disease caused by a non-oncogenic retrovirus (Visna-maedi virus, VMV). An outbreak of visna-maedi occurred in Southern Brazil in sheep with clinical signs of blindness and stumbling gait. At post-mortem examination, all animals had similar lesions, including heavy non-collapsed lungs and multifocal yellow areas in the cerebral white matter, affecting mainly the periventricular region. These lesions corresponded histologically to lymphocytic interstitial pneumonia and histiocytic periventricular encephalitis surrounding areas of necrosis, in addition to significant demyelination in the brain. Serology was performed in all the sheep from the flock and 14% were seropositive for VMV. The presence of VMV was confirmed through PCR and partial sequencing of the 5'LTR. Sequencing demonstrated that the virus had 89.7 to 90.0% of nucleotide identity with VMV strains reported in the USA. This is the first description of clinical disease related to VMV in Brazil leading to economic losses. This study calls for the need to implement control measures to prevent the spread of small ruminant lentiviruses in Brazil.


Assuntos
Pneumonia Intersticial Progressiva dos Ovinos , Vírus Visna-Maedi , Visna , Animais , Brasil/epidemiologia , Surtos de Doenças/veterinária , Pneumonia Intersticial Progressiva dos Ovinos/epidemiologia , Pneumonia Intersticial Progressiva dos Ovinos/prevenção & controle , Ovinos , Visna/epidemiologia , Vírus Visna-Maedi/genética
13.
Microb Pathog ; 165: 105467, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35257804

RESUMO

Maedi is a lentiviral disease characterized by progressive interstitial pneumonia with humoural as well as cell mediated immune response. The present investigation was designed to detect the presence of MVV in different biological samples and to evaluate the immune response in naturally MVV infected sheep and goats. Total of 701 biological samples (289 lung tissues, 233 blood, 54 brain tissues, 74 mammary gland tissues and 51 joint tissues were screened for the MVV by nested PCR. MVV nucleic acid was detected in 10.41% of samples and it was observed that sheep samples showed positivity of 8.7% and goat samples 12.6%. Blood samples showed highest positivity (14.59%) followed by joint tissue (13.72), lungs (8.6%), mammary gland (8.1%) and brain (1.85%). MVV p28 antigen was detected in the cytoplasm of mononuclear cells, particularly in the macrophages of lungs and lymph nodes. Antibodies against SRLVs were detected by cELISA and seroprevalence of 19.58% was observed in both sheep and goats serum samples. The seropositivity was higher in sheep (22.9%) as compared to the goats (15.59%). IHC was done to identify the nature of the immune cells infiltrated in the MVV infected tissues and it was observed that B cells, CD8+ and macrophages were the predominant immune cells infiltrated in the lungs showing MVV infection. Expression of the cytokines was assessed by real time PCR and it was observed that expression of IL-10, IFN-γ, TNFα, IL-4, IL-2 and IL6 was down regulated in most of the cases but few samples showed upregulation. In conclusion, MVV is circulating in the sheep and goat population of the India and the disease causes altered immune response in the animal which may make the infected animals more prone to other infectious diseases.


Assuntos
Pneumonia Intersticial Progressiva dos Ovinos , Vírus Visna-Maedi , Animais , Cabras , Imunidade , Pneumonia Intersticial Progressiva dos Ovinos/patologia , Estudos Soroepidemiológicos , Ovinos
14.
J Med Microbiol ; 71(2)2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35144720

RESUMO

Maedi-visna (MV) is a lentiviral disease of sheep responsible for severe production losses in affected flocks. There are no vaccination or treatment options with control reliant on test and cull strategies. The most common diagnostic methods used at present are combination ELISAs for Gag and Env proteins with virus variability making PCR diagnostics still largely an experimental tool. To assess variability in viral loads and diagnostic tests results, serology, DNA and RNA viral loads were measured in the blood of 12 naturally infected rams repeatedly blood sampled over 16 months. Six animals tested negative in one or more tests at one or more time points and would have been missed on screening programmes reliant on one test method or a single time point. In addition the one animal homozygous for the 'K' allele of the TMEM154 E35K SNP maintained very low viral loads in all assays and apparently cleared infection to below detectable limits at the final time point it was sampled. This adds crucial data to the strong epidemiological evidence that this locus represents a genuine resistance marker for MV infection and is a strong candidate for selective breeding of sheep for resistance to disease.


Assuntos
Proteínas de Membrana/genética , Pneumonia Intersticial Progressiva dos Ovinos , Ovinos/virologia , Visna , Alelos , Animais , Resistência à Doença , Estudos Longitudinais , Masculino , Pneumonia Intersticial Progressiva dos Ovinos/diagnóstico , Pneumonia Intersticial Progressiva dos Ovinos/genética , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Carga Viral , Visna/diagnóstico , Visna/genética , Vírus Visna-Maedi
15.
J Vet Sci ; 22(6): e66, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34697919

RESUMO

BACKGROUND: Maedi/Visna virus (MVV) is a contagious viral pathogen that causes considerable economic losses to the sheep industry worldwide. OBJECTIVES: In China, MVV has been detected in several regions, but its molecular characteristics and genetic variations were not thoroughly investigated. METHODS: Therefore, in this study, we conducted next-generation sequencing on an MVV strain obtained from northwest China to reveal its genetic evolution via phylogenetic analysis. RESULTS: A MVV strain obtained from Inner Mongolia (NM) of China was identified. Sequence analysis indicated that its whole-genome length is 9193 bp. Homology comparison of nucleotides between the NM strain and reference strains showed that the sequence homology of gag and env were 77.1%-86.8% and 67.7%-75.5%, respectively. Phylogenetic analysis revealed that the NM strain was closely related to the reference strains isolated from America, which belong to the A2 type. Notably, there were 5 amino acid insertions in variable region 4 and a highly variable motif at the C-terminal of the surface glycoprotein (SU5). CONCLUSIONS: The present study is the first to show the whole-genome sequence of an MVV obtained from China. The detailed analyses provide essential information for understanding the genetic characteristics of MVV, and the results enrich the MVV library.


Assuntos
Pneumonia Intersticial Progressiva dos Ovinos , Doenças dos Ovinos , Vírus Visna-Maedi , Animais , China/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Filogenia , Pneumonia Intersticial Progressiva dos Ovinos/virologia , Ovinos , Doenças dos Ovinos/virologia , Vírus Visna-Maedi/genética
16.
Viruses ; 13(10)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34696484

RESUMO

Small ruminant lentiviruses (SRLV) are economically important viral pathogens of sheep and goats. SRLV infection may interfere in the innate and adaptive immunity of the host, and genes associated with resistance or susceptibility to infection with SRLV have not been fully recognized. The presence of animals with relatively high and low proviral load suggests that some host factors are involved in the control of virus replication. To better understand the role of the genes involved in the host response to SRLV infection, RNA sequencing (RNA-seq) method was used to compare whole gene expression profiles in goats carrying both a high (HPL) and low (LPL) proviral load of SRLV and uninfected animals. Data enabled the identification of 1130 significant differentially expressed genes (DEGs) between control and LPL groups: 411 between control and HPL groups and 1434 DEGs between HPL and LPL groups. DEGs detected between the control group and groups with a proviral load were found to be significantly enriched in several gene ontology (GO) terms, including an integral component of membrane, extracellular region, response to growth factor, inflammatory and innate immune response, transmembrane signaling receptor activity, myeloid differentiation primary response gene 88 (MyD88)-dependent toll-like receptor signaling pathway as well as regulation of cytokine secretion. Our results also demonstrated significant deregulation of selected pathways in response to viral infection. The presence of SRLV proviral load in blood resulted in the modification of gene expression belonging to the toll-like receptor signaling pathway, the tumor necrosis factor (TNF) signaling pathway, the cytokine-cytokine receptor interaction, the phagosome, the Ras signaling pathway, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) (PI3K-Akt) signaling pathway and rheumatoid arthritis. It is worth mentioning that the most predominant in all pathways were genes represented by toll-like receptors, tubulins, growth factors as well as interferon gamma receptors. DEGs detected between LPL and HPL groups were found to have significantly enriched regulation of signaling receptor activity, the response to toxic substances, nicotinamide adenine dinucleotide (NADH) dehydrogenase complex assembly, cytokine production, vesicle, and vacuole organization. In turn, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway tool classified DEGs that enrich molecular processes such as B and T-cell receptor signaling pathways, natural killer cell-mediated cytotoxicity, Fc gamma R-mediated phagocytosis, toll-like receptor signaling pathways, TNF, mammalian target of rapamycin (mTOR) signaling and forkhead box O (Foxo) signaling pathways, etc. Our data indicate that changes in SRLV proviral load induced altered expression of genes related to different biological processes such as immune response, inflammation, cell locomotion, and cytokine production. These findings provide significant insights into defense mechanisms against SRLV infection. Furthermore, these data can be useful to develop strategies against SRLV infection by selection of animals with reduced SRLV proviral concentration that may lead to a reduction in the spread of the virus.


Assuntos
Vírus da Artrite-Encefalite Caprina/genética , Cabras/virologia , Vírus Visna-Maedi/genética , Imunidade Adaptativa/genética , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Doenças das Cabras/virologia , Cabras/genética , Interações entre Hospedeiro e Microrganismos/genética , Imunidade Inata/genética , Infecções por Lentivirus/veterinária , Lentivirus Ovinos-Caprinos/genética , Provírus/genética , Análise de Sequência de RNA , Transcriptoma/genética , Carga Viral/métodos , Replicação Viral
17.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34575988

RESUMO

Maedi-Visna-like genotype A strains and Caprine arthritis encephaltis-like genotype B strains are small ruminant lentiviruses (SRLV) which, for incompletely understood reasons, appear to be more virulent in sheep and goats, respectively. A 9-month in vivo infection experiment using Belgian genotype A and B SRLV strains showed that almost all homologous (genotype A in sheep; genotype B in goats) and heterologous (genotype A in goats; genotype B in sheep) intratracheal inoculations resulted in productive infection. No differences in viremia and time to seroconversion were observed between homologous and heterologous infections. Higher viral loads and more severe lesions in the mammary gland and lung were however detected at 9 months post homologous compared to heterologous infection which coincided with strongly increased IFN-γ mRNA expression levels upon homologous infection. Pepscan analysis revealed a strong antibody response against immune-dominant regions of the capsid and surface proteins upon homologous infection, which was absent after heterologous infection. These results inversely correlated with protection against virus replication in target organs and observed histopathological lesions, and thus require an in-depth evaluation of a potential role of antibody dependent enhancement in SRLV infection. Finally, no horizontal intra- and cross-species SRLV transmission to contact animals was detected.


Assuntos
Vírus da Artrite-Encefalite Caprina/fisiologia , Genótipo , Doenças das Cabras/imunologia , Cabras , Imunidade Humoral , Pneumonia Intersticial Progressiva dos Ovinos/imunologia , Ovinos , Replicação Viral/imunologia , Vírus Visna-Maedi/fisiologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Doenças das Cabras/genética , Doenças das Cabras/patologia , Doenças das Cabras/virologia , Cabras/imunologia , Cabras/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/virologia , Pneumonia Intersticial Progressiva dos Ovinos/genética , Pneumonia Intersticial Progressiva dos Ovinos/patologia , Pneumonia Intersticial Progressiva dos Ovinos/virologia , Ovinos/imunologia , Ovinos/virologia , Especificidade da Espécie , Carga Viral/imunologia
18.
Viruses ; 13(9)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34578292

RESUMO

Small ruminant lentiviruses (SRLVs) infections lead to chronic diseases and remarkable economic losses undermining health and welfare of animals and the sustainability of farms. Early and definite diagnosis of SRLVs infections is the cornerstone for any control and eradication efforts; however, a "gold standard" test and/or diagnostic protocols with extensive applicability have yet to be developed. The main challenges preventing the development of a universally accepted diagnostic tool with sufficient sensitivity, specificity, and accuracy to be integrated in SRLVs control programs are the genetic variability of SRLVs associated with mutations, recombination, and cross-species transmission and the peculiarities of small ruminants' humoral immune response regarding late seroconversion, as well as intermittent and epitope-specific antibody production. The objectives of this review paper were to summarize the available serological and molecular assays for the diagnosis of SRLVs, to highlight their diagnostic performance emphasizing on advantages and drawbacks of their application, and to discuss current and future perspectives, challenges, limitations and impacts regarding the development of reliable and efficient tools for the diagnosis of SRLVs infections.


Assuntos
Infecções por Lentivirus/diagnóstico , Infecções por Lentivirus/imunologia , Lentivirus/genética , Lentivirus/imunologia , Ruminantes/virologia , Testes Sorológicos/veterinária , Animais , Vírus da Artrite-Encefalite Caprina/genética , Vírus da Artrite-Encefalite Caprina/imunologia , Doenças das Cabras/diagnóstico , Doenças das Cabras/virologia , Cabras/virologia , Lentivirus/classificação , Lentivirus/isolamento & purificação , Soroconversão , Testes Sorológicos/métodos , Ovinos/virologia , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/virologia , Virologia/métodos , Vírus Visna-Maedi/genética , Vírus Visna-Maedi/imunologia
19.
J Biol Chem ; 296: 100045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33465707

RESUMO

The mammalian apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 or A3) family of cytidine deaminases restrict viral infections by mutating viral DNA and impeding reverse transcription. To overcome this antiviral activity, most lentiviruses express a viral accessory protein called the virion infectivity factor (Vif), which recruits A3 proteins to cullin-RING E3 ubiquitin ligases such as cullin-5 (Cul5) for ubiquitylation and subsequent proteasomal degradation. Although Vif proteins from primate lentiviruses such as HIV-1 utilize the transcription factor core-binding factor subunit beta as a noncanonical cofactor to stabilize the complex, the maedi-visna virus (MVV) Vif hijacks cyclophilin A (CypA) instead. Because core-binding factor subunit beta and CypA are both highly conserved among mammals, the requirement for two different cellular cofactors suggests that these two A3-targeting Vif proteins have different biochemical and structural properties. To investigate this topic, we used a combination of in vitro biochemical assays and in vivo A3 degradation assays to study motifs required for the MVV Vif to bind zinc ion, Cul5, and the cofactor CypA. Our results demonstrate that although some common motifs between the HIV-1 Vif and MVV Vif are involved in recruiting Cul5, different determinants in the MVV Vif are required for cofactor binding and stabilization of the E3 ligase complex, such as the zinc-binding motif and N- and C-terminal regions of the protein. Results from this study advance our understanding of the mechanism of MVV Vif recruitment of cellular factors and the evolution of lentiviral Vif proteins.


Assuntos
Vírus Visna-Maedi/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Proteínas Culina/metabolismo , Ciclofilina A/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Zinco/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
20.
PLoS One ; 15(9): e0238781, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32911525

RESUMO

Maedi-visna (MV) is a complex lentiviral disease syndrome characterised by long immunological and clinical latencies and chronic progressive inflammatory pathology. Incurable at the individual level, it is widespread in most sheep-keeping countries, and is a cause of lost production and poor animal welfare. Culling seropositive animals is the main means of control, but it might be possible to manage virus transmission effectively if its epidemiology was better quantified. We derive a mathematical epidemiological model of the temporal distributions of seroconversion probabilities and estimate susceptibility, transmission rate and latencies in three serological datasets. We demonstrate the existence of epidemiological latency, which has not explicitly been recognised in the SRLV literaure. This time delay between infection and infectiousness apparently exceeds the delay between infection and seroconversion. Poor body condition was associated with more rapid seroconversion, but not with a higher probability of infection. We estimate transmission rates amongst housed sheep to be at about 1,000 times faster than when sheep were at grass, when transmission was negligible. Maternal transmission has only a small role in transmission, because lambs from infected ewes have a low probability of being infected directly by them, and only a small proportion of lambs need be retained to maintain flock size. Our results show that MV is overwhelmingly a disease of housing, where sheep are kept in close proximity. Prevalence of MV is likely to double each year from an initial low incidence in housed flocks penned in typically-sized groups of sheep (c. 50) for even a few days per year. Ewes kept entirely at grass are unlikely to experience transmission frequently enough for MV to persist, and pre-existing infection should die out as older ewes are replaced, thereby essentially curing the flock.


Assuntos
Pneumonia Intersticial Progressiva dos Ovinos/transmissão , Vírus Visna-Maedi/patogenicidade , Animais , Monitoramento Epidemiológico/veterinária , Incidência , Modelos Teóricos , Pneumonia Intersticial Progressiva dos Ovinos/imunologia , Pneumonia Intersticial Progressiva dos Ovinos/virologia , Prevalência , Soroconversão , Ovinos/imunologia , Ovinos/virologia , Doenças dos Ovinos/epidemiologia , Vírus Visna-Maedi/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA