Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Nat Commun ; 15(1): 246, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172096

RESUMO

Members of the low-density lipoprotein receptor (LDLR) family, including LDLRAD3, VLDLR, and ApoER2, were recently described as entry factors for different alphaviruses. However, based on studies with gene edited cells and knockout mice, blockade or abrogation of these receptors does not fully inhibit alphavirus infection, indicating the existence of additional uncharacterized entry factors. Here, we perform a CRISPR-Cas9 genome-wide loss-of-function screen in mouse neuronal cells with a chimeric alphavirus expressing the Eastern equine encephalitis virus (EEEV) structural proteins and identify LDLR as a candidate receptor. Expression of LDLR on the surface of neuronal or non-neuronal cells facilitates binding and infection of EEEV, Western equine encephalitis virus, and Semliki Forest virus. Domain mapping and binding studies reveal a low-affinity interaction with LA domain 3 (LA3) that can be enhanced by concatenation of LA3 repeats. Soluble decoy proteins with multiple LA3 repeats inhibit EEEV infection in cell culture and in mice. Our results establish LDLR as a low-affinity receptor for multiple alphaviruses and highlight a possible path for developing inhibitors that could mitigate infection and disease.


Assuntos
Infecções por Alphavirus , Alphavirus , Vírus da Encefalite Equina do Leste , Cavalos , Animais , Camundongos , Alphavirus/genética , Vírus da Encefalite Equina do Leste/genética , Vírus da Floresta de Semliki/genética , Lipoproteínas LDL
2.
J Clin Microbiol ; 61(12): e0015223, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37982611

RESUMO

Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.


Assuntos
Alphavirus , Culicidae , Dengue , Vírus da Encefalite Equina do Leste , Encefalomielite Equina do Leste , Encefalomielite Equina Venezuelana , Humanos , Animais , Cavalos/genética , Vírus da Encefalite Equina do Leste/genética , Encefalomielite Equina Venezuelana/diagnóstico , Encefalomielite Equina Venezuelana/epidemiologia , Culicidae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Filogenia , Estudos Prospectivos , Vigilância em Saúde Pública , Estudos Retrospectivos , Alphavirus/genética , RNA
3.
Curr Biol ; 33(12): 2515-2527.e6, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37295427

RESUMO

Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.


Assuntos
Culicidae , Vírus da Encefalite Equina do Leste , Encefalomielite Equina , Aves Canoras , Animais , Cavalos , Humanos , Vírus da Encefalite Equina do Leste/genética , Mosquitos Vetores , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/veterinária , Massachusetts/epidemiologia , Surtos de Doenças/veterinária
4.
Am J Trop Med Hyg ; 109(2): 387-396, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37339758

RESUMO

Eastern equine encephalitis virus (EEEV) is a relatively little-studied alphavirus that can cause devastating viral encephalitis, potentially leading to severe neurological sequelae or death. Although case numbers have historically been low, outbreaks have been increasing in frequency and scale since the 2000 s. It is critical to investigate EEEV evolutionary patterns, especially within human hosts, to understand patterns of emergence, host adaptation, and within-host evolution. To this end, we obtained formalin-fixed paraffin-embedded tissue blocks from discrete brain regions from five contemporary (2004-2020) patients from Massachusetts, confirmed the presence of EEEV RNA by in situ hybridization (ISH) staining, and sequenced viral genomes. We additionally sequenced RNA from scrapings of historical slides made from brain sections of a patient in the first documented EEE outbreak in humans in 1938. ISH staining revealed the presence of RNA in all contemporary samples, and quantification loosely correlated with the proportion of EEEV reads in samples. Consensus EEEV sequences were generated for all six patients, including the sample from 1938; phylogenetic analysis using additional publicly available sequences revealed clustering of each study sample with like sequences from a similar region, whereas an intrahost comparison of consensus sequences between discrete brain regions revealed minimal changes. Intrahost single nucleotide variant (iSNV) analysis of four samples from two patients revealed the presence of tightly compartmentalized, mostly nonsynonymous iSNVs. This study contributes critical primary human EEEV sequences, including a historic sequence as well as novel intrahost evolution findings, contributing substantially to our understanding of the natural history of EEEV infection in humans.


Assuntos
Vírus da Encefalite Equina do Leste , Encefalomielite Equina , Humanos , Animais , Cavalos/genética , Vírus da Encefalite Equina do Leste/genética , Filogenia , Encefalomielite Equina/epidemiologia , Massachusetts/epidemiologia , RNA Viral/genética
5.
J Virol ; 97(1): e0136822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533950

RESUMO

Eastern equine encephalitis virus (EEEV) usually cycles between Culiseta melanura mosquitoes and birds; however, it can also infect humans. EEEV has a positive-sense RNA genome that, in infected cells, serves as an mRNA for the P1234 polyprotein. P1234 undergoes a series of precise cleavage events producing four nonstructural proteins (nsP1-4) representing subunits of the RNA replicase. Here, we report the construction and properties of a trans-replicase for EEEV. The template RNA of EEEV was shown to be replicated by replicases of diverse alphaviruses. The EEEV replicase, on the other hand, demonstrated limited ability in replicating template RNAs originating from alphaviruses of the Semliki Forest virus complex. The replicase of EEEV was also successfully reconstructed from P123 and nsP4 components. The ability of EEEV P123 to form functional RNA replicases with heterologous nsP4s was more efficient using EEEV template RNA than heterologous alphavirus template RNA. This finding indicates that unlike with previously studied Semliki Forest complex alphaviruses, P123 and/or its processing products have a leading role in EEEV template RNA recognition. Infection of HEK293T cells harboring the EEEV template RNA with EEEV or Western equine encephalitis virus prominently activated expression of a reporter encoded in the template RNA; the effect was much smaller for infection with other alphaviruses and not detectable upon flavivirus infection. At the same time, EEEV infection resulted only in a limited activation of the template RNA of chikungunya virus. Thus, cells harboring reporter-carrying template RNAs can be used as sensitive and selective biosensors for different alphaviruses. IMPORTANCE Infection of EEEV in humans can cause serious neurologic disease with an approximately 30% fatality rate. Although human infections are rare, a record-breaking number was documented in 2019. The replication of EEEV has a unique requirement for host factors but is poorly studied, partly because the virus requires biosafety level 3 facilities which can limit the scope of experiments; at the same time, these studies are crucial for developing antiviral approaches. The EEEV trans-replicase developed here contributes significantly to research on EEEV, providing a safe and versatile tool for studying the virus RNA replication. Using this system, the compatibility of EEEV replicase components with counterparts from other alphaviruses was analyzed. The obtained data can be used to develop unique biosensors that provide alternative methods for detection, identification, quantitation, and neutralization of viable alphaviruses that are compatible with high throughput, semiautomated approaches.


Assuntos
Vírus Chikungunya , Vírus da Encefalite Equina do Leste , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais , Animais , Humanos , Vírus Chikungunya/genética , Vírus da Encefalite Equina do Leste/enzimologia , Vírus da Encefalite Equina do Leste/genética , Células HEK293 , Cavalos , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia
6.
Viruses ; 14(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36560655

RESUMO

Alphaviruses are spherical, enveloped RNA viruses primarily transmitted by mosquitoes, and cause significant arthritogenic and neurotropic disease in humans and livestock. Previous reports have shown that-in contrast to prototypical icosahedral viruses-alphaviruses incorporate frequent defects, and these may serve important functions in the viral life cycle. We confirm the genus-wide pleomorphism in live viral particles and extend our understanding of alphavirus assembly through the discovery of an alternate architecture of Eastern equine encephalitis virus (EEEV) particles. The alternate T = 3 icosahedral architecture differs in triangulation number from the classic T = 4 icosahedral organization that typifies alphaviruses, but the alternate architecture maintains the quasi-equivalence relationship of asymmetric units. The fusion spike glycoproteins are more loosely apposed in the T = 3 form with corresponding changes in the underlying capsid protein lattice. This alternate architecture could potentially be exploited in engineering alphavirus-based particles for delivery of alphaviral or other RNA.


Assuntos
Alphavirus , Vírus da Encefalite Equina do Leste , Alphavirus/genética , Proteínas do Capsídeo/genética , Vírus da Encefalite Equina do Leste/genética , Vírion/genética
7.
Viruses ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215862

RESUMO

Alphaviruses (Togaviridae) are arthropod-borne viruses responsible for several emerging diseases, maintained in nature through transmission between hematophagous arthropod vectors and susceptible vertebrate hosts. Although bats harbor many species of viruses, their role as reservoir hosts in emergent zoonoses has been verified only in a few cases. With bats being the second most diverse order of mammals, their implication in arbovirus infections needs to be elucidated. Reports on arbovirus infections in bats are scarce, especially in South American indigenous species. In this work, we report the genomic detection and identification of two different alphaviruses in oral swabs from bats captured in Northern Uruguay. Phylogenetic analysis identified Río Negro virus (RNV) in two different species: Tadarida brasiliensis (n = 6) and Myotis spp. (n = 1) and eastern equine encephalitis virus (EEEV) in Myotis spp. (n = 2). Previous studies of our group identified RNV and EEEV in mosquitoes and horse serology, suggesting that they may be circulating in enzootic cycles in our country. Our findings reveal that bats can be infected by these arboviruses and that chiropterans could participate in the viral natural cycle as virus amplifiers or dead-end hosts. Further studies are warranted to elucidate the role of these mammals in the biological cycle of these alphaviruses in Uruguay.


Assuntos
Infecções por Alphavirus/veterinária , Alphavirus/isolamento & purificação , Arbovírus/isolamento & purificação , Quirópteros/virologia , Vírus da Encefalite Equina do Leste/isolamento & purificação , Alphavirus/classificação , Alphavirus/genética , Infecções por Alphavirus/virologia , Animais , Infecções por Arbovirus/veterinária , Infecções por Arbovirus/virologia , Arbovírus/classificação , Arbovírus/genética , Vírus da Encefalite Equina do Leste/classificação , Vírus da Encefalite Equina do Leste/genética , Filogenia , Uruguai
8.
Viruses ; 14(2)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35215864

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an Alphavirus in the Togaviridae family of positive-strand RNA viruses. The viral genome of positive-strand RNA viruses is infectious, as it produces infectious virus upon introduction into a cell. VEEV is a select agent and samples containing viral RNA are subject to additional regulations due to their infectious nature. Therefore, RNA isolated from cells infected with BSL-3 select agent strains of VEEV or other positive-strand viruses must be inactivated before removal from high-containment laboratories. In this study, we tested the inactivation of the viral genome after RNA fragmentation or cDNA synthesis, using the Trinidad Donkey and TC-83 strains of VEEV. We successfully inactivated VEEV genomic RNA utilizing these two protocols. Our cDNA synthesis method also inactivated the genomic RNA of eastern and western equine encephalitis viruses (EEEV and WEEV). We also tested whether the purified VEEV genomic RNA can produce infectious virions in the absence of transfection. Our result showed the inability of the viral genome to cause infection without being transfected into the cells. Overall, this work introduces RNA fragmentation and cDNA synthesis as reliable methods for the inactivation of samples containing the genomes of positive-strand RNA viruses.


Assuntos
Vírus da Encefalite Equina Venezuelana/genética , Genoma Viral , RNA Viral , Inativação de Vírus , Animais , Células Cultivadas , Chlorocebus aethiops , Efeito Citopatogênico Viral , DNA Complementar/biossíntese , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/fisiologia , Vírus da Encefalite Equina Venezuelana/fisiologia , Vírus da Encefalite Equina do Oeste/genética , Vírus da Encefalite Equina do Oeste/fisiologia , RNA Viral/química , RNA Viral/fisiologia , Ribonucleases/metabolismo , Células Vero
9.
J Med Entomol ; 59(1): 14-19, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34734630

RESUMO

Eastern equine encephalitis virus (EEEV; Togaviridae, Alphavirus) is an arthropod-borne virus (arbovirus) primarily maintained in an enzootic cycle between Culiseta melanura (Coquillett) and passerine birds. EEEV, which has the highest reported case- fatality rate among arbovirus in the Americas, is responsible for sporadic outbreaks in the Eastern and Midwest United States. Infection is associated with severe neurologic disease and mortality in horses, humans, and other vertebrate hosts. Here, we review what is known about EEEV taxonomy, functional genomics, and evolution, and identify gaps in knowledge regarding the role of EEEV genetic diversity in transmission and disease.


Assuntos
Vírus da Encefalite Equina do Leste , Encefalomielite Equina , Evolução Molecular , Variação Genética , Genoma Viral , Evolução Biológica , Vírus da Encefalite Equina do Leste/classificação , Vírus da Encefalite Equina do Leste/genética , Encefalomielite Equina/transmissão , Encefalomielite Equina/virologia , Genômica
11.
Viruses ; 13(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673546

RESUMO

Alphaviruses are arthropod-borne RNA viruses which can cause either mild to severe febrile arthritis which may persist for months, or encephalitis which can lead to death or lifelong cognitive impairments. The non-assembly molecular role(s), functions, and protein-protein interactions of the alphavirus capsid proteins have been largely overlooked. Here we detail the use of a BioID2 biotin ligase system to identify the protein-protein interactions of the Sindbis virus capsid protein. These efforts led to the discovery of a series of novel host-pathogen interactions, including the identification of an interaction between the alphaviral capsid protein and the host IRAK1 protein. Importantly, this capsid-IRAK1 interaction is conserved across multiple alphavirus species, including arthritogenic alphaviruses SINV, Ross River virus, and Chikungunya virus; and encephalitic alphaviruses Eastern Equine Encephalitis virus, and Venezuelan Equine Encephalitis virus. The impact of the capsid-IRAK1 interaction was evaluated using a robust set of cellular model systems, leading to the realization that the alphaviral capsid protein specifically inhibits IRAK1-dependent signaling. This inhibition represents a means by which alphaviruses may evade innate immune detection and activation prior to viral gene expression. Altogether, these data identify novel capsid protein-protein interactions, establish the capsid-IRAK1 interaction as a common alphavirus host-pathogen interface, and delineate the molecular consequences of the capsid-IRAK1 interaction on IRAK1-dependent signaling.


Assuntos
Alphavirus/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Transdução de Sinais/genética , Receptores Toll-Like/genética , Animais , Capsídeo , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus Chikungunya/genética , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina Venezuelana/genética , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Mapas de Interação de Proteínas/genética , RNA Viral/genética , Sindbis virus/genética , Replicação Viral/genética
12.
Emerg Microbes Infect ; 9(1): 1638-1650, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32672516

RESUMO

Surveillance for the emerging infectious disease Eastern equine encephalitis, and its causative virus in mosquitoes, continued within New York State from 2013 to 2019. There were increases in geographic area and number of consecutive years, with cases in four mammalian species, and virus in 11 mosquito species. The first cases in a goat and in an emu were reported. The first detection of virus in Aedes cinereus was reported. Virus in phylogenetic group NY4 was isolated from a horse and from mosquitoes 6 kilometers and 13 days apart in 2013. Phylogenetic groups NY4 and NY5 were found 15 days apart in two towns 280 kilometers distant in 2013. Within four adjacent counties there was a pattern of overlap, where four had NY5, two adjacent counties had NY6, two adjacent counties had NY7, and one county had NY5, NY6, and NY7, reducible to a Euler diagram. Virus in phylogenetic group NY5, found within an 11-kilometer wide area in New York State, was related to FL4 found in Florida 1,398 kilometers distant. This was consistent with a phylogenetic group originating in Florida, then being moved to a specific location in New York State, by migratory birds in consecutive years 2013 and 2014.


Assuntos
Culicidae/virologia , Vírus da Encefalite Equina do Leste/classificação , Cavalos/virologia , Animais , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/isolamento & purificação , Florida , Cabras/virologia , Humanos , New York , Filogenia , Vigilância da População , Análise Espaço-Temporal
13.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581106

RESUMO

Eastern equine encephalitis virus (EEEV) is the most pathogenic member of the Alphavirus genus in the Togaviridae family. This virus continues to circulate in the New World and has a potential for deliberate use as a bioweapon. Despite the public health threat, to date no attenuated EEEV variants have been applied as live EEEV vaccines. Our previous studies demonstrated the critical function of the hypervariable domain (HVD) in EEEV nsP3 for the assembly of viral replication complexes (vRCs). EEEV HVD contains short linear motifs that recruit host proteins required for vRC formation and function. In this study, we developed a set of EEEV mutants that contained combinations of deletions in nsP3 HVD and clustered mutations in capsid protein, and tested the effects of these modifications on EEEV infection in vivo These mutations had cumulative negative effects on viral ability to induce meningoencephalitis. The deletions of two critical motifs, which interact with the members of cellular FXR and G3BP protein families, made EEEV cease to be neurovirulent. The additional clustered mutations in capsid protein, which affect its ability to induce transcriptional shutoff, diminished EEEV's ability to develop viremia. Most notably, despite the inability to induce detectable disease, the designed EEEV mutants remained highly immunogenic and, after a single dose, protected mice against subsequent infection with wild-type (wt) EEEV. Thus, alterations of interactions of EEEV HVD and likely HVDs of other alphaviruses with host factors represent an important direction for development of highly attenuated viruses that can be applied as live vaccines.IMPORTANCE Hypervariable domains (HVDs) of alphavirus nsP3 proteins recruit host proteins into viral replication complexes. The sets of HVD-binding host factors are specific for each alphavirus, and we have previously identified those specific for EEEV. The results of this study demonstrate that the deletions of the binding sites of the G3BP and FXR protein families in the nsP3 HVD of EEEV make the virus avirulent for mice. Mutations in the nuclear localization signal in EEEV capsid protein have an additional negative effect on viral replication in vivo Despite the inability to cause a detectable disease, the double HVD and triple HVD/capsid mutants induce high levels of neutralizing antibodies. Single immunization protects mice against infection with the highly pathogenic North American strain of EEEV. High safety, the inability to revert to wild-type phenotype, and high immunogenicity make the designed mutants attractive vaccine candidates for EEEV infection.


Assuntos
Vírus da Encefalite Equina do Leste/imunologia , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Fatores de Virulência/imunologia , Animais , Anticorpos Neutralizantes , Sítios de Ligação , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/imunologia , Encefalomielite Equina/prevenção & controle , Camundongos , Mutação , Proteínas não Estruturais Virais/genética , Virulência/genética , Virulência/imunologia , Fatores de Virulência/genética , Replicação Viral
14.
PLoS Pathog ; 15(10): e1007867, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658290

RESUMO

Eastern equine encephalitis virus (EEEV), a mosquito-borne RNA virus, is one of the most acutely virulent viruses endemic to the Americas, causing between 30% and 70% mortality in symptomatic human cases. A major factor in the virulence of EEEV is the presence of four binding sites for the hematopoietic cell-specific microRNA, miR-142-3p, in the 3' untranslated region (3' UTR) of the virus. Three of the sites are "canonical" with all 7 seed sequence residues complimentary to miR-142-3p while one is "non-canonical" and has a seed sequence mismatch. Interaction of the EEEV genome with miR-142-3p limits virus replication in myeloid cells and suppresses the systemic innate immune response, greatly exacerbating EEEV neurovirulence. The presence of the miRNA binding sequences is also required for efficient EEEV replication in mosquitoes and, therefore, essential for transmission of the virus. In the current studies, we have examined the role of each binding site by point mutagenesis of the seed sequences in all combinations of sites followed by infection of mammalian myeloid cells, mosquito cells and mice. The resulting data indicate that both canonical and non-canonical sites contribute to cell infection and animal virulence, however, surprisingly, all sites are rapidly deleted from EEEV genomes shortly after infection of myeloid cells or mice. Finally, we show that the virulence of a related encephalitis virus, western equine encephalitis virus, is also dependent upon miR-142-3p binding sites.


Assuntos
Regiões 3' não Traduzidas/genética , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Oeste/genética , MicroRNAs/genética , Replicação Viral/genética , Aedes , Animais , Sítios de Ligação/genética , Linhagem Celular , Cricetinae , Vírus da Encefalite Equina do Leste/imunologia , Vírus da Encefalite Equina do Leste/patogenicidade , Vírus da Encefalite Equina do Oeste/imunologia , Vírus da Encefalite Equina do Oeste/patogenicidade , Encefalomielite Equina/imunologia , Encefalomielite Equina/virologia , Feminino , Imunidade Inata/imunologia , Células L , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Virulência/genética
15.
Am J Trop Med Hyg ; 101(4): 916-918, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31482786

RESUMO

Madariaga virus (MADV), previously known as South American eastern equine encephalitis virus (SA EEEV; family Togaviridae, genus Alphavirus), is a mosquito-borne virus associated mainly with equine disease. In 2010, the first human outbreak by MADV was reported in Central America, but the mosquito vectors and vertebrate hosts involved in the outbreak were not identified. In Argentina, the first epizootic of MADV was in 1930, and since then, several epizootics by MADV have been reported. However, the potential vectors and hosts involved in the transmission cycle remain unknown. In the present study, MADV was detected in Culex (Culex) spp. mosquitoes and the phylogenetic analysis showed that the MADV fragment amplified grouped with the lineage/subtype III of the SA EEEV complex. Our results provide information about the natural infection with MADV in mosquitoes collected in a wild environment of Argentina and its genetic relatedness.


Assuntos
Alphavirus/isolamento & purificação , Culex/virologia , Surtos de Doenças , Vírus da Encefalite Equina do Leste/isolamento & purificação , Encefalomielite Equina/virologia , Alphavirus/genética , Animais , Argentina/epidemiologia , Vírus da Encefalite Equina do Leste/genética , Encefalomielite Equina/epidemiologia , Humanos , Filogenia
16.
Microb Pathog ; 132: 80-86, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31029717

RESUMO

Madariaga Virus (MADV) is an emergent Alphavirus of the eastern equine encephalitis virus (EEEV) strain complex causing epizootic epidemics. In this study the genetic diversity and the transmission dynamics of Madariaga virus has been investigated by Bayesian phylogenetics and phylodynamic analysis. A database of 32 sequences of MADV group structural polyprotein were downloaded from GenBank, aligned manually edited by Bioedit Software. ModelTest v. 3.7 was used to select the simplest evolutionary model that adequately fitted the sequence data. Neighbor-joining tree was generated using MEGA7. The phylogenetic signal of the dataset was tested by the likelihood mapping analysis. The Bayesian phylogenetic tree was built using BEAST. Selective pressure analysis revealed one positive selection site. The phylogenetic trees showed two main clusters. In particular, Lineage II showed an epizootic infection in monkeys and Lineage III, including 2 main clusters (IIIa and IIIB), revealing an epizootic infection in humans in Haiti and an epizootic infection in humans in Venezuela during the 2016, respectively. The Bayesian maximum clade credibility tree and the time of the most common recent ancestor estimates, showed that the root of the tree dated back to the year 346 with the probable origin in Brazil. Gene flow analysis revealed viral exchanges between different neighbor countries of South America. In conclusion, Bayesian phylogenetic and phylodynamic represent useful tools to follow the transmission dynamic of emergent pathogens to prevent new epidemics spreading worldwide.


Assuntos
Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/transmissão , Encefalomielite Equina/virologia , Filogenia , Infecções por Alphavirus , Animais , Sequência de Bases , Teorema de Bayes , Brasil , Vírus da Encefalite Equina do Leste/classificação , Epidemias , Evolução Molecular , Fluxo Gênico , Variação Genética , Haiti , Haplorrinos , Humanos , RNA Viral/genética , Alinhamento de Sequência , América do Sul , Venezuela
17.
Am J Trop Med Hyg ; 100(5): 1266-1274, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30860014

RESUMO

Eastern equine encephalitis virus (EEEV) infection results in high mortality in infected horses and humans. Florida has been identified as an important source of EEEV epidemics to other states in the United States. In this study, we further characterized the epidemiological and evolutionary dynamics of EEEV in Florida. Epidemiological analysis of sentinel chicken seroconversion rates to EEEV infections during 2005-2016 suggested significant seasonality of EEEV activity in Florida. We observed significant annual activity of EEEV in the North and North Central regions, with little significant seasonality in the Panhandle region. Phylogenetic analysis of complete EEEV genome sequences from different host sources and regions in Florida during 1986-2014 revealed extensive genetic diversity and spatial dispersal of the virus within Florida and relatively more clustering of the viruses in the Panhandle region. We found no significant association between EEEV genetic variation and host source. Overall, our study revealed a complex epidemiological dynamic of EEEV within Florida, implicating the Panhandle region as a possible source of the virus with sustained year-round transmission. These findings will help in implementing targeted control measures that can have the most impact in reducing or eliminating EEEV and other mosquito-borne viral infections within Florida and in the rest of the United States.


Assuntos
Galinhas/virologia , Encefalomielite Equina do Leste/epidemiologia , Monitoramento Epidemiológico/veterinária , Variação Genética , Estações do Ano , Animais , Anticorpos Antivirais/sangue , Vírus da Encefalite Equina do Leste/genética , Encefalomielite Equina do Leste/sangue , Florida/epidemiologia , Genoma Viral , Geografia , Filogenia , Saúde Pública , Soroconversão
18.
PLoS Pathog ; 15(2): e1007584, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742691

RESUMO

Live attenuated vaccines (LAVs), if sufficiently safe, provide the most potent and durable anti-pathogen responses in vaccinees with single immunizations commonly yielding lifelong immunity. Historically, viral LAVs were derived by blind passage of virulent strains in cultured cells resulting in adaptation to culture and a loss of fitness and disease-causing potential in vivo. Mutations associated with these phenomena have been identified but rarely have specific attenuation mechanisms been ascribed, thereby limiting understanding of the attenuating characteristics of the LAV strain and applicability of the attenuation mechanism to other vaccines. Furthermore, the attenuated phenotype is often associated with single nucleotide changes in the viral genome, which can easily revert to the virulent sequence during replication in animals. Here, we have used a rational approach to attenuation of eastern equine encephalitis virus (EEEV), a mosquito-transmitted alphavirus that is among the most acutely human-virulent viruses endemic to North America and has potential for use as an aerosolized bioweapon. Currently, there is no licensed antiviral therapy or vaccine for this virus. Four virulence loci in the EEEV genome were identified and were mutated individually and in combination to abrogate virulence and to resist reversion. The resultant viruses were tested for virulence in mice to examine the degree of attenuation and efficacy was tested by subcutaneous or aerosol challenge with wild type EEEV. Importantly, all viruses containing three or more mutations were avirulent after intracerebral infection of mice, indicating a very high degree of attenuation. All vaccines protected from subcutaneous EEEV challenge while a single vaccine with three mutations provided reproducible, near-complete protection against aerosol challenge. These results suggest that informed mutation of virulence determinants is a productive strategy for production of LAVs even with highly virulent viruses such as EEEV. Furthermore, these results can be directly applied to mutation of analogous virulence loci to create LAVs from other viruses.


Assuntos
Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/imunologia , Vacinas Atenuadas/biossíntese , Animais , Anticorpos Neutralizantes , Linhagem Celular , Cricetinae , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina do Leste/veterinária , Encefalomielite Equina do Leste/virologia , Feminino , Engenharia Genética/métodos , Cavalos , Camundongos , Mutação , América do Norte , Projetos de Pesquisa , Vacinas Atenuadas/imunologia , Vacinas Virais/biossíntese , Virulência , Fatores de Virulência
19.
PLoS Negl Trop Dis ; 13(1): e0006972, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629592

RESUMO

Madariaga virus (MADV), also known as South American eastern equine encephalitis virus, has been identified in animals and humans in South and Central America, but not previously in Hispaniola or the northern Caribbean. MADV was isolated from virus cultures of plasma from an 8-year-old child in a school cohort in the Gressier/Leogane region of Haiti, who was seen in April, 2015, with acute febrile illness (AFI). The virus was subsequently cultured from an additional seven AFI case patients from this same cohort in February, April, and May 2016. Symptoms most closely resembled those seen with confirmed dengue virus infection. Sequence data were available for four isolates: all were within the same clade, with phylogenetic and molecular clock data suggesting recent introduction of the virus into Haiti from Panama sometime in the period from October 2012-January 2015. Our data document the movement of MADV into Haiti, and raise questions about the potential for further spread in the Caribbean or North America.


Assuntos
Doenças Transmissíveis Importadas/epidemiologia , Doenças Transmissíveis Importadas/transmissão , Vírus da Encefalite Equina do Leste/isolamento & purificação , Encefalomielite Equina do Leste/epidemiologia , Encefalomielite Equina do Leste/transmissão , Animais , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Doenças Transmissíveis Importadas/virologia , Culex/virologia , Surtos de Doenças , Vírus da Encefalite Equina do Leste/classificação , Vírus da Encefalite Equina do Leste/genética , Encefalomielite Equina do Leste/virologia , Feminino , Haiti/epidemiologia , Humanos , Masculino , Filogenia , RNA Viral/sangue , Instituições Acadêmicas
20.
Parasit Vectors ; 11(1): 362, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941031

RESUMO

BACKGROUND: The year 1971 was the first time in New York State (NYS) that Eastern equine encephalitis virus (EEEV) was identified in mosquitoes, in Culiseta melanura and Culiseta morsitans. At that time, state and county health departments began surveillance for EEEV in mosquitoes. METHODS: From 1993 to 2012, county health departments continued voluntary participation with the state health department in mosquito and arbovirus surveillance. Adult female mosquitoes were trapped, identified, and pooled. Mosquito pools were tested for EEEV by Vero cell culture each of the twenty years. Beginning in 2000, mosquito extracts and cell culture supernatant were tested by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS: During the years 1993 to 2012, EEEV was identified in: Culiseta melanura, Culiseta morsitans, Coquillettidia perturbans, Aedes canadensis (Ochlerotatus canadensis), Aedes vexans, Anopheles punctipennis, Anopheles quadrimaculatus, Psorophora ferox, Culex salinarius, and Culex pipiens-restuans group. EEEV was detected in 427 adult mosquito pools of 107,156 pools tested totaling 3.96 million mosquitoes. Detections of EEEV occurred in three geographical regions of NYS: Sullivan County, Suffolk County, and the contiguous counties of Madison, Oneida, Onondaga and Oswego. Detections of EEEV in mosquitoes occurred every year from 2003 to 2012, inclusive. EEEV was not detected in 1995, and 1998 to 2002, inclusive. CONCLUSIONS: This was the first time in NYS that EEEV was detected in Cx. salinarius, Ps. ferox and An. punctipennis. The detection of EEEV in mosquitoes every year for 10 years was the longest time span since surveillance began in 1971. The calendar date of the earliest annual appearance of EEEV in mosquitoes did not change during surveillance spanning 42 years.


Assuntos
Culicidae/virologia , Vírus da Encefalite Equina do Leste/isolamento & purificação , Encefalomielite Equina/virologia , Doenças dos Cavalos/virologia , Insetos Vetores/virologia , Animais , Culicidae/classificação , Culicidae/fisiologia , Vírus da Encefalite Equina do Leste/classificação , Vírus da Encefalite Equina do Leste/genética , Encefalomielite Equina/epidemiologia , Encefalomielite Equina/transmissão , Feminino , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/transmissão , Cavalos , Humanos , Insetos Vetores/classificação , Insetos Vetores/fisiologia , Masculino , New York/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA